ON SOME EXTENSIONS OF QUATERNIONS By

William Rowan Hamilton

(Proceedings of the Royal Irish Academy, 6 (1858), pp. 114-115)

Edited by David R. Wilkins

On some Extensions of Quaternions.

Sir William Rowan Hamilton.

Read June 26th, 1854.
[Proceedings of the Royal Irish Academy, vol. vi (1858), pp. 114-115.]
Sir W. R. Hamilton read a paper on some extensions of quaternions:
Besides some general remarks on associative polynomes, and on some extensions of the modular property, Sir W. R. Hamilton remarked that if, in the quadrinomial expression

$$
\mathrm{Q}=w+\iota x+\kappa y+\lambda z,
$$

the laws of the symbols $\iota \kappa \lambda$ be determined by the following formula of vector-multiplication,

$$
\begin{aligned}
(\mathrm{A}) \ldots \quad(\iota x & +\kappa y+\lambda z)\left(\iota x^{\prime}+\kappa y^{\prime}+\lambda z^{\prime}\right) \\
& =\left(m_{1}^{2}-l_{2} l_{3}\right) x x^{\prime}+\left(l_{1} m_{1}-m_{2} m_{3}\right)\left(y z^{\prime}+z y^{\prime}\right) \\
& +\left(m_{2}^{2}-l_{3} l_{1}\right) y y^{\prime}+\left(l_{2} m_{2}-m_{3} m_{1}\right)\left(z x^{\prime}+x z^{\prime}\right) \\
& +\left(m_{3}^{2}-l_{1} l_{2}\right) z z^{\prime}+\left(l_{3} m_{3}-m_{1} m_{2}\right)\left(x y^{\prime}+y x^{\prime}\right) \\
& +\left(\iota l_{1}+\kappa m_{3}+\lambda m_{2}\right)\left(y z^{\prime}-z y^{\prime}\right) \\
& +\left(\kappa l_{2}+\lambda m_{1}+\iota m_{3}\right)\left(z x^{\prime}-x z^{\prime}\right) \\
& +\left(\lambda l_{3}+\iota m_{2}+\kappa m_{1}\right)\left(x y^{\prime}-y x^{\prime}\right),
\end{aligned}
$$

then this expression, which he proposes to call a QUADRINOME, has many properties (associative, modular, and others), analogous to the quaternions; which latter are indeed only that case of such quadrinomes, for which,

$$
l_{1}=l_{2}=l_{3}=1, \quad m_{1}=m_{2}=m_{3}=0, \quad \iota=i, \quad \kappa=j, \quad \lambda=k .
$$

He has, however, found another distinct sort of associative quadrinomial expression, which has also several analogous properties, and for which he suggests the name of TETRADS; the product of two vectors being in it,

$$
\begin{array}{ll}
(\mathrm{B}) \ldots \quad & (l x+m y+n z)\left(l x^{\prime}+m y^{\prime}+n z^{\prime}\right) \\
& +(\kappa n-\lambda m)\left(y z^{\prime}-z y^{\prime}\right)+(\lambda l-\iota n)\left(z x^{\prime}-x z^{\prime}\right)+(\iota m-\kappa l)\left(x y^{\prime}-y x^{\prime}\right) .
\end{array}
$$

