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Abstract. In this paper we prove that the length spectrum metric is topologically equivalent
to the Teichmüller metric in Teichmüller space T (g,m, n) . This result solved a problem suggested
by Sorvali [9] in 1972.

0. Introduction

Let G be a torsion-free non-elementary Fuchsian group acting on the upper
half-plane U . Denote

L∞(U,G) = {µ ∈ L∞(U,C) : (µ ◦ g)ḡ′/g′ = µ a.e. for any g ∈ G},(1)
L∞(U,G)1 = {µ ∈ L∞(U,G), ‖µ‖∞ < 1}.(2)

As we know, for any µ ∈ L∞(U,G)1 , there exists a quasiconformal mapping
ωµ: U → U such that the Beltrami coefficient of ωµ is µ and ωµ fixes 0, 1, ∞.
Let Λ(G) be the limit set of the Fuchsian group G . Without loss of generality,
we may assume that Λ(G) contains 0, 1, ∞ . We can define the Teichmüller
space of the Fuchsian group G to be T (G) = L∞(U,G)1/ ∼ , where µ ∼ η if and
only if ωµ|Λ(G) = ωη|Λ(G) . Letting X = U/G , we can give a definition of the
Teichmüller space T (X) [5]. Denote by [X, f1,X1] the marked Riemann surface
based on X , where X is a Riemann surface and f : X → X1 is a quasiconformal
mapping. Two marked Riemann surfaces are equivalent if there exists a conformal
mapping σ: X1 → X2 such that the mapping g−1 ◦ σ ◦ f : X → X is homotopic
to the identity. The Teichmüller space T (X) is the set of the above equivalent
classes. These two definitions of Teichmüller spaces are equivalent. For any marked
Riemann surface [X, f1,X1] , let ωµ: U → U be the lifting of f1 ; then [X, f1,X1]
can be represented by [G,χ, ωµ ◦G ◦ω−1

µ ] , where χ: G→ ωµ ◦G ◦ω−1
µ , is a group

isomorphism, defined by χ(g) = ωµ ◦ g ◦ ω−1
µ , g ∈ G . Therefore any point in

the Teichmüler space T (X) = T (G) can be written as the formula [G,χ1, G1] ,
this formula being unique up to an inner automorphism. The equivalent relations
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between any two of these formulas are induced by the equivalent relations in the
above definitions of Teichmüller spaces.

On the other hand, the Riemann surface X can be viewed as some Riemann
surface structure on a topological surface S . We obtain various Riemann surfaces
when the Riemann surface structures on S vary. Let ΣX be the homotopy class of
closed curves on X , and let Σ′

X be the elements in ΣX which are not homotopic
to a single puncture. Let Σ

′′

X be the elements in Σ′
X which is the homotopy class

of simple closed curves. There exists a Poincaré metric on X because the Riemann
surface X is hyperbolic. For any α ∈ ΣX , let lX(α) be the shortest length of
elements of α in the Poincaré metric on X . The sequence {lX(α)} corresponds
to the element α ∈ ΣX called the length spetrum of the Riemann surface X .
For a Riemann surface X = U/G and any α ∈ ΣX , let g ∈ G cover α ; then
lX(α) = log λ(g), where λ(g) is the multiplier of g [5], [1]. In the Teichmüller
space T (G), Sorvali defined a metric d [9], [5]. If [G,χ1, G1] and [G,χ2, G2] are
two points in T (G), denote

(3) d([G,χ1, G1], [G,χ2, G2]) = log ρ([G,χ1, G1], [G,χ2, G2]),

where ρ is the infinum of a (a ≥ 1) with a satisfying

(4) |λ(g)|1/a ≤ |λ(χ2 ◦ χ−1
1 ◦ g)| ≤ |λ(g)|a, for any g ∈ G1.

Because |λ(g)| = |λ(χ2 ◦ χ−1
1 ◦ g)| = 1 for any parabolic element g ∈ G , ρ is the

infinum of a (a ≥ 1) with a satisfying

(5) |λ(g)|1/a ≤ |λ(χ2 ◦ χ−1
1 ◦ g)| ≤ |λ(g)|a

for any g ∈ G1 and g is hyperbolic.
Then we have

(6) ρ = sup
g∈G1, g is hyperbolic

{
log λ(g)

log λ(χ2 ◦ χ−1
1 ◦ g)

,
log λ(χ2 ◦ χ−1

1 ◦ g)
logλ(g)

}
.

