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Abstract. Let µ and ν be Radon measures on Rn with compact supports. We study the
Hausdorff, dimH , and packing dimension, dimp , properties of the intersection measures µ ∩ f�ν
when f runs through the similarities of Rn and f�ν is the image of ν under f . These measures can
be regarded as natural measures on spt µ∩ f(spt ν) , where spt is the support of a measure. Using
the relations between Hausdorff dimensions of sets and measures, we show that if dimH(µ× ν) =
dimH µ + dimH ν > n and if the t -energy of ν is finite for all 0 < t < dimH ν < n , then for
θn × L 1 almost all (g, r) ∈ On × (0,∞) we have

ess inf{dimH µ∩ (τz ◦ g ◦ δr)�ν : z ∈ Rn with µ∩ (τz ◦ g ◦ δr)�ν(Rn) > 0} = dimH µ+ dimH ν − n.

Here θn is the unique orthogonally invariant Radon probability measure on the orthogonal group of
Rn , denoted by On , L 1 is the Lebesgue measure on the open interval (0,∞) , and τz◦g◦δr : Rn →
Rn is the similarity τz◦g◦δr(a) = rga+z . By relating packing dimensions of intersection measures
to certain integral kernels, we prove that if the s -energy of µ is finite and the t -energy of ν is finite
for some 0 < s < n and 0 < t < n with s+t > n , then for θn×L 1 almost all (g, r) ∈ On×(0,∞)
we have

ess inf{dimp µ ∩ (τz ◦ g ◦ δr)�ν : z ∈ Rn with µ ∩ (τz ◦ g ◦ δr)�ν(Rn) > 0} = dµ,ν ,

where dµ,ν is a constant depending only on the measures µ and ν . We also deduce corresponding
equalities for the upper Hausdorff and upper packing dimensions.

1. Introduction

Let A and B be Borel sets in Rn . The relations between the Hausdorff
dimensions, dimH , of A , B , and f(B), when f runs through the similarities of
Rn , were studied by Mattila in [9]. He showed that if A is H s measurable and
B is H t measurable such that 0 < H s(A) <∞ and 0 < H t(B) < ∞ for some
0 < s < n and 0 < t < n with s + t ≥ n , then

(1.1) dimH A ∩ (τx ◦ g ◦ δr ◦ τ−y)B ≥ s + t− n

for H s×H t×θn×L 1 almost all (x, y, g, r) ∈ A×B×On× (0,∞). Here H s is
the s-dimensional Hausdorff measure, τx ◦ g ◦ δr ◦ τ−y: Rn → Rn is the similarity
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τx ◦ g ◦ δr ◦ τ−y(a) = rg(a− y)+x , θn is the unique orthogonally invariant Radon
probability measure on the orthogonal group of Rn denoted by On , and L 1 is the
Lebesgue measure on the open interval (0,∞). In general the opposite inequality
in (1.1) is false, but it holds under the additional assumption that the set B has
positive t -dimensional lower density at all of its points (see [9, Theorem 6.13]).
For more information on results related to these questions see also [7].

Let µ and ν be Radon measures on Rn with compact supports. The purpose
of this paper is to study Hausdorff and packing dimension analogues of (1.1) for
intersection measures µ∩f�ν when f runs through the similarities of Rn and f�ν
is the image of ν under f . These intersection measures introduced byMattila in [9]
can be regarded as natural measures on sptµ∩ f(spt ν), where spt is the support
of a measure. Using the relations between the Hausdorff dimensions of sets and
measures, we show that if the t -energy of ν is finite for all 0 < t < dimH ν < n ,
then for θn × L 1 almost all (g, r) ∈ On × (0,∞) we have

dimH µ ∩ (τz ◦ g ◦ δr)�ν ≥ dimH ν + dimH ν − n

for L n almost all z ∈ Rn with µ∩ (τz ◦ g ◦ δr)�ν(Rn) > 0. Here (τz ◦ g ◦ δr)�ν is
the image of ν under the similarity τz ◦ g ◦ δr: Rn → Rn , τz ◦ g ◦ δr(a) = rga+ z
and L n is the Lebesgue measure on Rn . If we suppose in addition to the above
assumptions that dimH(µ× ν) = dimH µ+dimH ν > n , then for θn ×L 1 almost
all (g, r) ∈ On × (0,∞) we have

ess inf{ dimH µ ∩ (τz ◦ g ◦ δr)�ν : z ∈ Rn with µ ∩ (τz ◦ g ◦ δr)�ν(Rn) > 0}
= dimH µ+ dimH ν − n.(1.2)

We also prove corresponding results for the upper Hausdorff dimension.
We continue the work by Järvenpää ([4] and [5]) on packing dimension, dimp ,

properties of intersection measures. In [4] it is shown that if the (n − t)-energy
of µ is finite and the t -energy of ν is finite for some 0 < t < n , and if dimH µ+
dimH ν > n , then

dimp µ ∩ (τx ◦ g ◦ δr ◦ τ−y)�ν ≥ max
{
dimH ν dimp µ(dimH µ+ dimH ν − n)

ndimH µ− (n− dimH ν) dimp µ
,

dimH µdimp ν(dimH µ+ dimH ν − n)
ndimH ν − (n− dimH µ) dimp ν

}

for µ × ν × θn × L 1 almost all (x, y, g, r) ∈ Rn × Rn × On × (0,∞). In [5]
a corresponding result is proved when we take isometries as the transformation
group in place of similarities. The methods we are using when considering packing
dimensions of intersection measures are influenced by the theory for projections
of measures introduced by Falconer and Howroyd in [1] and by the methods in [6]
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where sections of measures were considered instead of general intersections. We
show that the following analogue of (1.1) holds: if the s-energy of µ is finite and
the t -energy of ν is finite for some 0 < s < n and 0 < t < n with s+ t > n , then
for θn × L 1 almost all (g, r) ∈ On × (0,∞) we have
(1.3)
ess inf

{
dimp µ ∩ (τz ◦ g ◦ δr)�ν : z ∈ Rn with µ ∩ (τz ◦ g ◦ δr)�ν(Rn) > 0

}
= dµ,ν .

Here dµ,ν is a constant obtained by convolving the product measure µ × ν with
a certain kernel. Corresponding results for the upper packing dimension are also
deduced. If we consider isometries instead of similarities, then (1.2) holds if we
assume that dimH(µ × ν) = dimH µ+ dimH ν > n and that the t -energy of ν is
finite for all 1

2
(n+1) < t < n . This can be proved using the methods of Section 3.

For isometries the methods of Section 5 cannot be used. Then an integration with
respect to r is not involved, which makes things more difficult.

