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Abstract. The work presented in this paper is motivated in large measure by the appearance
of Hencky—Prandtl nets (HP-nets) in the context of planar quasi-isometries with constant principal
stretching factors (cps-mappings) and by compelling analogies between such mappings and those
given by analytic functions of one complex variable. We study the behavior of HP-nets in the
vicinity of isolated singularities and use the results of this analysis to show that if an HP-net
is regular in the entire plane except for isolated singularities, then it can have at most two of
them, and that all possibe nets of this kind fall into five classes each of which depends on a
small number of parameters. In light of the relationship between HP-nets and cps-mappings it
follows that an analogous statement holds for the latter as well, and this connection is further
exploited to prove that HP-nets regular except for isolated singularities in smoothly bounded
Jordan domains have nontangential limits in the appropriate sense at almost all boundary points.
The treatment includes, in addition, an interpretation of cps-mappings with isolated singularities
as deformations produced by the cryptocrystalline solidification with microscopic flaws of a planar
film and a discussion of the problem of just how the singularities of such mappings can actually
be distributed in a given domain.

Introduction

Disregarding considerations of regularity and connectivity, two mutually or-
thogonal one-parameter families of curves (called characteristics), covering a given
plane domain D, form a Hencky—Prandtl net (abbreviated as HP-net) if for any
two fixed curves C7, Cy belonging to one of the families, the change in the inclina-
tion of the tangent is the same along all subarcs of curves of the other family which
join a point of C7 to a point of (3. Such nets are of importance in the theories of
plasticity (see [Hi]) and optimal design (see [Hem]), and there is an extensive liter-
ature dealing with the analytic and numerical construction of HP-nets that satisfy
various boundary conditions arising in connection with these theories as well as
other applied problems. The local theory of such nets seems to have been worked
out fully by Prandtl [Pra], Hencky [Hen] and Carathéodory—Schmidt [CS]. A paper
of Collins [C] contains an excellent discussion of numerous aspects of the theory of
Hencky—Prandtl nets and an encyclopedic bibliography. Moreover, G. Strang and
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R.V. Kohn [SK] have described a problem which involves construction of HP-nets
in both the plasticity and optimal design contexts in different parts of a given
domain.

The present discussion is motivated by yet another connection in which HP-
nets arise, namely that of planar deformations for which the principal strains are
distinct constants, henceforth called cps-mappings. Indeed, it is not difficult to
show (see Proposition 1.1) that two mutually orthogonal families of curves covering
a simply connected domain are the families of the lines of principal strain of a cps-
mapping if and only if they form an HP-net. This class of mappings presents itself
as a natural object of study in various ways.

First of all, they constitute a simple class of quasi-isometries (essentially de-
formations with bounded principal stretching factors) introduced and studied by
F. John ([J1], [J2], [J3]). It is quite likely that for many of the as yet unresolved
distortion questions for quasi-isometries raised by John, extremal behavior is dis-
played by cps-mappings and their higher dimensional analogues. Regardless of
whether this proves to be the case, cps-mappings form a nontrivial but nonethe-
less tractable class of quasi-isometries whose study yields valuable insights into
the extent of global distortion consistent with given bounds on local stretching.