From the relation between the Poincaré length of closed curves and the mul-
tiplier of the elements in G , we can define the following function [5], [9]:

(7) d([X, f1.X1].[X, f2,X2]) = log ρ([X, f1 ,X1], [X, f2,X2]),

where

(8) ρ([X, f1,X1], [X, f2,X2]) = sup
α∈Σ′

X1

{
lX2

(
f2 ◦ f−1

1 (α)
)

lX1(α)
,

lX1(α)
lX2

(
f2 ◦ f−1

1 (α)
)}
.
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According to the results in [1], [5] and [9], we know that (3) and (7) define a
metric on T (G) and T (X), respectively. We also know that these two metrics are
the same.

In 1972, Sorvali [9] suggested the following problem: if G is a finitely gener-
ated Fuchsian group, is the metric d topologically equivalent to the Teichmüller
metric dT in T (G) = T (X)? In 1975, Sorvali [10] studied the above problem for
torus and proved that the two metrics are topologically equivalent in this case.
In the same paper [10], Sorvali suggested the same problem for compact Riemann
surfaces. In 1986, Li Zhong [5] proved that for any compact Riemann surface
X = U/G , the two metrics are topologically equivalent in T (X), and this result
solved the problem presented by Sorvali in [10]. But for the Teichmüller space cor-
responding to a non-compact Riemann surface, the above problem remains open.

In this paper we will prove that for any torsion-free non-elementary finitely
generated Fuchsian group G , the metric d and the Teichmüller metric dT in T (G)
are topologically equivalent. This result solves the above problem considered by
Sorvali [9] in 1972. First we prove that, for any conformally finite Riemann surface
X , the metrics d and dT are topologically equivalent in T (X). Then, using the
Nielsen extension and Schottky double, we prove that the above result remains
true for any torsion-free non-elementary finitely generated Fuchsian group (or any
non-elementary topologically finite Riemann surface).

1. Conformally finite Riemann surfaces

If there is no special claim, the Riemann surfaces X = U/G in this section are
of type (g, p), where g is the number of genus and p is the number of punctures.
The Fuchsian group G is finitely generated and of the first kind.

Let QD(X) be the set of holomorphic quadratic differentials on the Riemann
surface X , and let PQD(X) be the set of its projective classes [4]. As we know, the
real dimension of QD(X) is 6g−6+2p and that of PQD(X) is 6g−7+2p [4], [5].
For any φ ∈ QD(X), it determines a pair of transversely measured foliations.
These are the horizontal trajectory together with its vertical measure and the
vertical trajectory together with its horizontal measure. Let MF(X̃) be the set of
measured foliations on a topological surface X̃ , and let PMF(X̃) be the set of its
projective classes. We know that the real dimensions of MF(X̃) and PMF(X̃) are
6g−6+2p and 6g−7+2p , respectively. PQD(X) and PMF(X̃) may be viewed as
the unit spheres in QD(X) and PMF(X̃), respectively. Therefore PQD(X) and
PMF(X̃) are compact. The Riemann surface X may be viewed as a topological
surface X̃ together with some complex structure.

We have the mapping [4]

(9) H: QD(X)→ MF(X̃),

where H maps φ onto its horizontal trajectory together with its vertical measure.
We know that H is a homeomorphism.
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For any α ∈ Σ′′
X , we can define its extremal length EX(α) [4]. Kerckhoff [4]

generalized the definition of extremal length from simple closed curves to measured
foliations. This is a natural generalization. Actually any α ∈ Σ′′

X may be viewed
as a measured foliation [4]. For any F ∈ MF(X̃), EX(F ) is realized by the metric
determined by the holomorphic quadratic differential H−1(F ).

We first introduce two lemmas. In these two lemmas, the Riemann surfaces
are hyperbolic, not necessarily of a conformally finite type.