Equalities (1.2) and (1.3) cannot be strengthened to a result saying that
dimH µ∩ (τz ◦g ◦ δr)�ν or dimp µ∩ (τz ◦g ◦ δr)�ν would be almost surely constant.
To see this, let µ1 and µ2 be suitably chosen measures on Rn supported by two
disjoint balls such that there is A ⊂ On × (0,∞) with positive θn × L 1 measure
such that for any (g, r) ∈ A either W(z,−z)/2 ∩

(
sptµ1 × (g ◦ δr)(spt ν)

)
= ∅ or

W(z,−z)/2 ∩
(
sptµ2 × (g ◦ δr)(spt ν)

)
= ∅ for all z ∈ Rn (for the notation see

Chapter 2). Then by choosing the dimensions (both Hausdorff and packing) of
the measures µ1 and µ2 in a suitable way, we can find for any (g, r) ∈ A sets
B1

g,r ⊂ Rn and B2
g,r ⊂ Rn with positive L n measures such that the dimension

of the measure π�
[(
µ1 × (g ◦ δr)�ν + µ2 × (g ◦ δr)�ν

)
W,(z,−z)/2

]
is big for z ∈ B1

g,r

and small for z ∈ B2
g,r .
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was done. For financial support I am indebted to the Academy of Finland and
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2. Notation and preliminaries

We denote by d(x,A) = inf{|x − a| : a ∈ A} the distance between x ∈ Rn

and a non-empty set A ⊂ Rn . The open interval in R∪{−∞,∞} with end points
a, b ∈ R∪{−∞,∞} is denoted by (a, b). For the corresponding closed interval we
use the notation [a, b] . Further, B(x, r) is the closed ball of centre x ∈ Rn and
radius 0 < r < ∞ , and α(n) = L n

(
B(0, 1)

)
where L n is the Lebesgue measure

on Rn . For 0 ≤ s < ∞ , the s-dimensional Hausdorff measure is denoted by H s .
If µ is a measure on a set X , we denote by f�µ the image of µ under a

function f : X → Y , that is,

f�µ(A) = µ
(
f−1(A)

)
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for all A ⊂ Y . The restriction of µ to a set B ⊂ X is denoted by µ | B , that is,

µ | B(A) = µ(B ∩A)

for all A ⊂ X . For 0 < t < n , the t -energy of a Radon measure µ on Rn is
defined by

It(µ) =
∫ ∫

|x− y|−t dµxdµy.

Note that if µ is a finite Radon measure on Rn and It(µ) <∞ , then Is(µ) < ∞
for all 0 < s < t . Let µ and ν be measures on a set X . The measure µ is said
to be absolutely continuous with respect to ν , if µ(A) = 0 for any A ⊂ X with
ν(A) = 0. In this case we write µ � ν .

Let m and n be integers with 0 < m < n . The Grassmann manifold, which
consists of all (n−m)-dimensional linear subspaces of Rn , is denoted by Gn,n−m .
For all V ∈ Gn,n−m , let V ⊥ ∈ Gn,m be the orthogonal complement of V , and
PV ⊥ : Rn → V ⊥ the orthogonal projection onto V ⊥ . We use the notation On for
the orthogonal group of Rn consisting of all linear maps g: Rn → Rn preserving
distance, that is, |g(x) − g(y)| = |x− y| for all x, y ∈ Rn . The unique invariant
Radon probability measure on On is denoted by θn .

A map f : Rn → Rn is a similarity, if there is 0 < r < ∞ such that |f(x) −
f(y)| = r|x − y| for all x, y ∈ Rn . In this case for some z ∈ Rn , g ∈ On , and
0 < r < ∞ we have

f = τz ◦ g ◦ δr,

where τz: Rn → Rn is the translation τz(x) = x + z , and δr: Rn → Rn is the
homothety δr(x) = rx .

For the definition of intersection measures we need the following definition of
sliced measures. Let m and n be integers with 0 < m < n . Let µ be a finite
Radon measure on Rn , V ∈ Gn,n−m , and Va = {v + a : v ∈ V } for all a ∈ V ⊥ .
For H m almost all a ∈ V ⊥ there is a Radon measure µV,a on Va such that

(2.1)
∫
ϕdµV,a = lim

δ→0
(2δ)−m

∫
Va(δ)

ϕdµ

for all non-negative continuous functions ϕ on Rn with compact support (see [10,
Chapter 10]). Here

Va(δ) = {y ∈ Rn : d(y, Va) ≤ δ}.

The measure µV,a is the slice of µ by the plane Va . Obviously,

sptµV,a ⊂ sptµ ∩ Va,
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where spt is the support of a measure. Further, if PV ⊥
�
µ � H m | V ⊥ and f is

a non-negative Borel function on Rn with
∫
f dµ <∞ , then

(2.2)
∫
V ⊥

∫
f dµV,a dH

ma =
∫
f dµ

(see [8, Lemma 3.4 (4)]).
Now we are ready to define intersection measures. We use the method from

[9], which is the same as used in [3, 4.3.20] in connection with the construction of
intersection currents. Let W be the diagonal of Rn ×Rn , that is,

W = {(x, y) ∈ Rn ×Rn : x = y}.

Let µ and ν be Radon measures on Rn with compact supports. The intersection
measure µ∩ f�ν , where f = τz ◦ g ◦ δr for some z ∈ Rn , g ∈ On , and 0 < r < ∞ ,
is constructed by slicing the product measure µ× (g ◦ δr)�ν by the n -plane

W(z,−z)/2 = {(x, y) ∈ Rn ×Rn : x− y = z},

and by projecting this sliced measure to Rn by the projection π: Rn×Rn → Rn ,
π(x, y) = x . Hence

µ ∩ (τz ◦ g ◦ δr)�ν = 2n/2α(n)−1π�
[(
µ× (g ◦ δr)�ν

)
W,(z,−z)/2

]
provided that the sliced measure

(
µ× (g ◦ δr)�ν

)
W,(z,−z)/2

exists. This is the case
for L n almost all z ∈ Rn . Clearly,

sptµ ∩ (τz ◦ g ◦ δr)�ν ⊂ sptµ ∩ (τz ◦ g ◦ δr) spt ν.

If ϕ is a non-negative lower semicontinuous function on Rn , then (2.1) gives

(2.3)

∫
ϕdµ ∩ (τz ◦ g ◦ δr)�ν

≤ lim
δ→0

α(n)−1δ−n

∫
{(x,y):|Sg,r(x,y)−z|≤δ}

ϕ(x)d(µ × ν)(x, y).

Here Sg,r: Rn ×Rn → Rn is defined by Sg,r(x, y) = x− rgy .
Note that if Sg,r�

(µ× ν) � L n , then PW⊥
�

(
µ× (g ◦ δr)�ν

)
� H n|W⊥ , and

the disintegration formula (2.2) implies that

(2.4)
∫
W⊥

∫
f d

(
µ× (g ◦ δr)�ν

)
W,a

dH na =
∫
f d

(
µ× (g ◦ δr)�ν

)
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provided that f is a non-negative Borel function with
∫
f d

(
µ× (g ◦ δr)�ν

)
< ∞ .

Further, by (2.4),

H n
({
a ∈ W⊥ :

(
µ × (g ◦ δr)�ν

)
W,a

(Rn ×Rn) > 0
})

> 0,

which gives
L n

({
z ∈ Rn : µ ∩ (τz ◦ g ◦ δr)�ν(Rn) > 0

})
> 0.

The following definitions of dimensions will be used throughout this paper.
The Hausdorff and packing dimensions of a finite Radon measure µ on Rn are
defined by

dimH µ = sup
{
u ≥ 0 : lim sup

h→0
h−uµ

(
B(x, h)

)
= 0 for µ almost all x ∈ Rn

}
and

dimp µ = sup
{
u ≥ 0 : lim inf

h→0
h−uµ

(
B(x, h)

)
= 0 for µ almost all x ∈ Rn

}
.

We will also consider the upper Hausdorff and upper packing dimensions defined
as follows

dim∗
H µ = sup

{
u ≥ 0 : µ

({
x ∈ Rn : lim sup

h→0
h−uµ

(
B(x, h)

)
= 0

})
> 0

}
and

dim∗
p µ = sup

{
u ≥ 0 : µ

({
x ∈ Rn : lim inf

h→0
h−uµ

(
B(x, h)

)
= 0

})
> 0

}
.