Secondly, although governed by a nonlinear hyperbolic system (equations (1.1)
in Section 1.2) cps-mappings bear, in many aspects of their behavior, notable simi-
larities to conformal mappings, more precisely to conformal mappings f for which
Re{log f'(z)} is bounded. There are several ways in which the analogy can be
drawn, but for the purposes at hand it is enough to say that the function which
gives the inclination of the tangent line to the curves of either of the families of the
associated HP-net (to be referred to as an HP-function in the sequel) takes the role
of the harmonic function arg f’(z). A simple, but striking instance of this simi-
larity is the HP-version of Liouville’s theorem on bounded harmonic functions: an
HP-function regular in the entire plane is necessarily a constant. Moreover, pos-
sibilities for developing a distortion theory for cps-mappings paralleling parts of
the classical geometric theory of functions of one complex variable are described
at some length in [G1, Section 4] where a numerically sharp result in this vein
is established. In this paper we follow the function theory model in an inves-
tigation of isolated singularities of HP-nets and cps-mappings. In Section 1 we
set down formal definitions of HP-nets and cps-mappings with minimal regularity
requirements, discuss their basic properties (with proofs included for the sake of
completeness), describe several procedures for the construction of HP-nets and
define several specific nets which play a fundamental role in the succeeding devel-
opment. The following two sections are devoted to an analysis of the behavior of
HP-nets in the vicinity of an isolated singularity. Isolated singularities fall into two
distinct categories depending on whether the associated HP-function is bounded
on some characteristic terminating at the singular point or not; these two cases
are fully analyzed in Sections 2 and 3, respectively (see Theorems 2.1 and 3.1).
The results of this analysis yield information about the global consequences of the
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presence of a given singularity which stem from the hyperbolic nature of the under-
lying equations. It turns out that there are severe restrictions on the distribution
of isolated singularities of an HP-net in a given domain, the exact form of which
depends to a large extent on its shape—the less contorted the boundary the more
difficult it is for there to be a lot of singularities. The ultimate manifestation of
this phenomenon (that is, in the case in which there is no boundary) is contained
in one of the main results: in Section 4 we show that an HP-net regular in the
entire plane except for isolated singularities can have at most two singularities and
that every such net belongs to one of five families, each of which is described by
a few parameters (see Theorem 4.1). The small number of possibilities for such
HP-nets is most consistent with the analogy we have been pursuing—a harmonic
function whose conjugate is bounded and regular in the whole plane except for iso-
lated singularities must be a constant. In a somewhat different direction, we use
the relationship between HP-nets and cps-mappings to show in Section 5 that an
HP-function regular except for isolated singularities in a smoothly bounded Jordan
domain D possesses nontangential limits at almost all points of 9D . This result
closely parallels the classical Fatou theorem (see [Pri]) on the boundary behavior
of bounded harmonic functions (and their conjugates). This section also contains
a construction which shows that, in spite of the aforementioned limitations on the
distribution of isolated singularities, on any such domain there are cps-mappings
having infinitely many of them (Theorem 5.2).

Finally, deformations with constant principal strains are of concrete interest
in connection with models of real situations, several of which are briefly discussed
in [Y]. Consider, for example, a thin liquid film on a plane surface which upon
solidification takes on a cryptocrystalline structure, that is, at each point a suitably
oriented infinitesimal square of the original liquid becomes an (again, suitably
oriented infinitesimal) rectangular crystal whose side lengths are constant multiples
of the side length of the square. In this light global geometric results for cps-
mappings acquire new significance in as much as they tell one about the extent to
which the shape of the original film can change as a result of such a solidification
process. Furthermore, one can interpret isolated singularities in this context as
microscopic flaws in the crystallized lamina, as is explained in some detail in the
final paragraph of Section 5.

1. Preliminaries

1.1. Notation and terminology. For convenience we treat the plane as C,
rather than as R?, and denote planar vectors as complex numbers. Let D C C be
a domain and let # be a locally Lipschitz continuous real-valued function on D.
The complete integral curves of the fields e? and ie?® will be called 1- and 2-
characteristics of 0, respectively. The convention that {i,j} = {1,2} will hold
throughout. Arcs of i-characteristics will be called i-arcs, or less specifically,
characteristic arcs. With reference to a given 6 a characteristic arc joining points
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a,b € D will be denoted by ab and we shall use the abbreviation
Af(ab) = 0(b) — (a).

A domain @ C D will be said to be a characteristic quadrilateral of 6 if 0D is a
Jordan curve lying in D containing four points a, b, ¢, d occurring in that order
when 9D is traversed (in either the positive or negative sense) and such that ab
and cd are i-arcs and bc and da are j-arcs. We will refer to such a ) as abed
and use the abbreviation

A?(abed) = AB(be) — AB(ad) = Ab(dc) — Ab(ab).

Furthermore, D; and Dy will denote differentiation with respect to arc length in
the directions e and ie?, respectively; that is, for differentiable u

Diu(z) = cos(0(2)) uz(z) + sin(6(z) ) uy (2),
Dayu(z) = —sin(0(z)) uz(2) + cos(0(2)) uy(2).

We use the symbol A(FE) to denote the 1-dimensional measure of the set E, so
that in particular A(C') is the length of the simple arc C'.

1.2. Definition and basic properties of HP-nets and cps-mappings.
In dealing with HP-nets it is frequently more convenient to work with the function
6 which gives the inclination of the tangent to the curves belonging to one or the
other of the two families that make up the net, rather than with the net itself.
Since, however, we shall be working with domains that are not simply connected,
an inevitable contingency in any discussion of singularities, a minor complication
arises; namely, that upon going around a hole # may change its value by a multiple
of m, (not 2m). Thus, in the following definition we consider functions which,
although not necessarily single-valued in the entire domain D under consideration,
do have a single-valued branch on any simply-connected subdomain of D.