Lemma 1 [1]. For any α ∈ Σ′
X1

the dilatation of a quasiconformal mapping
h: X1 → X2 satisfies the inequality:

(10) K[h] ≥
lX2

(
f(α)

)
lX1(α)

.

Lemma 2. For any two points τ1, τ2 ∈ T (X) , we have

(11) dT (τ1, τ2) ≥ d(τ1, τ2).

The following theorem is a natural generalization of a result of Kerckhoff [4].

Theorem 1. For any two points [X, f1,X1] and [X, f2,X2] in T (X) , we
have

(12) dT ([X, f1 ,X1], [X, f2,X2]) =
1
2
log sup

α∈Σ′′
X

EX2

(
f2 ◦ f−1

1 (α)
)

EX1(α)
.

Remark. Kerckhoff [4] obtained a similar result for compact Riemann sur-
faces. Because the proof of the above theorem is the same as that of Kerckhoff,
we omit the details. On the other hand, we do not know whether the above result
remains valid for any non-conformal finite-type Riemann surface.

As a generalization of the Poincaré length of a simple closed curve, we may
define for any F ∈ MF(X̃) its Poincaré length lX(F ) [8]. By the definition of
extremal length and the Gauss–Bonnet theorem, we have

Lemma 3. For any F ∈ MF(X̃) , we have

(13)
EX(F )
l2X(F )

≥ 1
2π|χ(X)| ,

where χ(X) is the Euler number of X .

Morerover, the Poincaré length and the extremal length of a measured folia-
tion have the following relation.
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Theorem 2. There exist constants M1(X) and M2(X) , depending only on

X , such that for any F ∈ MF(X̃) ,

(14) M1(X) ≤
EX(F )
l2X(F )

≤M2(X).

Proof. As functions defined on MF(X̃), EX(F ) and l2X(F ) are continuous
and take positive values in MF (X̃)− {0} . For any r > 0, we have ([4]),

EX(rF ) = r2EX(F ),(15)
l2X(rF ) = r

2l2X(F ).(16)
Therefore the function EX(F )/l2X(F ) is a positive continuous function on the
compact set PMF(X̃). So it can attain its maximum and minimum. Denote them
by M2(X) and M1(X), respectively. This completes the proof of the theorem.

From the above results we have:

Theorem 3. Let [X, f1,X1] and [X, f2,X2] be two points in T (X) . Then

(17) dT ([X, f1,X1], [X, f2,X2]) ≤ C ′
2(X) + d([X, f1 ,X1], [X, f2 ,X2]),

where C ′
2 =

1
2 log[2π|χ(X1)|C2(X1)] depends only on the Riemann surface X1 .

Proof. By Lemma 3 and Theorem 2, we have
1

EX2

(
f2 ◦ f−1

1 (α)
) ≤ 2π|χ(X2)|

l2X2

(
f2 ◦ f−1

1 (α)
) ,(18)

EX1(α) ≤ C2(X1)l2X1
(α),(19)

where α ∈ Σ′′
X1
.

Then, by Theorem 1 and χ(X1) = χ(X2) and the symmetrization of Te-
ichmüller metric, we have

(20)

dT ([X, f1 ,X1], [X, f2,X2]) =
1
2
log sup

α∈Σ′′
X1

EX1(α)
EX2

(
f2 ◦ f−1

1 (α)
)

≤ 1
2
log sup

α∈Σ′′
X1

2π|χ(X2)|C2(X1)l2X1
(α)

l2X2

(
f2 ◦ f−1

1 (α)
)

=
1
2
log[2π|χ(X1)|C2(X1)]

+
1
2
log sup

α∈Σ′′
X2

l2X1
(α)

l2X2

(
f2 ◦ f−1

1 (α)
)

≤ C ′
2(X1) + d([X, f1,X1], [X, f2,X2]).

Similarly to the proof of Theorem 1 in [5], we can prove the following theorem
using Theorem 3. For the sake of simplicity, we omit the details.

Theorem 4. Let X be a conformally finite-type Riemann surface. Then the
metric d and the Teichmüller metric dT are topologically equivalent.