Equivalently, these dimensions can be determined by using Hausdorff and packing
dimensions of sets. In fact,

dimH µ = inf{dimH A : A is a Borel set and µ(A) > 0},
dimp µ = inf{dimpA : A is a Borel set and µ(A) > 0},
dim∗

H µ = inf{dimH A : A is a Borel set and µ(Rn \A) = 0},
and

dim∗
p µ = inf{dimpA : A is a Borel set and µ(Rn \A) = 0}.

The following lemma gives a relation between finiteness of energies and Haus-
dorff dimensions of measures. It is an immediate consequence of the relation
between Riesz capacities and Hausdorff dimensions of Borel sets.

Lemma 2.5. If µ is a Radon measure on Rn with 0 < µ(Rn) < ∞ and
with It(µ) <∞ , then dimH µ ≥ t .
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3. Hausdorff dimension and intersection measures

Lemma 3.1. Let µ and ν be Radon measures on Rn with compact supports.
Assume that dimH(µ×ν) > n . If (g, r) ∈ On× (0,∞) is such that Sg,r�

(µ×ν) �
L n , then

ess inf{ dimH µ ∩ (τz ◦ g ◦ δr)�ν : z ∈ Rn with µ ∩ (τz ◦ g ◦ δr)�ν(Rn) > 0}
≤ dimH(µ × ν)− n.

Proof. Consider u ≥ 0 such that dimH µ∩ (τz ◦ g ◦ δr)�ν ≥ u for L n almost
all z ∈ Rn with µ ∩ (τz ◦ g ◦ δr)�ν(Rn) > 0. Since dimH µ ∩ (τz ◦ g ◦ δr)�ν ≤
dimH

(
µ× (g ◦ δr)�ν

)
W,(z,−z)/2

, we have

u ≤ dimH

(
µ× (g ◦ δr)�ν

)
W,(z,−z)/2

for H n almost all (z,−z)/2 ∈ W⊥ with
(
µ× (g ◦ δr)�

)
W,(z,−z)/2

(Rn ×Rn) > 0.

The fact that dimH

(
µ× (g ◦δr)�ν

)
= dimH(µ×ν) > n , gives with [6, Lemma 3.1]

u ≤ dimH µ× (g ◦ δr)�ν − n = dimH(µ × ν)− n

and the claim follows. Note that [6, Lemma 3.1] holds for W since PW⊥
�

(
µ× (g ◦

δr)�ν
)
� H n | W⊥ .

For the purpose of proving that the opposite inequality holds in Lemma 3.1
under some additional assumptions we need the following result.

Lemma 3.2. Let µ and ν be Radon measures on Rn with compact supports
and let B ⊂ Rn be a Borel set. If (g, r) ∈ On× (0,∞) is such that Sg,r�

(µ×ν) �
L n , then

(µ | B) ∩ (τz ◦ g ◦ δr)�ν =
(
µ ∩ (τz ◦ g ◦ δr)�ν

)
| B

for L n almost all z ∈ Rn .

Proof. Let A ⊂ Rn . Since PW⊥
�

(
µ× (g◦ δr)�ν

)
� H n |W⊥ , we have by [6,

Lemma 3.2] for L n almost all z ∈ Rn

((
µ∩(τz ◦ g ◦ δr)�ν

)
| B

)
(A) = 2n/2α(n)−1π�

[(
µ× (g ◦ δr)�ν

)
W,(z,−z)/2

]
(B ∩A)

= 2n/2α(n)−1
(
µ× (g ◦ δr)�ν

)
W,(z,−z)/2

(
(B ×Rn) ∩ (A ×Rn)

)
= 2n/2α(n)−1

((
µ × (g ◦ δr)�ν

)
W,(z,−z)/2

| (B ×Rn)
)
(A ×Rn)

= 2n/2α(n)−1
((
µ × (g ◦ δr)�ν

)
| (B ×Rn)

)
W,(z,−z)/2

(A ×Rn)

= 2n/2α(n)−1
(
(µ|B)× (g ◦ δr)�ν

)
W,(z,−z)/2

(A ×Rn)

= 2n/2α(n)−1π�
[(
(µ|B)× (g ◦ δr)�ν

)
W,(z,−z)/2

]
(A)

= (µ | B) ∩ (τz ◦ g ◦ δr)�ν(A).
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Lemma 3.3. Let µ and ν be Radon measures on Rn with compact supports.
Assume that It(ν) < ∞ for all 0 < t < dimH ν < n . Then for θn × L 1 almost
all (g, r) ∈ On × (0,∞) we have

dimH µ ∩ (τz ◦ g ◦ δr)�ν ≥ dimH µ + dimH ν − n

for L n almost all z ∈ Rn with µ ∩ (τz ◦ g ◦ δr)�ν(Rn) > 0 .

Proof. Let 0 < t < dimH ν < n . It is enough to prove that for θn × L 1

almost all (g, r) ∈ On × (0,∞) we have

dimH µ ∩ (τz ◦ g ◦ δr)�ν ≥ dimH µ+ t− n

for L n almost all z ∈ Rn with µ∩ (τz ◦ g ◦ δr)�ν(Rn) > 0. The claim follows by
taking a sequence (ti) tending to dimH ν from below.

We may assume that dimH µ+ t > n . For all (g, r) ∈ On × (0,∞) define

Cg,r = {z ∈ Rn : µ ∩ (τz ◦ g ◦ δr)�ν(Rn) > 0}.

Since

{z ∈ Cg,r : dimH µ ∩ (τz ◦ g ◦ δr)�ν < dimH µ+ t− n}

=
∞⋃
i=1

∞⋃
j=1

{
z ∈ Cg,r : there is a Borel set A ⊂ Rn such that

dimH A < dimH µ+ t− n− 1
i
and µ ∩ (τz ◦ g ◦ δr)�ν(A) >

1
j

}
,

it suffices to show that for θn × L 1 almost all (g, r) ∈ On × (0,∞) the set

Eg,r = {z ∈ Cg,r : there is a Borel set A ⊂ Rn such that
dimH A < u+ t− n and µ ∩ (τz ◦ g ◦ δr)�ν(A) > ε}

has L n measure zero for fixed u < dimH µ and ε > 0.
Let u < v < dimH µ . Then lim suph→0 h

−vµ
(
B(x, h)

)
= 0 for µ almost all

x ∈ Rn , and so,

(3.4) lim
i→∞

µ(Rn \Bi) = 0,

where

Bi =
{
x ∈ Rn : µ

(
B(x, h)

)
≤ hv for all 0 < h ≤ 1

i

}

is a Borel set. Further, Iu(µ | Bi) < ∞ for all i . By [9, Theorem 6.6] we have
for θn × L 1 almost all (g, r) ∈ On × (0,∞) that Sg,r�

(
(µ | Bi) × ν

)
� L n for
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all i . This together with (3.4) gives Sg,r�
(µ × ν) � L n for θn × L 1 almost all

(g, r) ∈ On× (0,∞). By [9, Theorem 6.7] and Lemma 3.2, for θn ×L 1 almost all
(g, r) ∈ On × (0,∞) we have for L n almost all z ∈ Rn

(3.5) Iu+t−n

((
µ ∩ (τz ◦ g ◦ δr)�ν

)
| Bi

)
<∞

for all i . For all i and (g, r) ∈ On × (0,∞) define

Di
g,r =

{
z ∈ Cg,r :

(
µ× (g ◦ δr)�ν

)
W,(z,−z)/2

(
(Rn \Bi)×Rn

)
> α(n)2−n/2ε

}
.

