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Researches respecting Vibration, connected with the Theory of Light.

By Sir William R. Hamilton.

Communicated June 24, 1839.

[Proceedings of the Royal Irish Academy, vol. 1 (1841), pp. 341–349.]

The President concluded his account of his First Series of Researches respecting Vi-
bration, connected with the Theory of Light. The following is an outline of one of the
investigations which are contained in the Series referred to.

It is proposed to integrate the system of equations in mixed differences,

d
2
t δxg,h = Σ∆gδ(r .∆gxg,h); (1)

in which h is any integer number from 1 to n inclusive; xg,h is independent of t, but δxg,h is
a function of t and of xg,1, . . . xg,n, the form of which function it is the object of the problem
to discover;

r = mg+∆gφ
(

1
2
Σ(h)

n
1 (∆gxg,h)2

)
, (2)

φ being any real function of the semi-sum which follows it, and m being any other real
function of the index g+∆g; while g and g+∆g represent any integer numbers from negative
to positive infinity. The equations to be integrated may also be thus written:

ξ′′g,h,t = Σ∆g

(
r ∆gξg,h,t + r

′∆gxg,hΣ(h)
n
1 ∆gxg,h∆gξg,h,t

)
, (1)′

in which
r
′ = mg+∆g φ

′ (1
2Σ(h)

n
1 (∆gxg,h)2

)
, (2)′

the functions to be found by integration are now those of the form ξg,h,t, considered as
depending on t and on xg,1, . . . xg,n; their initial values, and initial rates of increase (relatively
to t), namely ξg,h,0 and ξ′g,h,0, are regarded as arbitrary but given and real functions of
xg,1, . . . xg,n; it is also supposed, in order to simplify the question, that all the sums of the
forms

Σ∆gr(∆gxg,1)α1 . . . (∆gxg,n)αn , Σ∆gr
′(∆gxg,1)α1 . . . (∆gxg,n)αn , (3)

are independent of g, and are = 0 when any one of the exponents α1, . . . αn is an odd number.
These equations are analogous to, and include, those which M. Cauchy has considered on his
memoir on the Dispersion of Light, and may be integrated by a similar analysis.

A particular integral system may in the first case be found by assuming

ξg,h,t = xrah,r cos(εr + srt−Σ(i)
n
1uixg,i); (4)

Σ(h)
n
1 a

2
h,r = 1; (5)

1



s2
rah,r = Σ(i)

n
1 hh,iai,r; (6)

hh,h = Σ∆g

(
r + r

′(∆gxg,h)2
)

vers
(
Σ(i)

n
1ui ∆gxg,i

)
, (7)

hh,i = Σ∆gr
′∆gxx,h ∆gxg,i vers

(
Σ(i)

n
1ui ∆gxg,i

)
; (7)′

the index r being any integer from 1 to n, and being introduced in order to distinguish among
themselves the n different (and in general real) systems of values of s2, and of the n−1 ratios
of a1, . . . ah, . . . an, which are obtained by resolving the system of the n equations of the
form

s2
ah = Σ(i)

n
1 hh,iai, (6)′

in which, by (7)′,

hi,h = hh,i. (7)′′

It is important to observe, that by the form of these equations (6)′, (which occur in may
researches,) we have the relation

Σ(h)
n
1 ah,qah,r = 0, (5)′

if q be different from r, and that, by (5) and (5)′, we have also the relations

Σ(r)
n
1 a

2
h,r = 1, (8)

Σ(r)
n
1 ah,rai,r = 0. (8)′

In the particular integral (4), we may consider u1, . . . un as arbitrary parameters, of
which xr and εr are real and arbitrary, while s2

r and ah,r are real and determined functions;
and hence, by summations relatively to the index r, and integrations relatively to the pa-
rameters ui, employing also the relations (5) (5)′ (8) (8)′, and Fourier’s theorem extended to
several variables, we deduced this general integral, applying to all arbitrary real values of the
initial data:

ξg,h,t =

(
Π(i)

n
1

∫ ∞
−∞

dui

)
(eh,t cos +fh,t sin) Σ(i)

n
1uxxg,i; (9)

in which

Π(i)
n
1

∫ ∞
−∞

dui =

∫ ∞
−∞

du1

∫ ∞
−∞

du2 . . .