16 Liu Lixin

2. Topologically finite Riemann surfaces

The Riemann surfaces in this section are of type (g,m, n), where g , m ,
n are the number of genus, punctures and ideal boundaries, respectively, with
6g − 6 +m+ 3n > 0, n > 0. The corresponding Teichmüller space is sometimes
written as T (g,m, n).

We know that any (g,m, n)-type Riemann surface X with n > 0 is the
Nielsen extension of a uniquely determined Riemann surface X0 . Further, X0

is called the Nielsen kernel of X [2]. The above relation is unique and one-one.
On the other hand, for any above Riemann surface X we can define its Schottky
double Xd . This is a Riemann surface of type (2g + n − 1, 2m, 0) [1]. Because
X is hyperbolic, there exists a Poincaré metric on X and there also exists a
Poincaré metric on Xd . The metric on X induced by the Poincaré metric on Xd

is called the intrinsic metric of X . The ideal boundaries are geodesic curves in
their intrinsic metrics.

The topological types of the Riemann surface X and its Nielsen kernel X0

are identical. The complement of the closure of X0 in X is n funnels. Here each
funnel is a ring domain with one of its boundaries is an ideal boundary of X .
Moreover, ΣX and ΣX0 have the same corresponding relation. For the sake of
convenience, we make no distinction between the corresponding elements in ΣX

and ΣX0 .
The following result is due to Bers [2].

Lemma 4. Let X0 be the Nielsen kernel of X . Then the metric on X0

induced by the Poincaré metric of X is the same as the intrinsic metric of X0 .

Similarly to (7), we can define a metric on T (X) using the intrinsic metric
on X . For any α ∈ ΣX , denote the length of α in the intrinsic metric of X by
lIX(α). For any two points [X, f1,X1] and [X, f2,X2] in T (X), we define

(21) dI([X, f1 ,X1], [X, f2 ,X2]) = log ρI([X, f1 ,X1], [X, f2 ,X2]),

where

(22) ρI([X, f1 ,X1], [X, f2,X2]) = sup
α∈Σ′

X1

{
lIX2

(
f2 ◦ f−1

1 (α)
)

lIX1
(α)

,
lIX1
(α)

lIX2

(
f2 ◦ f−1

1 (α)
)}
.

Next we will compare the Poincaré metric and the intrinsic metric. The
following lemma is a consequence of Schwarz’s lemma.

Lemma 5. For any α ∈ Σ′
X , we have

(23) lIX(α) < lX(α).

Further, we have the following
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Theorem 5. There exist constants M3(X) and M4(X) , which depend only
on X , such that

(24) M3(X) ≤
lIX(α)
lX(α)

≤M4(X)

for any α ∈ Σ′′
X .

Proof. Consider the Schottky doubles Xd
0 and Xd of X0 and X , respectively.

By Lemma 4, we know that lX(α) = lIX0
(α) for any α ∈ ΣX0 . Thus we know

that, for any α ∈ ΣX0 ,
lIX(α) = lXd(α),

lX(α) = ldX0
(α).

Similarly to the proof of Theorem 2, lXd(F ) and lXd
0
(F ) may be viewed as func-

tions on MF(X̃d) and taking positive values on MF(X̃d)− {0} . For any r > 0,
we have

lXd(tF ) = tlXd(F ),
lXd

0
(tF ) = tlXd

0
(F ).

Therefore the function lXd(F )/lXd
0
(F ) is a positive continuous function defined

on a compact set PMF(X̃d). So it attains its maximum and minimum. Denote
them by M3(Xd,Xd

0 ) and M4(Xd,Xd
0 ). But Xd and Xd

0 are uniquely determined
by X . Thus we can denote these two constants by M3(X) and M4(X).

Similarly to the above discussion, we have:

Theorem 6. There exist constants M5(X) and M6(X) , which depend only
on X , such that

(25) M5(X) ≤
EXd(α)
EXd

0
(α)

≤M6(X)

for any α ∈ Σ′′
X1

.