Now the disintegration formula (2.4) gives that for θn × L 1 almost all (g, r) ∈
On × (0,∞)

µ× (g ◦ δr)�ν
(
(Rn \Bi)×Rn

)
=

∫ (
µ× (g ◦ δr)�ν

)
W,a

(
(Rn \Bi)×Rn

)
d(H n | W⊥)a

= 2n/2α(n)−1

∫ (
µ× (g ◦ δr)�ν

)
W,(z,−z)/2

(
(Rn \Bi)×Rn

)
dL nz

≥ εL n(Di
g,r)

for all i , which gives by (3.4)

(3.6) lim
i→∞

L n(Di
g,r) = 0.

Let (g, r) ∈ On × (0,∞) such that (3.5) and (3.6) hold. We will prove that
for L n almost all z ∈ Eg,r we have z ∈ Di

g,r for all i . Then the claim follows by
(3.6). Let z ∈ Eg,r such that (3.5) holds. Then there is a Borel set A ⊂ Rn such
that dimH A < u+t−n and µ∩(τz◦g◦δr)�ν(A) > ε . Consider a positive integer i .
Now µ∩ (τz ◦ g ◦ δr)�ν(A \Bi) > ε . In fact, if µ∩ (τz ◦ g ◦ δr)�ν(A \Bi) < ε , then
µ∩(τz◦g◦δr)�ν(A∩Bi) > 0, and by (3.5) and Lemma 2.5, dimH(A∩Bi) ≥ u+t−n ,
which is a contradiction. Hence µ∩(τz ◦g◦δr)�ν(Rn\Bi) > ε , and so z ∈ Di

g,r .

Lemmas 3.1 and 3.3 together imply the following theorem. Note that as
shown above under the assumptions of Theorem 3.7 we have Sg,r�

(µ × ν) � L n

for θn × L 1 almost all (g, r) ∈ On × (0,∞).

Theorem 3.7. Let µ and ν be Radon measures on Rn with compact sup-
ports. Assume that dimH(µ× ν) = dimH µ+ dimH ν > n and It(ν) < ∞ for all
0 < t < dimH ν < n . Then for θn × L 1 almost all (g, r) ∈ On × (0,∞) we have

ess inf{ dimH µ ∩ (τz ◦ g ◦ δr)�ν : z ∈ Rn with µ ∩ (τz ◦ g ◦ δr)�ν(Rn) > 0}
= dimH µ+ dimH ν − n.
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This result is analogous to the packing dimension case (see Theorem 5.9) since

dimH µ+ dimH ν − n = dimH(µ× ν)− n

= sup
{
u ≥ 0 : lim sup

h→0
h−u

∫
B(x,h)×B(y,h)

|(x, y) − (a, b)|−n d(µ× ν)(a, b) = 0

for µ× ν almost all (x, y) ∈ Rn ×Rn

}
.

This can be verified in the same way as [6, Remark 3.9].

4. Upper Hausdorff dimension and intersection measures

The following lemma is an analogue of Lemma 3.1 for the upper Hausdorff
dimension.

Lemma 4.1. Let µ and ν be Radon measures on Rn with compact supports.
Assume that dimH(µ×ν) > n . If (g, r) ∈ On× (0,∞) is such that Sg,r�

(µ×ν) �
L n , then

sup
{
u ≥ 0 : L n

(
{z ∈ Rn : dim∗

H µ∩ (τz ◦g ◦ δr)�ν ≥ u}
)
> 0

}
≤ dim∗

H(µ×ν)−n.

Proof. Since dimH

(
µ × (g ◦ δr)�ν

)
= dimH(µ × ν) > n and dim∗

H

(
µ × (g ◦

δr)�ν
)
= dim∗

H(µ × ν), we have by [6, Lemma 4.2]

sup
{
u ≥ 0 : H n

({
a ∈ W⊥ : dim∗

H

(
µ×(g◦δr)�ν

)
W,a

≥ u
})

> 0
}
≤ dim∗

H(µ×ν)−n.

Note that [6, Lemma 4.2] holds for W since PW⊥
�

(
µ × (g ◦ δr)�ν

)
� H n | W⊥ .

Using the fact that dim∗
H µ∩ (τz ◦ g ◦ δr)�ν ≤ dim∗

H

(
µ× (g ◦ δr)�ν

)
W,(z,−z)/2

, this
gives the claim.

Lemma 4.2. Let µ and ν be Radon measures on Rn with compact supports.
Assume that It(ν) < ∞ for all 0 < t < dim∗

H ν < n . Then for θn × L 1 almost
all (g, r) ∈ On × (0,∞) we have

sup
{
u ≥ 0 : L n

(
{z ∈ Rn : dim∗

H µ∩(τz◦g◦δr)�ν ≥ u}
)
> 0

}
≥ dim∗

H µ+dim∗
H ν−n.

Proof. Let 0 < t < dim∗
H ν < n . It is sufficient to prove that for θn × L 1

almost all (g, r) ∈ On × (0,∞) we have

sup
{
u ≥ 0 : L n

(
{z ∈ Rn : dim∗

H µ ∩ (τz ◦ g ◦ δr)�ν ≥ u}
)
> 0

}
≥ dim∗

H µ+ t− n.

The claim follows by taking a sequence (ti) tending to dim∗
H ν from below.
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We may assume that dim∗
H µ + t > n . We will prove that for any u <

dim∗
H µ− t− n we have for θn × L 1 almost all (g, r) ∈ On × (0,∞)

L n(Eg,r) > 0

for
Eg,r = {z ∈ Rn : dim∗

H µ ∩ (τz ◦ g ◦ δr)�ν ≥ u}.

The desired result follows then by taking a sequence (ui) tending to dim∗
H µ+t−n .

Let u < v < dim∗
H µ + t − n . Then for some positive integer i we have

µ(Ci) > 0, where

Ci =
{
x ∈ Rn : µ

(
B(x, h)

)
≤ hv−t+n for all 0 < h ≤ 1

i

}

is a Borel set. Further, µ × (g ◦ δr)�ν(Ci ×Rn) > 0 for all (g, r) ∈ On × (0,∞).
Now Iu−t+n(µ | Ci) < ∞ , whence [9, Theorem 6.6] implies that Sg,r�

(
(µ | Ci)×

ν
)
� L n for θn × L 1 almost all (g, r) ∈ On × (0,∞). This together with the

disintegration formula (2.4) gives for θn×L 1 almost all (g, r) ∈ On× (0,∞) that

(4.3) L n(Di
g,r) > 0,

where

Di
g,r =

{
z ∈ Rn :

(
(µ | Ci)× (g ◦ δr)�ν

)
W,(z,−z)/2

(Ci ×Rn) > 0
}
.

By [9, Theorem 6.7], we have for θn × L 1 almost all (g, r) ∈ On × (0,∞)

(4.4) Iu
(
(µ | Ci) ∩ (τz ◦ g ◦ δr)�ν

)
< ∞

for L n almost all z ∈ Rn . It is enough to show that for θn × L 1 almost all
(g, r) ∈ On × (0,∞) we have z ∈ Ẽg,r for L n almost all z ∈ Di

g,r , where

Ẽg,r = {z ∈ Rn : dim∗
H(µ | Ci) ∩ (τz ◦ g ◦ δr)�ν ≥ u}.

Then (4.3) implies the claim. Consider (g, r) ∈ On × (0,∞) such that (4.3) and
(4.4) hold. Let z ∈ Di

g,r such that (4.4) holds. If z /∈ Ẽg,r , then there is a Borel
set A ⊂ Rn such that dimH A < u and (µ | Ci)∩ (τz ◦g ◦ δr)�ν(Rn \A) = 0. Now
A∩Ci is a Borel set and µ∩ (τz ◦ g ◦ δr)�ν(A∩Ci) > 0. This gives by Lemma 2.5
and (4.4) that dimH(A ∩ Ci) ≥ u , which is a contradiction. Thus z ∈ Ẽg,r .

