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William Rowan Hamilton, LL.D., P.R.I.A., Member of several Scientific
Societies at Home and Abroad, Andrews’ Professor of Astronomy in the Uni-
versity of Dublin, and Royal Astronomer of Ireland*.

[The London, Edinburgh and Dublin Philosophical Magazine and Journal of Science,
3rd series, vol. xx (1842), pp. 288–294.]

1. It is well known that the radical

(1− 2xp+ x2)−
1
2 , (1.)

in which x and 1 may represent the radii vectores of two points, while p represents the cosine
of the angle between those radii, and the radical represents therefore the reciprocal of the
distance of the one point from the other, may be developed in a series of the form

P0 + P1x+ P2x
2 + . . .+ Pnx

n + . . . ; (2.)

the coefficients Pn being functions of p, and possessing many known properties, among which
we shall here employ the following only,

Pn = [0]−n
(
d

dp

)n(
p2 − 1

2

)n
; (3.)

the known notation of factorials being here used, according to which

[0]−n =
1

1
.

1

2
.

1

3
. . .

1

n
. (4.)

It is proposed to express the sum of the first n terms of the development (2.), which may
be thus denoted,

Σ(n)
n−1
0 Pnx

n = P0 + P1x+ P2x
2 + . . .+ Pn−1x

n−1. (5.)

2. In general, by Taylor’s theorem,

f(p+ q) = Σ(n)
∞
0 [0]−nqn

(
d

dp

)n
f(p); (6.)

* Communicated by the Author.
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hence, by the property (3.), Pn is the coefficient of qn in the development of

(
(p+ q)2 − 1

2

)n
; (7.)

it is therefore also the coefficient of q0 in the development of

(
p2 − 1

2q
+ p+

q

2

)n
(8.)

If then we make, for abridgment,

ϑ = p+
p2

2
cos θ +

√
−1

(
1− p2

2

)
sin θ, (9.)

we shall have the following expression, which perhaps is new, for Pn:

Pn =
1

2π

∫ π

−π
ϑn dθ; (10.)

and hence, immediately, the required sum (5.) may be expressed as follows:

Σ(n)
n−1
0 Pnx

n =
1

2π

∫ π

−π
dθ

1− ϑnxn
1− ϑx ; (11.)

in which it is to be observed that x may be any quantity, real or imaginary.

3. We have therefore, rigorously, for the sum of the n first terms of the series

P0 + P1 + P2 + . . . , (12.)

the expression

Σ(n)
n−1
0 Pn =

1

2π

∫ π

−π
dθ

1− ϑn
1− ϑ ; (13.)

of which we propose to consider now the part independent of n, namely,

F(p) =
1

2π

∫ π

−π

dθ

1− ϑ ; (14.)

and to examine the form of this function F of p, at least between the limits p = −1, p = 1.
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4. A little attention shows that the denominator 1− ϑ may be decomposed into factors,
as follows:

1− ϑ = −1
2
(α+ eθ

√
−1)(1− βe−θ

√
−1); (15.)

in which,
α = 2s(1− s), β = 2s(1 + s), (16.)

and
p = 1− 2s2; (17.)

so that s may be supposed not to exceed the limits 0 and 1, since p is supposed not to exceed
the limits −1 and 1. Hence

1

1− ϑ =
−2(α + e−θ

√
−1)(1− βeθ

√
−1)

(1 + 2α cos θ + α2)(1− 2β cos θ + β2)
; (18.)

of which the real part may be put under the form

λ

1 + 2α cos θ + α2
+

µ

1− 2β cos θ + β2
, (19.)

if λ and µ be so chosen as to satisfy the conditions

λ(1 + β2) + µ(1 + α2) = 2(β − α), (20.)

λβ − µα = 1− αβ, (21.)

which give

λ =
1− α2

α+ β
, µ =

β2 − 1

α+ β
. (22.)