Using the pant decomposition of Riemann surface, we have:

Theorem 7. Let dI be the metric on T (X) defined in (21) and let d be
the metric on T (Xd) defined in (7). Then the point sequence {[X, fn,Xn]} ,
n = 1, 2, . . . , in T (X) converges to [X, f0,X0] in the metric dI if and only if the
corresponding point sequence {[Xd, fd

n ,X
d
n]} , n = 1, 2, . . . , in T (Xd) converges

to [Xd, fd
0 ,X

d
0 ] in the metric d .

Proof. Because the intrinsic metric on a Riemann surface is induced by the
Poincaré metric on its Schottky double, the sufficiency condition is obvious.
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Next we prove the necessity condition. Consider the pant decomposition
of a Riemann surface X . Suppose X is decomposed into disjoint pants {Pi} ,
i = 1, 2, . . . , k1 . The decomposition curves are {Lk} , k = 1, 2, . . . , k4 . Let {Ci} ,
i = 1, 2, . . . , k2 , be the set of punctures and {li} , i = 1, 2, . . . , k3 , be the set of ideal
boundaries. Here the constants ki , i = 1, 2, 3, 4, depend only on the topological
type of X . All the boundary components of {Pi} are {Ci} ∪ {lj} ∪ {Lk} .

From above we can obtain the corresponding pant decomposition of Xd . The
set of disjoint pants is {Pi}∪{P i} , and the boundary components of {Pi}∪{P i}
are {Ci} ∪ {Ci} ∪ {lj} ∪ {Lk} ∪ {Lk} .

By the mappings fn , fd
n and f0 , we obtain the corresponding pant decom-

positions {P (n)
i } , {P (n)

i } ∪ {P (n)

i } and {P (0)
i } of Xn , Xd

n and X0 , respectively.
We can induce a metric on any pant Pi by the intrinsic metric of X , and

on P i such a metric is induced by the Poincaré metric of Xd . The above metric
on a pant is determined by the lengths of its three boundary components. For
every Riemann surface, its intrinsic metric is determined by the metric on all of
its pants and all the twists of non-puncture and non-ideal boundary components
of the pant decomposition. For Xd , the above claim remains valid. We also know
that [1] the twist about a curve is determined by the lengths of some of curves
which intersect this curve.

Now the sequence {[X, fn,Xn]} , n = 1, 2, . . . , converges to [X, f0 ,X0] in
the metric dI . This means that lIXn

(
fn(α)

)
converges to lIX0

(
f0(α)

)
for every

α ∈ ΣX . If we pick all the pant decomposition curves and sufficiently many
curves which intersect the decomposition curves, we know that for 1 ≤ i ≤ k1 the
metric on the pant P (n)

i converges to the metric on the pant P (0)
i . And for any

1 ≤ i ≤ k4 , the twist about the curve fn(Li) converges to the twist about f0(Li).
For the Riemann surface Xd , its Poincaré metric is determined by the metrics on
the pants {Pi} ∪ {P i} and the twists about {lj} ∪ {Lk} ∪ {L̄k} . We know that
the metrics on Pi and P i are the same and that the twist about Lk and L̄k are
identical. The twists about the curves lj are zero.

To prove the necessary condition, it is sufficient to prove that, for any α ∈
Σ′

Xd , α intersects at least one of the curves in {lj} , such that lXd
n

(
fd

n(α)
)
con-

verges to lXd
0
, fd

0 (X). Next we prove this claim.
As we know,

lXd
n

(
fd

n(α)
)
=

k1∑
i=1

[
l
P

(n)
I

(
fd

n(α) ∩ P
(n)
i

)
+ l

P
(n)
i

(
fd

n(α) ∩ P
(n)

i

)]

+
k3∑

j=1

i
(
fd

n(α), f
d
n(α)

)
t
(
fd

n(lj)
)

+
k4∑

i=1

[
i
(
fd

n(α), f
d
n(Li)

)
t
(
fd

n(Li)
)
+ i

(
fd

n(α), f
d
n(L̄i)

)
t
(
fd

n(L̄i)
)]
,
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where i(α, β) is the geometric intersection of α and β and t(α) is the twist
about α .