Definition 1.1. Let D C C be a domain. A (possibly multivalued) function
6 on D is called an HP-function if it satisfies the following conditions:

(i) Every point p in D has a neighborhood E on which 6 has a Lipschitz
continuous branch and satisfies A%(abed) = 0 for all characteristic quadrilaterals
abcd of 6 contained in F.

(ii) €2 is single-valued in D.

The set of all HP-functions on D will be denoted by HP (D).

It is necessary to consider e€?* in (ii), rather than e, since, as noted above,
in going around a hole in D, # might change by a multiple of 7. We will use the
term HP-net to refer to the families of integral curves of the fields e* and ie®;
through each point of D there passes exactly one curve of each family. It is evident
that the corresponding net remains unchanged if we add %7? to an HP-function;
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this causes, of course, an interchange of the two families of characteristics. We
use the notation HP(D) to denote the set of all HP-nets, as well as the set of all
HP-functions, on D; this minor ambiguity will cause no confusion.

To discuss cps-mappings we need the following notation:

—sinf@ cos6 0 mo

T(0) = { cos 6 Sin&]

and S(my,mg) = {ml 0 } )

where here and in what follows mi; and ms are distinct positive numbers.

Definition 1.2. A mappingof a domain D C C into C is called an (m1,m3)-
mapping if each point of D has a neighborhood N in which there are two Lipschitz
continuous functions 6 = 0y and ¢ = ¢ such that the Jacobian matrix J; of f
is given by T'(—¢)S(m1,m2)T(0).

If & and ¢ are Lipschitz continuous in a simply-connected domain D, then
T(—¢)S(m1,m2)T(0) is the Jacobian matrix of a mapping if and only if

(1.1) D1(m10 —maogp) =0 and Dy(mip —mef) =0 a.e.in D,
or in other words
(1.2) m;f —m;¢ is constant along i-arcs of 6.

To see this, it is enough to show, in light of the Lipschitz continuity of # and
¢, that these conditions simply amount to the formal necessary and sufficient
compatibility conditions on the entries of a matrix in order for it to be the Jacobian
of a mapping. For a given fixed p € D, let 6y = 0(p) and ¢9 = ¢(p), and let
Diu, Dyu denote the directional derivatives of u at p in the directions e’ and
ie'% | respectively. Then functions A and B give Diju and Dsu if and only if
DyA = D1 B. (Note that at p DjDou is not the same as D Dou since the latter
involves derivatives of € and the former does not. The compatibility conditions
can, of course, be formulated in terms of D1 Dsu and Do Diju—see (1.4) below—
and we shall make subsequent use of that formulation also.) Let f =wu+iv. Then
Jr =T(—¢)S(m1,me)T(0) is equivalent to

Dlv DQU

Pl“ ?2“] = T(=)S(m1, ma)T(O)T(~60) = T(~¢)S(my, m2)T(0 — o).

The compatibility conditions for this matrix are equivalent to those for any left
multiple by a constant invertible matrix, a convenient choice in this case be-
ing T(¢o). If we write # = 6 — 6y and ¢ = ¢ — ¢o then the compatibility
conditions simply state that the result of applying D; to the second column of
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T(—&)?(ml,mg)T(é) is the same as that of applying Dy to the first column.
Since # and ¢ are both 0 at p and

T(—@S(mla mz)T(é)
mi cos@ COS§+m2 sin@siné mi cos@siné—mg sin@cosé
mq singcos — mocoso sinf  mqsin¢gsinf + mocospcosf |’

a trivial calculation shows that at p, and therefore at any point, the compatibility
equations take the form (1.1) as desired.

Equations (1.1) constitute the nonlinear hyperbolic system alluded to at the
beginning of the fourth paragraph of the introduction. We next have

Proposition 1.1. Let D be a simply connected domain and m1, mo distinct
positive numbers. Then 6§ = 0 for some (my,mz)-mapping f of D if and only
if 6 is an HP-function on D.

Proof. Let 6 and ¢ be the functions associated with an (mj, ms)-mapping
f of D and let abed C D be a characteristic quadrilateral with 1-sides ab, dc.
Then from (1.2) we have

A2p(abed) = Ad(dec) — A(ab) = —= (AB(dc) — AB(ab)) = —-A?0(abed).

mo ma

But if we write A2¢(abed) as Ag(be) — Ag(ad), we see that A2¢(abed) also equals
(ma/m1)A2%0(abed), so that indeed A%f(abed) = 0.