The imaginary part of the expression (18.) changes sign with θ, and disappears in the
integral (14.); that integral therefore reduces itself to the sum of the two following:

F(p) =
1

4sπ

∫ π

0

(1− α2) dθ

1 + 2α cos θ + α2
+

1

4sπ

∫ π

0

(β2 − 1) dθ

1− 2β cos θ + β2
; (23.)

in which, by (16.), α + β has been changed to 4s. But, in general if a2 > b2,∫ π

0

dθ

a+ b cos θ
=

π√
a2 − b2

, (24.)

the radical being a positive quantity if a be such; therefore in the formula (23.),∫ π

0

(1− α2) dθ

1 + 2α cos θ + α2
= π, (25.)

because, by (16.), α cannot exceed the limits 0 and 1
2
, s being supposed not to exceed the

limits 0 and 1, so that 1 − α2 is positive. On the other hand, β varies from 0 to 4, while s
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varies from 0 to 1; and β2 − 1 will be positive or negative, according as s is greater or less
than the positive root of the equation

s2 + s = 1
2 . (26.)

Hence, in (23.), we must make∫ π

0

(β2 − 1) dθ

1− 2β cos θ + β2
= π, or = −π, (27.)

according as

s > or <

√
3− 1

2
; (28.)

and thus we find, under the same alternative,

F(p) =
1

4s
(1± 1), (29.)

that is,

F(p) =
1

2s
, or = 0. (30.)

But, by (17.),

s =

√
1− p

2
; (31.)

the function F (p), or the definite integral (14.), receives therefore a sudden change of form
when p, in varying from −1 to 1, passes through the critical value

p =
√

3− 1; (32.)

in such a manner that we have

F(p) = (2− 2p)−
1
2 , if p <

√
3− 1; (33.)

and, on the other hand,
F(p) = 0 if p >

√
3− 1; (34.)

For the critical value (32.) itself, we have

s =

√
3− 1

2
, α = 2

√
3− 3, β = 1, (35.)

and the real part of (18.) becomes

1− α
1 + 2α cos θ + α2

; (36.)

multiplying therefore by dθ, integrating from θ = 0 to θ = π, and dividing by π, we find, by
(25.) and (14.), this formula instead of (29.),

F (p) =
1

1 + α
=

1

4s
, (37.)

that is,
F(p) = 1

2(2− 2p)−
1
2 , if p =

√
3− 1; (38.)

The value of the discontinuous function F is therefore, in this case, equal to the semisum
of the two different values which that function receives, immediately before and after the
variable p attains its critical value, as usually happens in other similar cases of discontinuity.

4



5. As verifications of the results (33.), (34.), we may consider the particular values p = 0,
p = 1, which ought to give

F(0) = 2−
1
2 , F(1) = 0. (39.)

Accordingly, when p = 0, the definitions (9.) and (14.) give

ϑ =
√
−1 sin θ, (40.)

F(0) =
1

2π

∫ π

−π

dθ

1−
√
−1 sin θ

=
1

π

∫ π

0

dθ

1 + sin θ2
; (41.)

which easily gives, by (24.),

F(0) =
2

π

∫ π

0

dθ

3− cos 2θ
=

1

π

∫ 2π

0

dθ

3− cos θ
= 2−

1
2 . (42.)

And when p = 1, we have

1− ϑ = −1
2
(cos θ +

√
−1 sin θ), (43.)

1

2π

dθ

1− ϑ = −π−1(cos θ −
√
−1 sin θ) dθ, (44.)

of which the integral, taken from θ = −π to θ = π, is F(1) = 0.

6. Let us consider now this other integral,

G(p) =
1

2π

∫ π

−π

ϑn dθ

ϑ− 1
. (45.)

The expression (13.) gives
Σ(n)

n−1
0 Pn = F(p) + G(p); (46.)

therefore, by (34.), we shall have

G(p) = Σ(n)
n−1
0 Pn, if p >

√
3− 1. (47.)

For instance, let p = 1; then multiplying the expression (44.) by

−ϑn = −(1 + 1
2
eθ
√
−1)n, (48.)

the only term which does not vanish when integrated is 1
2nπ

−1 dθ, and this term gives the
result

G(1) = n, (49.)

which evidently agrees with the formula (47.), because it is well known that

Pn = 1, when p = 1, (50.)

the series (2.) becoming then the development of (1− x)−1.