Now we obtain:
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Theorem 4.5. Let µ and ν be Radon measures on Rn with compact sup-
ports. Assume that dimH µ + dimH ν > n , dim∗

H(µ × ν) = dim∗
H µ + dim∗

H ν ,
and It(ν) < ∞ for all 0 < t < dim∗

H ν < n . Then for θn × L 1 almost all
(g, r) ∈ On × (0,∞) we have

sup
{
u ≥ 0 : L n

(
{z ∈ Rn : dim∗

H µ∩(τz◦g◦δr)�ν ≥ u}
)
> 0

}
= dim∗

H µ+dim∗
H ν−n.

Proof. The claim follows from Lemmas 4.1 and 4.2. Lemma 4.1 is applicable
since dimH(µ × ν) ≥ dimH µ + dimH ν > n and since, using the methods of the
proof of Lemma 3.3, we see that Sg,r�

(µ × ν) � L n for θn × L 1 almost all
(g, r) ∈ On × (0,∞).

This result is analogous to the upper packing dimension case (see Theo-
rem 6.3) since we have here

dim∗
H µ + dim∗

H ν − n = dim∗
H(µ × ν)− n

= sup
{
u ≥ 0 : µ× ν

({
(x, y) ∈ Rn ×Rn :

lim sup
h→0

h−u

∫
B(x,h)×B(y,h)

|(x, y)− (a, b)|−n d(µ× ν)(a, b) = 0
})

> 0
}
.

5. Packing dimension and intersection measures

Let µ and ν be finite Radon measures on Rn . As in the projection (see [1])
and section (see [6]) cases, we relate intersection measures to certain integral ker-
nels. We will show that it is the limiting behaviour of the product measure µ× ν
against the kernel considered in [6] in connection with sections of measures that
determines the packing dimensions of intersection measures almost everywhere.

The quantities

dµ,ν = sup
{
u ≥ 0 : lim inf

h→0
h−u

∫
B(x,h)×B(y,h)

|(x, y) − (a, b)|−n d(µ× ν)(a, b) = 0

for µ× ν almost all (x, y) ∈ Rn ×Rn

}

and the upper analogue

d∗µ,ν = sup
{
u ≥ 0 : µ× ν

({
(x, y) ∈ Rn ×Rn :

lim inf
h→0

h−u

∫
B(x,h)×B(y,h)

|(x, y)− (a, b)|−n d(µ× ν)(a, b) = 0
})

> 0
}

are what we need when considering intersection measures.
The following lemma is a modification of [4, Lemma 3.5].
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Lemma 5.1. Let µ and ν be Radon measures on Rn with compact supports
such that Is(µ) < ∞ and It(ν) < ∞ for some 0 < s < n and 0 < t < n with
s + t ≥ n . Let 0 < r1 < r2 < ∞ . Assume that there exists u > 0 such that for
µ× ν almost all (x, y) ∈ Rn ×Rn there is 0 < c <∞ such that∫ r2

r1

∫
µ ∩ (τx ◦ g ◦ δr ◦ τ−y)�ν

(
B(x, h)

)
dθng dL

1r ≤ chu

for arbitrarily small h > 0 . Then for θn ×L 1 almost all (g, r) ∈ On × [r1, r2] we
have

dimp µ ∩ (τz ◦ g ◦ δr)�ν ≥ u

for L n almost all z ∈ Rn with µ ∩ (τz ◦ g ◦ δr)�ν(Rn) > 0 .

Proof. Let ε > 0. For h > 0 and (x, y) ∈ Rn ×Rn , define

Jh(x, y) =
∫ r2

r1

∫
µ ∩ (τx ◦ g ◦ δr ◦ τ−y)�ν

(
B(x, h)

)
dθng dL

1r

provided that the right hand side is defined (see [4, Lemma 3.4]). If Jh(x, y) ≤ chu ,
then

θn ×L 1
({
(g, r) ∈ On × [r1, r2] : µ∩(τx ◦ g ◦ δr ◦ τ−y)�ν

(
B(x, h)

)
≥ hu−ε

})
≤ hε−uJh(x, y) ≤ chε.

Hence, for µ× ν almost all (x, y) ∈ Rn ×Rn we have

θn×L 1
({
(g, r) ∈ On×[r1, r2] : lim inf

h→0
hε−uµ∩(τx◦g◦δr◦τ−y)�ν

(
B(x, h)

)
> 1

})
= 0,

which gives, by Fubini’s theorem, that for θn×L 1 almost all (g, r) ∈ On× [r1, r2]

(5.2) µ× ν(Ag,r) = 0,

where

Ag,r =
{
(x, y) ∈ Rn ×Rn : lim inf

h→0
hε−uµ ∩ (τx ◦ g ◦ δr ◦ τ−y)�ν

(
B(x, h)

)
> 1

}
is a Borel set. For all g ∈ On and r1 ≤ r ≤ r2 , define a Borel set

Bg,r =
{
(x, y) ∈ Rn ×Rn : lim inf

h→0
hε−uµ ∩ (τx−y ◦ g ◦ δr)�ν

(
B(x, h)

)
> 1

}
.

Then (5.2) implies that for θn × L 1 almost all (g, r) ∈ On × [r1, r2]

µ × (g ◦ δr)�ν(Bg,r) = µ× ν(Ag,r) = 0,
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and so, using [9, Theorem 6.6] and (2.4), we have for θn ×L 1 almost all (g, r) ∈
On × [r1, r2] (

µ× (g ◦ δr)�ν
)
W,(z,−z)/2

(Bg,r) = 0,

for L n almost all z ∈ Rn , that is,

(5.3) lim inf
h→0

hε−uµ ∩ (τx−y ◦ g ◦ δr)�ν
(
B(x, h)

)
≤ 1

for
(
µ× (g ◦δr)�ν

)
W,(z,−z)/2

almost all (x, y) ∈ Rn×Rn . Since (x, y) ∈ W(z,−z)/2

if and only if x− y = z , inequality (5.3) gives for L n almost all z ∈ Rn

lim inf
h→0

hε−uµ ∩ (τz ◦ g ◦ δr)�ν
(
B(x, h)

)
≤ 1

for µ ∩ (τz ◦ g ◦ δr)�ν almost all x ∈ Rn . Thus, for θn × L 1 almost all (g, r) ∈
On × [r1, r2] we have

dimp µ ∩ (τz ◦ g ◦ δr)�ν ≥ u− 2ε

for L n almost all z ∈ Rn with µ∩ (τz ◦ g ◦ δr)�ν(Rn) > 0, and the claim follows
by taking a sequence (εi) tending to zero.

In the proof of the following lemma we need the estimates given in [4, Lem-
ma 3.8].

Lemma 5.4. Let µ and ν be Radon measures on Rn with compact supports
such that Is(µ) < ∞ and It(ν) < ∞ for some 0 < s < n and 0 < t < n with
s+ t ≥ n . Then for θn × L 1 almost all (g, r) ∈ On × (0,∞) we have

ess inf{dimp µ ∩ (τz ◦ g ◦ δr)�ν : z ∈ Rn with µ ∩ (τz ◦ g ◦ δr)�ν(Rn) > 0} ≥ dµ,ν .