From above we know that

l
P

(n)
i

(
fd

n(α) ∩ P
(n)
i

) n→∞−→ l
P

(0)
i

(
fd
0 (α) ∩ P

(0)
i

)
,

l
P

(n)
i

(
fd

n(α) ∩ P
(n)

i

) n→∞−→ l
P

(0)
i

(
fd
0 (α) ∩ P

(0)

i

)
,

i
(
fd

n(α), f
d
n(Li)

)
t
(
fd

n(Li)
) n→∞−→ i

(
fd
0 (α), f

d
0 (Li)

)
t
(
fd
0 (Li)

)
,

i
(
fd

n(α), f
d
n(li)

)
t
(
fd

n(li)
)
= 0,

i
(
fd

n(α), f
d
n(L̄i)

)
t
(
fd

n(L̄i)
) n→∞−→ i

(
fd
0 (α), f

d
0 (L̄i)

)
t
(
fd
0 (L̄i)

)
.

Then we know that lXd
n

(
fd

n(α)
)
converges to lXd

0

(
fd
0 (α)

)
as n → ∞ . This com-

pletes the proof of the theorem.

For any two points [X, f1,X1] and [X, f2 ,X2] in T (X) and the correspond-
ing two points [Xd, fd

1 ,X
d
1 ] and [X

d, fd
2 ,X

d
2 ] in T (X

d), let dT1 and dT2 be the
Teichmüller metrics on T (X) and T (Xd), respectively. Then [1]

dT1([X, f1 ,X1], [X, f2,X2]) = dT2([X
d, fd

1 ,X
d
1 ], [X

d, fd
2 ,X

d
2 ]).

From Theorem 4, Theorem 7 and the above equation, we have

Corollary 1. The metric dI and the Teichmüller metric on T (X) are topo-
logically equivalent.

Next we introduce several lemmas.

Lemma 6 [7]. For α ∈ Σ′
X , let lX(α) and EX(α) be its hyperbolic length

and extremal length, respectively. Then we have
(a) lX(α)/π ≤ EX(α) ≤ 1

2 lX(α)e
lX (α)/2 ,

(b) lX(α) and EX(α) may be viewed as functions on T (X) , lX(α) and EX(α)
go to zero together with

lim
lX(α)→0

lX(α)
EX(α)

= π.

Lemma 7 [3]. For α1 , α2 ∈ Σ′
X and i(α1, α2) �= 0 . Then

(a) lX(α2)→ ∞ if lX(α1)→ 0 ,
(b) lIX(α2)→ ∞ if lIX(α1)→ 0 .

We prove that the metric d and the Teichmüller metric dT on T (X) are
topologically equivalent. For this purpose, we first prove the following theorem.

Theorem 8. Let X0 be the Nielsen kernel of a Riemann surface X . If the
point sequence [Xd

0 , f
d
0n,X

d
0n] , n = 1, 2, . . . , converges to [Xd

0 , f
d
00,X

d
00] in the

Teichnüller metric dT0 of a Teichmüller space T (Xd
0 ) , the corresponding point

sequence [Xd, fd
n ,X

d
n] , n = 1, 2, . . . , is bounded in the Teichmüller metric dT2 of

the Teichmüller space T (Xd) .
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Proof. To prove the conclusion, it is sufficient to prove that the number
sequence

(26) Mn = sup
α∈Σ′′

Xd

EXd
1

(
fd
1 (α)

)
EXd

n

(
fd

n(α)
) , n = 1, 2, . . . ,

is bounded.
Let I = {βi} , i = 1, 2, . . . , k , be the set of the ideal boundaries of X . We

assume that the sequence Mn , n = 1, 2, . . . , is unbounded. Rewrite Mn as

Mn = max
{

sup
α∈Σ′′

Xd
, α/∈I

EXd
1

(
fd
1 (α)

)
EXd

n

(
fd

n(α)
) , sup

α∈I

EXd
1

(
fd
1 (α)

)
EXd

n

(
fd

n(α)
)}
.

From the definition of extremal length [4], we know that for any α ∈ Σ′′
Xd ,

α /∈ I ,
EXd

n

(
fd

n(α)
)
≥ EXd

0n

(
fd
0n(α)

)
.

