A THEOREM CONCERNING POLYGONIC SYNGRAPHY

By
William Rowan Hamilton

(Proceedings of the Royal Irish Academy, 5 (1853), p. 474-475.)

Edited by David R. Wilkins

A Theorem concerning Polygonic Syngraphy.

By Sir William R. Hamilton.

Communicated June 13, 1853.
[Proceedings of the Royal Irish Academy, vol. 5 (1853), p. 474-475.]
Professor Sir William Rowan Hamilton exhibited the following Theorem, to which he had been conducted by that theory of geometrical syngraphy of which he had lately submitted to the Academy a verbal and hitherto unreported sketch, and on which he hopes to return in a future communication.

Theorem. Let $A_{1}, A_{2}, \ldots A_{n}$ be any n points (in number odd or even) assumed at pleasure on the n successive sides of a closed polygon $B B_{1} B_{2} \ldots B_{n-1}$ (plane or gauche), inscribed in any given surface of the second order. Take any three points, P, Q, R, on that surface, as initial points, and draw from each a system of n successive chords, passing in order through the n assumed points (A), and terminating in three other superficial and final points, $P^{\prime}, Q^{\prime}, R^{\prime}$. Then there will be (in general) another inscribed and closed polygon, $C C_{1} C_{2} \ldots C_{n-1}$, of which the n sides shall pass successively, in the same order, through the same n points (A); and of which the initial point C shall also be connected with the point B of the former polygon, by the relations

$$
\frac{a e l}{b c} \frac{\beta \gamma}{\alpha \epsilon \lambda}=\frac{a^{\prime} e^{\prime} l^{\prime}}{b^{\prime} c^{\prime}} \frac{\beta^{\prime} \gamma^{\prime}}{\alpha^{\prime} \epsilon^{\prime} \lambda^{\prime}}, \quad \frac{b f m}{c a} \frac{\gamma \alpha}{\beta \zeta \mu}=\frac{b^{\prime} f^{\prime} m^{\prime}}{c^{\prime} a^{\prime}} \frac{\gamma^{\prime} \alpha^{\prime}}{\beta^{\prime} \zeta^{\prime} \mu^{\prime}}, \quad \frac{c g n}{a b} \frac{\alpha \beta}{\gamma \eta \nu}=\frac{c^{\prime} g^{\prime} n^{\prime}}{a^{\prime} b^{\prime}} \frac{\alpha^{\prime} \beta^{\prime}}{\gamma^{\prime} \eta^{\prime} \nu^{\prime}} ;
$$

where

$$
\begin{aligned}
a & =Q R, & & b & =R P, & \\
e & =B P, & f & =B Q, & & g=B R, \\
l & =C P, & m & =C Q, & & n=C R, \\
a^{\prime} & =Q^{\prime} R^{\prime}, & b^{\prime} & =R^{\prime} P^{\prime}, & c^{\prime} & =P^{\prime} Q^{\prime}, \\
e^{\prime} & =B P^{\prime}, & f^{\prime} & =B Q^{\prime}, & g^{\prime} & =B R^{\prime}, \\
l^{\prime} & =C P^{\prime}, & m^{\prime} & =C Q^{\prime}, & n^{\prime} & =C R^{\prime} ;
\end{aligned}
$$

while $\alpha \beta \gamma \epsilon \zeta \eta \lambda \mu \nu$, and $\alpha^{\prime} \beta^{\prime} \gamma^{\prime} \epsilon^{\prime} \zeta^{\prime} \eta^{\prime} \lambda^{\prime} \mu^{\prime} \nu^{\prime}$, denote the semidiameters of the surface, respectively parallel to the chords abcefglmn, $a^{\prime} b^{\prime} c^{\prime} e^{\prime} f^{\prime} g^{\prime} l^{\prime} m^{\prime} n^{\prime}$.

As a very particular case of this theorem, we may suppose that $P Q^{\prime} R P^{\prime} Q R^{\prime}$ is a plane hexagon in a conic, and $B C$ its Pascal's line.