∫ ∞
−∞

dun; (10)

eh,t = Σ(r)
n
1 ah,r

(
yr cos tsr + y

′
rs
−1
r sin tsr

)
,

fh,t = Σ(r)
n
1 ah,r

(
zr cos tsr + z

′
rs
−1
r sin tsr

)
;

}
(11)

yr = Σ(h)
n
1 ah,reh,0,

zr = Σ(h)
n
1 ah,rfh,0,

y
′
r = Σ(h)

n
1 ah,re

′
h,0,

z
′
r = Σ(h)

n
1 ah,rf

′
h,0;

}
(12)

2



eh,0 =

(
1

2π

)n(
Π(i)

n
1

∫ ∞
−∞

dxg,i

)
ξg,h,0 cos

(
Σ(i)

n
1uixg,i

)
,

e
′
h,0 =

(
1

2π

)n(
Π(i)

n
1

∫ ∞
−∞

dxg,i

)
ξ′g,h,0 cos

(
Σ(i)

n
1uixg,i

)
,

fh,0 =

(
1

2π

)n(
Π(i)

n
1

∫ ∞
−∞

dxg,i

)
ξg,h,0 sin

(
Σ(i)

n
1uixg,i

)
,

f
′
h,0 =

(
1

2π

)n(
Π(i)

n
1

∫ ∞
−∞

dxg,i

)
ξ′g,h,0 sin

(
Σ(i)

n
1uixg,i

)
.


(13)

This general solution involves multiple integrals, of the order 2n; but many particular
suppositions, respecting the initial data, conduct to simpler expressions, among which the
following appear worthy of remark.

Suppose that having assumed some particular set u81, . . . u
8
n of values of the n arbitrary

quantities u1, . . . un, we deduce a corresponding set of coefficients h
8
h,h, h

8
h,i, by the formulæ

(7) and (7)′, and represent by s821 and by a
8
1,1, . . . a

8
h,1, . . . a

8
n,1 some one corresponding system

of quantities which satisfy the equations

Σ(h)
n
1 a
82
h,1 = 1, (5)8

s821 a
8
h,1 = Σ(i)

n
1 h
8
h,ia

8
i,1; (6)8

we shall then have, as a particular integral system, that which is thus denoted:

ξg,h,t = x
8
1a
8
h,1 cos(ε81 + s81t− Σ(i)

n
1u
8
ixg,i); (4)8

x
8
1 and ε81 denoting here any arbitary real quantities. If therefore we suppose that the initial

data ξg,h,0 and ξ′g,h,0 are all such as to agree with this particular solution, that is, if we have
for all values of g and h,

ξg,h,0 = x
8
1a
8
h,1 cos(ε81 − Σ(i)

n
1u
8
ixg,i), (14)

ξ′g,h,0 = −s81x81a8h,1 sin(ε81 − Σ(i)
n
1u
8
ixg,i), (14)′

we see, à priori, that the multiple integrations ought to admit of being all effected in finite
terms, so as to reduce the general expression (9) to the particular form (4)8; an expectation
which the calculation, accordindingly, à posteriori, proves to be correct. An analogous but
less simple reduction takes place, when we suppose that the initial equations (14) and (14)′

hold good, after their second members have been multiplied by a discontinuous factor such
as

1
2

(
1− 2

π

∫ ∞
0

sin
(
kΣ(i)

n
1u
8
ixg,i

)
k

dk

)
, (15)

which is = 1, or = 1
2 , or = 0, according as the sum Σ(i)

n
1u
8
ixg,i is < 0, = 0, or > 0. It is

found that, in this case, the 2n successive integrations (required for the general solution) can
in part be completely effected, and in the remaining part be reduced to the calculation of a
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simple definite integral; in such a manner that the expression (9) now reduces itself rigorously
to the following:

ξg,h,t = 1
2
x
8
1a
8
h,1 cos(ε81 + ts81 − Σ(i)

n
1u
8
ixg,i); +

1

π
x
8
1

∫ ∞
0

dk

k2 − k82 (lt cos ε81 + mt sin ε81); (16)

in which
lt = ptk

8 cos kx− qtk sin kx,

mt = ptk sin kx+ qtk
8 cos kx,

}
(17)

pt = s81Σ(r)
n
1 (ah,rs

−1
r sin tsr . Σ(h)

n
1 ah,ra

8
h,1),

qt = Σ(r)
n
1 (ah,r cos tsr . Σ(h)

n
1 ah,ra

8
h,1),

}
(18)

x = Σ(i)
n
1a
8
ixg,i, (19)

ka8i = ui, k8a8i = u8i, k82 = Σ(i)
n
1u
82
i , (20)

and sr, ah,r are the same functions as before of u1, . . . un.
A remarkable conclusion may now be drawn from these expressions, by supposing that

all the quantities of the form s2
r are not only real but positive, so that the functions cos tsr

and sin tsr are periodic. For in this case the functions cos(tsr ± kx) and sin(tsr ± kx), will
vary rapidly, and pass often through all their fluctuations of value, between the limits 1 and
−1, while k and the other functions of that variable remain almost unchanged, provided

that t
dsr
dk
± x is large, and that the denominator k2 − k82 is not extremely small. We may

therefore in general confine ourselves to the consideration of small values of this denominator;
and consequently may put it under the form 2k8(k − k8), making k = k8 in the numerator,
except under the periodical signs, and integrating relatively to k between any two limits
which include k8, for example between −∞ and +∞. And because