Proof. Consider (x, y) ∈ Rn × Rn such that
∫
|a − x|t−n dµa < ∞ and∫

|b − y|−t dνb < ∞ . Let 0 < r1 < r2 < ∞ and h > 0. By (2.3), Fatou’s lemma
and Fubini’s theorem we have∫ r2

r1

∫
µ ∩ (τx ◦ g ◦ δr ◦ τ−y)�ν

(
B(x, h)

)
dθng dL

1r

≤ lim inf
δ→0

α(n)−1δ−n

∫
B(x,2h)×Rn

Iδ(a, b)d(µ × ν)(a, b),

where

Iδ(a, b) =
∫
{r∈[r1 ,r2]:| |a−x|−r|b−y| |≤δ}

θn({g ∈ On : |a− x− rg(b − y)| ≤ δ})dL 1r.
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Define

Aδ = {(a, b) ∈ Rn ×Rn : r1|b− y| − δ ≤ |a− x| ≤ r2|b− y|+ δ}.

If (a, b) /∈ Aδ , then
{
r ∈ [r1, r2] :

∣∣|a− x| − r|b − y|
∣∣ ≤ δ

}
= ∅ . Hence,∫ r2

r1

∫
µ ∩ (τx ◦ g ◦ δr ◦ τ−y)�ν

(
B(x, h)

)
dθng dL

1r

≤ lim inf
δ→0

α(n)−1δ−n

∫
(B(x,2h)×Rn)∩Aδ

Iδ(a, b)d(µ × ν)(a, b).

Let

A1
δ = {(a, b) ∈ Aδ : |a− x| ≤ 2δ},

A2
δ = {(a, b) ∈ Aδ : r1|b− y| ≤ 2δ},

and
A3

δ = {(a, b) ∈ Aδ : |a− x| > 2δ and r1|b− y| > 2δ}.

Then Aδ = A1
δ ∪A2

δ ∪A3
δ . Further, if (a, b) ∈ A1

δ , then

δ−n ≤ 2n−t3tr−t
1 |a− x|t−n|b− y|−t,

and so,

lim sup
δ→0

α(n)−1δ−n

∫
A1

δ

Iδ(a, b)d(µ × ν)(a, b) = 0.

Similarly,

lim sup
δ→0

α(n)−1δ−n

∫
A2

δ

Iδ(a, b)d(µ × ν)(a, b) = 0.

Thus, ∫ r2

r1

∫
µ ∩ (τx ◦ g ◦ δr ◦ τ−y)�ν

(
B(x, h)

)
dθng dL

1r

≤ lim sup
δ→0

α(n)−1δ−n

∫
(B(x,2h)×Rn)∩A3

δ

Iδ(a, b)d(µ × ν)(a, b).

If (a, b) ∈ A3
δ , then

1
2r1|b − y| ≤ |a − x| ≤ 2r2|b − y| , and so by [10, Lemma 3.8]

there is a constant c1 depending only on n such that for any a �= x and b �= y

Iδ(a, b) ≤ c1δ
n−1|a− x|1−nL 1

({
r ∈ [r1, r2] :

∣∣|a− x| − r|b − y|
∣∣ ≤ δ

})
≤ c1δ

n−1|a− x|1−n2δ|b− y|−1

≤ 4c1r2δn|a− x|−n.
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Thus, for µ× ν almost all (x, y) ∈ Rn ×Rn we have

(5.5)

∫ r2

r1

∫
µ ∩ (τx ◦ g ◦ δr ◦ τ−y)�ν

(
B(x, h)

)
dθng dL

1r

≤ lim sup
δ→0

4c1α(n)−1r2

∫
(B(x,2h)×Rn)∩A3

δ

|a− x|−n d(µ× ν)(a, b)

≤ lim sup
δ→0

c2

∫
(B(x,2h)×Rn)∩A3

δ

|(x, y)− (a, b)|−n d(µ × ν)(a, b)

≤ c2

∫
B(x,c3h)×B(y,c3h)

|(x, y)− (a, b)|−n d(µ × ν)(a, b),

where c2 is a constant depending on n , r1 , and r2 and c3 = max{2, 4/r1} . The
last inequality follows from the fact that

(
B(x, 2h) × Rn

)
∩ A3

δ ⊂ B(x, 2h) ×
B(y, 4h/r1).

Consider u ≥ 0 such that

lim inf
h→0

h−u

∫
B(x,h)×B(y,h)

|(x, y)− (a, b)|−n d(µ× ν)(a, b) = 0

for µ × ν almost all (x, y) ∈ Rn ×Rn . Then, by (5.5) and Lemma 5.1 we have
for θn × L 1 almost all (g, r) ∈ On × [r1, r2]

ess inf{dimp µ ∩ (τz ◦ g ◦ δr)�ν : z ∈ Rn with µ ∩ (τz ◦ g ◦ δr)�ν(Rn) > 0} ≥ u.

The claim follows by taking a sequence (ui) tending to dµ,ν .

In order to prove that the opposite inequality holds in Lemma 5.4 we need the
following version of [6, Lemma 2.4] concerning sections of the product measures
µ× (g ◦ δr)�ν .

Lemma 5.6. Let µ and ν be Radon measures on Rn with compact supports.
If Is(µ) < ∞ and It(ν) < ∞ for some 0 < s < n and 0 < t < n such that
s + t > n , then for θn × L 1 almost all (g, r) ∈ On × (0,∞) there exists for any
ε > 0 a compact set Cε ⊂ Rn ×Rn with µ× (g ◦ δr)�ν

(
(Rn ×Rn) \Cε

)
< ε and

Hε > 0 such that for H n almost all (z,−z)/2 ∈ W⊥ we have

((
µ× (g ◦ δr)�ν

)
| Cε

)
W,(z,−z)/2

(
B(x, h) ×B(y, h)

)
≤ ch(s+t−n)/2

for all (x, y) ∈ W(z,−z)/2 and 0 < h ≤ Hε . Here c is a constant depending only
on s , t , and n .
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Proof. Let q = s + t − n . By [9, Theorem 6.7] we have for θn × L 1 almost
all (g, r) ∈ On × (0,∞)

(5.7) Iq
(
µ ∩ (τz ◦ g ◦ δr)�ν

)
<∞

for L n almost all z ∈ Rn . Consider (g, r) ∈ On × (0,∞) such that (5.7) holds
and Sg,r�

(µ×ν) � L n (see [9, Theorem 6.6]). We will prove that for µ×(g◦δr)�ν
almost all (x, y) ∈ Rn ×Rn we have∫

|(x, y) − (a, b)|−q d
(
µ× (g ◦ δr)�ν

)
W,(x−y,y−x)/2

(a, b) < ∞.

To show that this holds, define

E =
{
(x, y) ∈ Rn×Rn :

∫
|(x, y)−(a, b)|−qd

(
µ×(g◦δr)�ν

)
W,(x−y,y−x)/2

(a, b) = ∞
}
.

If µ× (g ◦ δr)�ν(E) > 0, then by (2.4) we have L n(F ) > 0, where

F =
{
z ∈ Rn :

(
µ× (g ◦ δr)�ν

)
W,(z,−z)/2

(E) > 0
}
.

For all z ∈ F we have

Iq
(
µ ∩ (τz ◦ g ◦ δr)�ν

)
= 2nα(n)−2

∫ ∫
|x− a|−q d

(
µ× (g ◦ δr)�ν

)
W,(z,−z)/2

(a, b)

× d
(
µ× (g ◦ δr)�ν

)
W,(z,−z)/2

(x, y)

≥ 2nα(n)−2

∫
E

∫
|(x, y)− (a, b)|−q d

(
µ× (g ◦ δr)�ν

)
W,(z,−z)/2

(a, b)

× d
(
µ× (g ◦ δr)�ν

)
W,(z,−z)/2

(x, y) = ∞,

which is a contradiction by (5.7).
Let ε > 0. For all positive integers i , define a Borel set

Bi =
{
(x, y) ∈ Rn×Rn :

∫
|(x, y)−(a, b)|−q d

(
µ×(g◦δr)�ν

)
W,(x−y,y−x)/2

(a, b) ≤ i

}
.