Conversely, given that 6 is an HP-function, let @) be a closed characteristic
quadrilateral in D and let p be an interior point of . Then, since A20(Q’) =0
for all characteristic quadrilaterals Q" C @, it is clear that once ¢(p) = ¢o has
been assigned, there is a unique ¢ in ) which satisfies (1.2). This ¢ can then be
extended bit by bit “from one characteristic quadrilateral to the next” to all of D
so that (1.2) holds, that the resulting ¢ is single-valued follows from the simple
connectedness of D via the monodromy principle. By what was established above
the matrix T'(—¢)S(m1, m2)T(0) is the Jacobian of an (m,ms)-mapping of D,
as desired. o

It is clear that given an (mj, m2)-mapping on a simply connected domain D,
the (continuous) HP-function 6 = 6 is uniquely determined to within an additive
constant (which is a multiple of 7 ), and that all (m1,m2)-mappings g of D for
which 6, = 6 are of the form ¢"“f + 29, a € R, 290 € C. The i-characteristics
are the curves along which f changes arc length by a factor of m;.

For a function § € C?(D) straightforward formal calculation shows that each
of the equations

(1.3) D;D;0 = (—1)’(D;6)?
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when written in terms of differentiation in the x and y directions takes the form
1 (sin20)(0yy — O50) + (08 20)0,, = (cos20) (62 — 03) — 2(sin 26)0,6,,

so that each case of (1.3) implies the other. The meaning of equations (1.3) can be
expressed in the following geometric form. If x;(z) denotes the unsigned curvature
of the i-characteristic C;(z) through z, then the derivative of k; in the direction
orthogonal to C;(z) towards its concave side is x7. Of key importance in what is to
follow is the fact that the solution of the equation x’(t) = xk2(t), with x(0) = kg is
k(t) = ko/(1—kot). Equations (1.3) consequently imply that if x; # 0 it increases
as we move along C;(z) towards the concave side of C;(z) and decreases as we
move along C(z) in the opposite direction. In particular the length of any j-arc
emanating from z towards the concave side of C;(z) is at most 1/k;(2).

Proposition 1.2. Let D be a simply connected domain and 0 € C?(D).
Then 6 is an HP-function if and only if equations (1.3) hold on D.

Proof. Let 6 € C?(D). Straightforward calculations show that functions
A, B € CY(D) are of the form A = Dyju and B = Dyu for some u € C?(D) if
and only if

(1.4) DyA— DB = AD10 + BD0

holds. That is, the compatibility conditions may be expressed in this form (see the
discussion following (1.2)). Assume that 6 is an HP-function and let my, ma be
distinct positive numbers. Let ¢ be a function (whose existence was established
in the preceding proposition) for which (1.1) holds. Applying (1.4) first with
A= D10, B = D56 and then with

A=Dip= %Dle, B = Dy¢ = %Dge,
2 1

we have

(1.5) DyD16 — D1 D20 = (D16)? + (D26)?,

and

(1.6) "™ pyD10 — "2 D1 Do = " (D10)2 + 2 (Dy0)2,

meo mi ma m1
from which the equations (1.3) follow immediately.
Conversely, let § € C?(D) satisfy (1.3). We define

P=""po and Q="2Dys.
mo mi

Then it follows from (1.3) that
DyP — D1Q = PD,6 + QDsf,

so that there is a function ¢ satisfying D1¢p = P and D3¢ = @; that is, the
function ¢ satisfies (1.1). Thus # is an HP-function by the preceding proposition. o
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In order to proceed with the development of the local analytic aspects of the
theory of HP-nets and cps-mappings, and to have an important tool for the con-
struction of such we need to introduce characteristic coordinate mappings. Let
6 be an HP-function on a domain D. Let I; = [a;,b;i], 7 € I;, i = 1,2. Let
p € D and let z = z;(s), s € I; be an arc length parametrization of the i-arc
through p with z;(7;) = p, ¢ = 1,2. For (t1,t2) € S = I1 x Iy let ((t1,t2) be
the point common to the 1-characteristic through z2(t2) and the 2-characteristic
through z1(¢1). For A(I;) and A(I2) sufficiently small (: S — D is a bi-Lipschitz
homeomorphism, as follows from the Lipschitz continuity of 6 and simple facts
about the dependence of solutions of ordinary differential equations on initial val-
ues. Without loss of generality we can assume that |(z)| < 37 in the correspond-
ing characteristic quadrilateral ((5), so that in what follows all arguments lie in
the interval (—im, 27). We write o;(s) = arg{z{(s)}. That ¢ is an HP-function
is equivalent to

(17) w(tl,tg) = 0<C(t1,t2)) = Oél(tl) + Oég(tg) — OéQ(TQ).