5



7. On the other hand, let p be <
√

3− 1; then, observing that, by (33.),

F(p) = (2− 2p)−
1
2 = Σ(n)

∞
0 Pn, (51.)

we find, by the relation (46.) between the functions F and G,

G(p) = −Σ(n)
∞
n Pn = −(Pn + Pn+1 + Pn+2 + . . .). (52.)

For instance, let p = 0; then, by (40.) and (45.),

G(0) =
−(
√
−1)n

2π

∫ π

−π

dθ (sin θ)n

1−
√
−1 sin θ

; (53.)

that is

G(0) =
(−1)i+1

π

∫ π

0

∫ π

0

dθ sin θ2i

1 + sin θ2
; (54.)

if n be either = 2i−1, or = 2i. Now, when p = 0, Pn is the coefficient of xn in the development
of (1 + x2)−

1
2 ; therefore,

P2i−1 = 0, when p = 0, (55.)

and, in the notation of factorials,

P2i = [0]−i[−1
2 ]i = (−1)iπ−1

∫ π

0

dθ sin θ2i; (56.)

so that, by (54.),

G(0) = −(P2i + P2i+2 + . . .), (57.)

when p = 0, and when n is either 2i or 2i− 1.

8. For the critical value p =
√

3− 1, we have, by (38.),

F(p) = 1
2Σ(n)

∞
0 Pn; (58.)

therefore, for the same value of p, by (46.),

G(p) = 1
2Σ(n)

n−1
0 Pn − 1

2Σ(n)
∞
n Pn

= 1
2
(P0 + P1 + . . .+ Pn−1 − Pn − Pn+1 − . . .); (59.)

so that the discontinuous function G, like F, acquires, for the critical value of p, a value which
is the semisum of those which it receives immediately before and afterwards.
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9. We have seen that the sum of these two discontinuous integrals, F and G, is always
equal to the sum of the first n terms of the series (12.), so that

F(p) + G(p) = P0 + P1 + . . .+ Pn−1; (60.)

and it may not be irrelevant to remark that this sum may be developed under this other
form:

1

2π

∫ π

−π
dθ

ϑn − 1

ϑ− 1
= Σ(k)

n
1 [n]k[0]−kQk−1; (61.)

in which the factorial expression [n]k[0]−k denotes the coefficient of xk in the development of
(1 + x)n; and

Qk =
1

2π

∫ π

−π
dθ (ϑ− 1)k. (62.)

Thus
P0 = Q0;

P0 + P1 = 2Q0 + Q1;

P0 + P1 + P2 = 3Q0 + 3Q1 + Q2;

&c.

 (63.)

and consequently
P0 = Q0;

P1 = Q0 + Q1;

P2 = Q0 + 2Q1 + Q2;

&c.

 (64.)

which last expressions, indeed, follow immediately from the formula (10.).

10. With respect to the calculation of Q0, Q1, &c. as functions of p, it may be noted, in
conclusion, that, by (15.) and (62.), Qk is the term independent of θ in the development of

2−k(α+ eθ
√
−1)k(1− βe−θ

√
−1)k; (65.)

thus
Q0 = 1,

Q1 = 2−1(α− β),

Q2 = 2−2(α2 − 4αβ + β2),

Q3 = 2−3(α3 − 9α2β + 9αβ2 − β3),

&c.


(66.)

in which the law of formation is evident. It remains to substitute for α, β their values (16.)
as functions of s, and then to eliminate s2 by (17.); and thus we find, for example,

Q1 = p− 1,

Q2 = 1
2 (p− 1)(3p− 1);

Q3 = 1
2
(p− 1)2(5p+ 1);

Q4 = 1
8
(p− 1)2(35p2 − 10p− 13).

 (67.)
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This, then, is at least one way, though perhaps not the easiest, of computing the initial
values of the successive differences of the function Pn, that is, the quantities

Q0 = ∆0P0 = P0,

Q1 = ∆1P0 = P1 − P0,

Q2 = ∆2P0 = P2 − 2P1 + P0,

&c.

 (68.)

And we see that it is permitted to express generally those differences, as follows:

∆kP0 = skΣ(i)
k
0(−1)i([k]i[0]−i)2(1 + s)i(1− s)k−i; (69.)

in which
s2 = 1

2 (1− p). (70.)

Observatory of Trinity College, Dublin,
Feb. 12, 1842.
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