Since
lim
i→∞

µ× (g ◦ δr)�ν
(
(Rn ×Rn) \Bi

)
= 0,

we find a compact set Cε ⊂ Rn×Rn such that µ× (g ◦δr)�ν
(
(Rn×Rn)\Cε

)
< ε

and Cε ⊂ Biε for some positive integer iε (see [10, Theorem 1.10]).
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Let Hε = i
−2/q
ε /3. Consider (z,−z)/2 ∈ W⊥ such that

(
µ×(g◦δr)�ν

)
W,(z,−z)/2

and
((
µ× (g ◦ δr)�ν

)
| Cε

)
W,(z,−z)/2

are defined. If (z,−z)/2 /∈ PW⊥ (Cε), then

((
µ× (g ◦ δr)�ν

)
| Cε

)
W,(z,−z)/2

(
B(x, h)×B(y, h)

)
= 0

for all (x, y) ∈ W(z,−z)/2 and h > 0. This follows from (2.1) and from the
fact that W(z,−z)/2(δ) ∩ Cε = ∅ for all small δ > 0, since Cε is compact. If
(z,−z)/2 ∈ PW⊥ (Cε) and (x, y) ∈ W(z,−z)/2 ∩ Cε , then for any 0 < h ≤ 3Hε , we
have
(5.8)((

µ× (g ◦ δr)�ν
)
| Cε

)
W,(z,−z)/2

(
B(x, h)×B(y, h)

)
≤

(
µ× (g ◦ δr)�ν

)
W,(x−y,y−x)/2

(
B(x, h)×B(y, h)

)
≤ 2q/2hq

∫
B(x,h)×B(y,h)

|(x, y) − (a, b)|−q d
(
µ× (g ◦ δr)�ν

)
W,(x−y,y−x)/2

(a, b)

≤ 2q/2iεhq ≤ 2q/2hq/2.

Finally, let (z,−z)/2 ∈ PW⊥ (Cε) and (x, y) ∈ W(z,−z)/2 \ Cε . Then there exists
hx,y > 0 such that

(
B(x, 2h)×B(y, 2h)

)
∩Cε ∩W(z,−z)/2 = ∅ for all 0 < h < hx,y

and
(
B(x, 2h)×B(y, 2h)

)
∩Cε ∩W(z,−z)/2 �= ∅ for all h ≥ hx,y . If 0 < h < hx,y ,

then by (2.1)((
µ× (g ◦ δr)�ν

)
| Cε

)
W,(z,−z)/2

(
B(x, h)×B(y, h)

)
= 0.

If hx,y ≤ h ≤ Hε , then B(x, h) ×B(y, h) ⊂ B(a, 3h)×B(b, 3h) for some (a, b) ∈
Cε ∩W(z,−z)/2 , and (5.8) gives the claim.

Theorem 5.9. Let µ and ν be Radon measures on Rn with compact sup-
ports such that Is(µ) < ∞ and It(ν) < ∞ for some 0 < s < n and 0 < t < n
with s + t > n . Then for θn × L 1 almost all (g, r) ∈ On × (0,∞) we have

ess inf{dimp µ ∩ (τz ◦ g ◦ δr)�ν : z ∈ Rn with µ ∩ (τz ◦ g ◦ δr)�ν(Rn) > 0} = dµ,ν .

Proof. Consider (g, r) ∈ On×(0,∞) such that Lemma 5.6 holds and Sg,r�
(µ×

ν) � L n . Let u ≥ 0 such that dimp µ ∩ (τz ◦ g ◦ δr)�ν ≥ u for L n almost all
z ∈ Rn with µ∩(τz ◦g ◦δr)�ν(Rn) > 0. Then for H n almost all (z,−z)/2 ∈ W⊥

with
(
µ× (g ◦ δr)�)ν

)
W,(z,−z)/2

(Rn ×Rn) > 0 we have

u ≤
(
dimp

(
µ× (g ◦ δr)�

)
ν
)
W,(z,−z)/2

.

Now we use a result given in [6, Theorem 5.16]. What is actually proved there
is the following: if k and p are integers with 0 < p < k and if m is a Radon
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measure on Rk with compact support and with Ip(m) < ∞ , then

ess inf{dimpmV,a : a ∈ V ⊥ with mV,a(Rk) > 0}

≤ sup
{
v ≥ 0 : lim inf

h→0
h−v

∫
B(x,h)

|x− y|−p dm(y) = 0 for m almost all x ∈ Rk

}
provided that V ∈ Gk,k−p such that [6, Lemma 2.4] holds and PV ⊥

�
m � H p |

V ⊥ . Note that the assumption that Ip+d(m) < ∞ for some d > 0 in [6, The-
orem 5.16] is needed only to make sure that [6, Lemma 2.4] holds for almost all
(k− p)-planes. If we know that this is the case for V ∈ Gk,k−p , then this assump-
tion is unnecessary, since in the proof of [6, Theorem 5.16] we need only the fact
that Ip(m) <∞ when applying [6, Lemma 5.9]. Here we choose m = µ×(g◦δr)�ν .
Then In(m) < ∞ , since In(µ × ν) < ∞ . Further, PW⊥m � H n | W⊥ and [6,
Lemma 2.4] holds for W . So, by the above result

u ≤ cµ×(g◦δr)�ν ,

where

cµ×(g◦δr)�ν = sup
{
v ≥ 0 : lim inf

h→0
h−v

∫
B(x,h)×B(y,h)

|(x, y) − (a, b)|−n

× d
(
µ× (g ◦ δr)�ν

)
(a, b) = 0

for µ× (g ◦ δr)�ν almost all (x, y) ∈ Rn ×Rn

}
.

We will show that cµ×(g◦δr)�ν ≤ dµ,ν , which gives the claim by Lemma 5.4.
If v ≥ 0 is such that

lim inf
h→0

h−v

∫
B(x,h)×B(y,h)

|(x, y) − (a, b)|−n d
(
µ× (g ◦ δr)�ν

)
(a, b) = 0

for µ× (g ◦ δr)�ν almost all (x, y) ∈ Rn ×Rn , then

(5.10) lim inf
h→0

h−v

∫
B(x,h)×B(y,h/r)

|(x, ry) − (a, rb)|−n d(µ × ν)(a, b) = 0

for µ × ν almost all (x, y) ∈ Rn × Rn . Consider (x, y) ∈ Rn × Rn such that
(5.10) holds. If r ≤ 1, then |(x, y)− (a, b)|−n ≤ |(x, ry) − (a, rb)|−n , and so,

lim inf
h→0

h−v

∫
B(x,h)×B(y,h)

|(x, y)− (a, b)|−n d(µ× ν)(a, b) = 0.

If r ≥ 1, then |(x, y)− (a, b)|−n ≤ rn|(x, ry) − (a, rb)|−n , which gives

lim inf
h→0

(h/r)−v

∫
B(x,h/r)×B(y,h/r)

|(x, y) − (a, b)|−n d(µ× ν)(a, b)

≤ lim inf
h→0

rn−vh−v

∫
B(x,h)×B(y,h/r)

|(x, ry) − (a, rb)|−n d(µ× ν)(a, b) = 0.