Because 6 is Lipschitz continuous, «; is differentiable a.e. on I; and o} is a
bounded measurable function. If { = £ + in, then the functions £, n satisfy the
system

(1.8) &, sinw — ny, cosw = 0; &, COSW + My, sinw = 0.
Writing
v = —€sinw + ncosw and u=¢§cosw + nsinw,

that is, u + iv = (e~ the system (1.8) takes the form
(1.9) g, = g (ta)v; vy, = —aj(t1)u.

This is a very simple hyperbolic system which becomes even more transparent
when expressed in integral form

ot ts) :vo(tg)—/ (), (1) dr,

T1
to

U(tl,tg) ZUO(t1)+/ U(tl,T)O/Q(T)dT,

where

uo(t1) = Refz (tr)e " ()1,

1.10 ‘
0 vo(ta) = Im{zy(tg)e (@2 (t2)Fan(m)—az(r2))]

Clearly, up and vy are Lipschitz continuous.
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A straightforward and standard argument based on iteration shows that given
continuous ug and vy this system of integral equations has a global solution
u,v € C(S) which consequently satisfies (1.9) almost everywhere; the solution
is, moreover, unique. Furthermore, if the initial data as well as the functions a1,
ag are C'™°, then the solution is likewise C'*® on §'; this standard regularity result
stems from the fact that the derivatives of u and v satisfy a system of the same
general form. Consequently, if we start with C'* arc length parametrizations
z = z(s), s € I; with

(1.11) Zl(Tl) = ZQ(TQ) and Zé(’TQ) = iZ/I(Tl),

then we will obtain a C'*® mapping (: S — C. It is easy to see that if this mapping
is one-to-one, then the images of the lines ¢; =const form an HP-net on {(S); that
is, that 6(z) = w(¢"'(z)) will be an HP-function. In general, of course, ¢ will
not even be locally one-to-one, because the images of lines t; =const can cross.
However, if we are given an upper bound K for the curvatures of the initial curves
z;(1;), then equations (1.3) allow one to deduce that there exist § = §(K) and
L = L(K) such that ¢ will be one-to-onein N = [r; —d,71 — 0] X [Te— 9, 72— 0] NS,
and that the corresponding 6 will satisfy a Lipschitz condition with constant L
in ((N). From this, via a simple approximation procedure and a compactness
argument, one can show that the same is true if one only assumes that the functions
arg z; satisfy Lipschitz conditions with constant K (instead of the initial curves
being C*° with curvatures bounded by this constant). Summarizing, we have the
following

Proposition 1.3. If z = z;(s), s € I;, i = 1,2 are arc length parametriza-
tions for which the arg{z}(s)} are Lipschitz continuous and satisfy (1.11), then
there is some neighborhood N of (11,72) in S on which ( is one-to-one and such
that 6(z) = w({'(2)) is an HP-function on ((N).

If ¢ is one-to-one on all of S, as will be the case when the C; = z;(I;) are
adjacent sides of a characteristic quadrilateral of an already existing HP-function,
then we shall refer to the curves ((I; x {t}), t € Iy as translates of C; along
each (({t} x I2), t € I; and call them parallel arcs, and analogously when the
roles of the indices 1, 2 are reversed. We shall also refer to C; and C; as being
perpendicular or orthogonal to each other. We shall refer to the uniquely defined
net given by 6(z) = w({"'(z)) in the image of any neighborhood of (71,72) in
which ( is one-to-one as HP(C4, C5).

Proposition 1.4. If, in addition to the hypotheses of Proposition 1.3, we
assume that arg{z](s)} is nonincreasingon I ={t € I, :t > 11} and arg{z5(s)}
is nondecreasing on I3 = {t € I : t > 12}, then ( is locally one-to-one on I x I3
and 0(z) = w({~'(z)) is an HP-function on ((J) for any open J C I x I3 on
which ( is one-to-one.
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Proof. The hypotheses imply that z;(I]") is convex toward its left-hand side
(i.e., toward the side corresponding to increasing t2) and that z9(I3) is convex
toward its right-hand side (i.e., toward the side corresponding to increasing ;).
In the C* case this means, in light of the significance of equations (1.3) (see the
paragraph immediately preceding Proposition 1.2), that both families of charac-
teristics diverge, that is, that the curvatures of the i-characteristics decrease with
increasing t;. From this the locally one-to-one character of ¢ follows immediately.
(The mapping might fail to be globally one-to-one due to the possibility that ¢
might not give a simple covering of ((I7 x I7).) The general case follows by
approximating the z; by sequences {z; ,(s)} of C* arc length parametrizations
for which the arg{z; ,(s)} have the stipulated monotonicity as well as uniformly
bounded derivatives which tend to darg{z.(s)}/ds in measure. o