Σ(h)
n
1 a
8
h,ra

8
h,1 = 1, or = 0,

according as r = 1 or > 1, we may make

pt = a
8
h,1 sin ts1, qt = a

8
h,1 cos ts1,

lt = k8a8h,1 sin(ts1 − kx), mt = k8a8h,1 cos(ts1 − kx)

and

ξg,h,t = 1
2x
8
1a
8
h,1

{
cos(ε81 + ts81 − k8x) +

∫ ∞
−∞

dk
sin(ε81 + ts1 − kx)

π(k − k8)

}
, (21)

that is, nearly, if x be considerably different from t
ds81
dk8

,

ξg,h,t = 1
2x
8
1a
8
h,1 cos(ε81 + ts81 − k8x)

{
1 +

∫ ∞
−∞

dk

πk

((
t
ds81
dk8
− x
)
k

)}
. (21)′
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We have therefore the approximate expressions:

ξg,h,t = x
8
1a
8
h,1 cos(ε81 + ts81 − k8x), if x < t

ds81
dk8

; (22)

and

ξg,h,t = 0, if x > t
ds81
dk8

; (22)′

we have also nearly, in general,

ξg,h,t = 1
2x
8
1a
8
h,1 cos(ε81 + ts81 − k8x), if x = t

ds81
dk8

; (22)′′

but the discussion of the case when x is nearly = t
ds81
dk8

is too long to be cited here. The

formula (22) for ξg,h,t coincides with the particular integral (4)8; and the condition which it
involves with respect to x, expresses the law according to which this particular integral comes

to be (nearly) true for greater and greater positive values of x and t (if
ds81
dk8

> 0,) after having

been true only for negative valus of x when t was = 0.
In the particular case n = 3, the foregoing formulæ have an immediate dynamical appli-

cation, and correspond to the propagation of vibratory motion through a system of mutually
attracting or repelling particles; and they conduct to this remarkable result, that the veloc-
ity with which such vibration spreads into those portions of the vibratory medium which
were previously undisturbed, is in general different from the velocity of a passage of a given
phase from one particle to another within that portion of the medium which is already fully
agitated; since we have

velocity of transmission of phase =
s

k
, (A)

but

velocity of propagation of vibratory motion =
ds

dk
, (B)

if the rectangular components of the vibrations themselves be represented by the formulæ

xa1 cos(ε+ st− kx), xa2 cos(ε+ st− kx), xa3 cos(ε+ st− kx), (C)

t being the time, and x the perpendicular distance of the vibrating point from some deter-
mined plane.

This result, which is believed to be new, includes as a particular case that which was
stated in a former communication to the Academy, on the 11th of February last, (Proceedings,
No. 15, page 269,) respecting the propagation of transversal vibration along a row of equal
and equidistant particles, of which each attracts the two that are immediately before and

behind it; in which particular question s was = 2a sin
k

2
, and the velocity of propagation of
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vibration was = a cos
k

2
. Applied to the theory of light, it appears to show that if the phase

of vibration in an ordinary dispersive medium be represented for some one colour by

ε+
2π

λ

(
t

µ
− x
)
, (C)′

so that λ is the length of an undulation for that colour and for that medium, and if it be

permitted to represent dispersion by developing the velocity
1

µ
of the transmission of phase

in a series of the form

1

µ
= m0 − m1

(
2π

λ

)2

+ m2

(
2π

λ

)4

−&c., (A)′

then the velocity wherewith light of this colour conquers darkness, in this dispersive medium,
by the spreading of vibration into parts which were not vibrating before, is somewhat less than
1

µ
, being represented by this other series

m0 − 3m1

(
2π

λ

)2

+ 5m2

(
2π

λ

)4

−&c. (B)′

For other details of this inquiry it is necessary to refer to the memoir itself, which will
be pubished in the Transactions of the Academy, and will be found to contain many other
investigations respecting vibratory systems, with applications to the theory of light.
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