Hence cµ×(g◦δr)�ν ≤ dµ,ν .
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6. Upper packing dimension and intersection measures

In this chapter we prove analogues of the results of the previous chapter for
the upper packing dimension. For this purpose we need the following lemma.

Lemma 6.1. Let µ and ν be Radon measures on Rn with compact supports
such that Is(µ) < ∞ and It(ν) < ∞ for some 0 < s < n and 0 < t < n with
s+ t ≥ n . Let 0 < r1 < r2 < ∞ . Assume that there is u > 0 such that

µ× ν

({
(x, y) ∈ Rn ×Rn : there is 0 < c <∞ such that for arbitrarily

small h > 0
∫ r2

r1

∫
µ ∩ (τz ◦ g ◦ δr ◦ τ−y)�ν

(
B(x, h)

)
dθng dL

1r ≤ chu
})

> 0.

Then for any ε > 0 we have for θn ×L 1 almost all (g, r) ∈ On × [r1, r2]

L n
(
{z ∈ Rn : dim∗

p µ ∩ (τz ◦ g ◦ δr)�ν ≥ u− ε}
)
> 0.

Proof. Let ε > 0. For h > 0 and (x, y) ∈ Rn ×Rn , define

Jh(x, y) =
∫ r2

r1

∫
µ ∩ (τz ◦ g ◦ δr ◦ τ−y)�ν

(
B(x, h)

)
dθng dL

1r

provided that the right hand side is defined (see [4, Lemma 3.4]). Define

Au = {(x, y) ∈ Rn ×Rn : there is 0 < c <∞ such that Jh(x, y) ≤ chu

for arbitrarily small h > 0}.
Then µ× ν(Au) > 0 and for all (x, y) ∈ Au we have

lim inf
h→0

hε−uµ ∩ (τz ◦ g ◦ δr ◦ τ−y)�ν
(
B(x, h)

)
≤ 1

for θn ×L 1 almost all (g, r) ∈ On × [r1, r2] . This together with Fubini’s theorem
gives that for θn × L 1 almost all (g, r) ∈ On × [r1, r2] we have µ× ν(Bg,r) > 0,
where

Bg,r =
{
(x, y) ∈ Rn ×Rn : lim inf

h→0
hε−uµ ∩ (τx ◦ g ◦ δr ◦ τ−y)�ν

(
B(x, h)

)
≤ 1

}
.

Since µ× ν(Bg,r) = µ× (g ◦ δr)�ν(Cg,r) for

Cg,r =
{
(x, y) ∈ Rn ×Rn : lim inf

h→0
hε−uµ ∩ (τx−y ◦ g ◦ δr)�ν

(
B(x, h)

)
≤ 1

}
,

[9, Theorem 6.6] and the disintegration formula (2.4) imply that for θn × L 1

almost all (g, r) ∈ On × [r1, r2] we have L n(Dg,r) > 0, where

Dg,r =
{
z ∈ Rn :

(
µ × (g ◦ δr)�ν

)
W,(z,−z)/2

(Cg,r) > 0
}
.

For any z ∈ Dg,r we have

µ ∩ (τz ◦ g ◦ δr)�ν
({
x ∈ Rn : lim inf

h→0
h2ε−uµ ∩ (τz ◦ g ◦ δr)�ν

(
B(x, h)

)
= 0

})
> 0,

that is,
dim∗

p µ ∩ (τz ◦ g ◦ δr)�ν ≥ u− 2ε,

and the claim follows.
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Lemma 6.2. Let µ and ν be Radon measures on Rn with compact supports
such that Is(µ) < ∞ and It(ν) < ∞ for some 0 < s < n and 0 < t < n with
s+ t ≥ n . Then for θn × L 1 almost all (g, r) ∈ On × (0,∞) we have

sup
{
u ≥ 0 : L n

(
{z ∈ Rn : dim∗

p µ ∩ (τz ◦ g ◦ δr)�ν ≥ u}
)
> 0

}
≥ d∗µ,ν.

Proof. Let 0 < r1 < r2 < ∞ . Consider v ≥ 0 such that µ × ν(Av) > 0,
where

Av =
{
(x, y) ∈ Rn×Rn : lim inf

h→0
h−v

∫
B(x,h)×B(y,h)

|(x, y)−(a, b)|−n dµ×ν(a, b) = 0
}
.

As in the proof of Lemma 5.4, we see that for µ × ν almost all (x, y) ∈ Av we
have for some constants c1 and c2∫ r2

r1

∫
µ ∩ (τx ◦ g ◦ δr ◦ τ−y)�ν

(
B(x, h)

)
dθng dL

1r

≤ c1

∫
B(x,c2h)×B(y,c2h)

|(x, y)− (a, b)|−n dµ× ν(a, b) ≤ c1(c2h)v

for arbitrarily small h > 0. For any ε > 0 Lemma 6.1 gives that for θn × L 1

almost all (g, r) ∈ On × [r1, r2] we have

sup
{
u ≥ 0 : L n

(
{z ∈ Rn : dim∗

p µ ∩ (τz ◦ g ◦ δr)�ν ≥ u}
)
> 0

}
≥ v − ε.

The claim follows by taking sequences (εi) tending to zero and (vi) tending to
d∗µ,ν

Theorem 6.3. Let µ and ν be Radon measures on Rn with compact sup-
ports. Assume that Is(µ) <∞ and It(ν) < ∞ for some 0 < s < n and 0 < t < n
with s + t > n . Then for θn × L 1 almost all (g, r) ∈ On × (0,∞) we have

sup
{
u ≥ 0 : L n

(
{z ∈ Rn : dim∗

p µ ∩ (τz ◦ g ◦ δr)�ν ≥ u}
)
> 0

}
= d∗µ,ν.

Proof. Consider (g, r) ∈ On×(0,∞) such that Lemma 5.6 holds and Sg,r�
(µ×

ν) � L n . Let u ≥ 0 such that L n
(
{z ∈ Rn : dim∗

p µ∩ (τz ◦ g ◦ δr)�ν ≥ u}
)
> 0.

Then
H n

({
a ∈ W⊥ : dim∗

p

(
µ× (g ◦ δr)�ν

)
W,(z,−z)/2

≥ u
})

> 0.

As in the proof of Theorem 5.9 we use a result from [6] to prove the claim. What
we need here and what is actually proved in [6, Theorem 6.4] is as follows: if k and
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p are integers with 0 < p < k and m is a Radon measure on Rk with compact
support and with Ip(m) < ∞ , then

sup
{
v ≥ 0 : H p({a ∈ V ⊥ : dim∗

pmV,a ≥ v}) > 0
}

≤ sup
{
v ≥ 0 : m

({
x ∈ Rk : lim inf

h→0
h−v

∫
B(x,h)

|x− y|−p dmy = 0
})

> 0
}

provided that V ∈ Gk,k−p such that [6, Lemma 2.4] holds and PV ⊥
�
m � H p | V ⊥ .

In our case this result implies that

u ≤ c∗µ×(g◦δr)�ν
,

where

c∗µ×(g◦δr)�ν
= sup

{
v ≥ 0 : µ× (g ◦ δr)�ν

({
(a, b) ∈ Rn ×Rn :

lim inf
h→0

h−v

∫
B(x,h)×B(y,h)

|(x, y)− (a, b)|−n dµ× (g ◦ δr)�ν(a, b) = 0
})

> 0
}
.

Hence it suffices to show that c∗µ×(g◦δr)�ν
≤ d∗µ,ν . This can be verified in the same

way as the fact that cµ×(g◦δr)�ν ≤ dµ,ν was shown in the proof of Theorem 5.9.
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