From (25) in Theorem 6, we have

(27)
sup

α∈Σ′′
Xd

, α/∈I

EXd
1

(
fd
1 (α)

)
EXd

n

(
fd

n(α)
) ≤ sup

α∈Σ′′
Xd

0
,α/∈I

M6(X1)Ed
X01

(
fd
01(α)

)
EXd

0n

(
fd
0n(α)

)
≤M6(X1)dT2([X

d
0 , f

d
01,X

d
01], [X

d
0 , f

d
0n,X

d
0n]).

From the conditions given in the theorem, we know that (27) is bounded for
all n ≥ 1. Therefore the assumption that {Mn} is unbounded implies that the
sequence

M ′
n = sup

α∈I

EXd
1

(
fd
1 (α)

)
EXd

n

(
fd

n(α)
) , n = 1, 2, . . . ,

is unbounded.
Without loss of generality, we may assume that M ′

n → ∞ . Because there
are only finite curves in I , we may pick some β1 ∈ I and a subsequence of
[Xd, fd

n ,X
d
n] , still denoted by [Xd, fd

n ,X
d
n] , such that the sequence

M ′′
n =

Ed
X1

(
fd
1 (β1)

)
EXd

n

(
fd

n(β1)
)

tends to ∞ as n→ ∞ . This means that

EXd
n

(
fd

n(β1)
)
→ 0 as n→ ∞.
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From Lemma 6, we have
lim

n→∞
lXd

n

(
fd

n(β1)
)
= 0.

By Lemma 7, we know that for any curve α ∈ Σ′′
Xd , i(α, β) �= ∅ ,

lim
n→∞

lXd
n

(
fd

n(α)
)
=∞.

Then from Lemma 5 we have

lim
n→∞

lXd
0n

(
fd
0n(α)

)
=∞,

where α is any closed curve that intersects β1 . From the convergence property
of the sequence {[Xd

0 , f
d
0n,X

d
0n]} , n = 1, 2, . . . , in the metric dT0 and Theorem 4,

we know that the above conclusion is impossible. So the assumption is false. This
completes the proof of the theorem.

Using Theorem 8, we obtain:

Theorem 9. For any topologically finite-type Riemann surface X , the metric
d and the Teichmüller metric dT on a Teichmüller space T (X) = T (g,m, n) are
topologically equivalent.

Proof. From Lemma 2 we know that, to prove the topological equivalence of
the metrics d and dT , it is sufficient to prove the following fact: if the sequence
[X, fn,Xn] converges to [X, f0,X0] in the metric d , the same sequence converges
to [X, f0,X0] in the metric dT . From the proof of Theorem 1 in [5] we know that,
to prove the above fact, it is sufficient to prove that if the sequence [X, fn,Xn]
converges to [X, f0,X0] in the metric d , the sequence is bounded in the metric dT .
Next we prove this claim.

Because the sequence [X, fn,Xn] converges to [X, f0,X0] in the metric d , the
metric d may be viewed as induced by the intrinsic metric of its Nielsen kernel.
From Corollary 1 we know that the sequence [Xd

0 , f
d
0n,X

d
0n] , n = 1, 2, . . . , con-

verges to [Xd
0 , f

d
00,X

d
00] in the Teichmüller metric of a Teichmüller space T (Xd

0 ).
Then, by Theorem 8, we know that the sequence [Xd, fd

n ,X
d
n] , n = 1, 2, . . . , is

bounded in the Teichmüller metric of the Teichmüller space T (Xd). This means
that the sequence [X, fn,Xn] is bounded in the Teichmüller metric of T (X). By
this conclusion, similarly to the proof of Theorem 1 in [5], we can prove that the
metric d and dT on T (X) are topologically equivalent. We omit the details for
the sake of simplicity.

Remark. From Theorem 6, Theorem 7 and Corollary 1, we know that for any
non-elementary topologically finite type Riemann surface X in the Teichmüller
spaces T (X) and T (Xd), the metrics in (7), (21) and their Teichmüller metrics
are topologically equivalent.

Remark. We do not know whether the conclusion in this paper also holds
for Fuchsian groups with torsion or infinitely generated Fuchsian groups.
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