Next, we explain the sense in which equations (1.3) hold for general (i.e., not
necessarily C2) HP-functions . We define E; = E;(#) to be the set of all points p
such that if z = z(s), —e < s < e, with z(0) = p is an arc length parametrization
of an 7-arc of 6 containing p, then 9(2(3)) is differentiable at s = 0. Obviously,
almost all points (with respect to arc length) of each i-characteristic belong to
E; and almost all points of the domain on which # is defined (with respect to
2-dimensional measure) belong to F1 N Es.

Proposition 1.5. Let 6 be an HP-function on D and let Cy, k = 1,2, be
the k-characteristic through p € E;. Then C; C E;, and equation (1.3) holds
along C;, when D; is iterpreted as arc length differentiation along Cj, in the
direction i*71e? | k =1,2.

Proof. Without loss of generality we assume, for definiteness, that p € Ey.
Let z = zi(s), —a < s < «a, i = 1,2 be arc length parametrizations of small
pieces of C7 and Cy with z;(0) = p and with the directions of increasing s
correspond to e? and ie? respectively. Let r;(s) = darg{z}(s)}/ds. Let ¢
be the corresponding characteristic coordinate mapping and let F;(¢1,t2) denote
the translate of z;([0,t;]) along C; from p to z;(t;). Since ko/(1 —tko) is the
solution of the initial value problem x’ = k?, k(0) = kg, it is clearly enough to
show that for each ¢ € (0, o]

) O(C(s,t)) —O(C(O,t)) ~ k1(0)
(1.12) sli%l+ A(Fi(s,t)) 11—tk (0)°

That (1.12) also holds for negative ¢ and as s — 0=, can be deduced with
minor notational adjustments to the argument to follow. Because of trivial com-
pactness considerations the size of a > 0 is not important, so that we may assume
that

1.1 () i=1,2, |s|<al < —.
(1.13) sup{ri(s)] 7= 1,2, Js| < a} < ——
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Here “sup” is to be interpreted as “essential supremum”. This condition implies
that the F;(t1,t2) are very close to being straight line segments, and in addition
that if we start with C°°z; satisfying it, then the corresponding characteristic
coordinate mapping will be one-to-one in [—a,a] X [—a,a]. We fix such an «.
Very simple estimates show that

lirr(l))\(Fg(s,t)) =, 0<t<a,

uniformly over the class of all { arising from C*°z; satisfying (1.13).

The equation Do D160 = (D1)2, expressed in terms of the radius of curvature
Ry = 1/k1, says that DyR; = —1. Now, for such C° initial curves, a simple cal-
culus argument involving an appropriate Riemann sum and passage to the limiting
integral, together with this differential equation for R; shows that

A(Fi(s,1)) = /0 1~ k(o)A (Fa(o, 1)) do,
so that

A(Fi(s,t)) = /05 1—k(0)(t+0(1)) do = /05 1 — k(o)tdo + o(s)
=s—t(0(21(s)) —0(21(0))) + o(s),

where the “little-0” is uniform over the entire C'*° class indicated above. From
the HP-property we have that

0(¢(s,t)) —0(¢(0,8)) = 0(21(s)) — 0(21(0)).

Abbreviating this difference by A we see that the difference quotient on the left-
hand side of (1.12) is equal to

A B Afs
s—tA+o(s) 1—tA/s+o(1)

By approximation by C°° functions as in the proof of the preceding proposition
we have that the same holds for the original HP-net. But A/s — £1(0), so that
(1.12) is indeed true. o

Because of Proposition 1.5 the comments contained in the paragraph imme-
diately preceding Proposition 1.2 are relevant in the context of general (i.e., not
necessarily C?) HP-nets and their content will play a key role in much of what
follows. For convenience we formulate the next proposition, which gives a lower
bound for the area of a characteristic quadrilateral, in terms of the characteristic
coordinate mapping ¢ discussed above.
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Proposition 1.6. Let the mapping ( be one-to-one on all of Iy x I», where
I; = [7;,0;]. If the lengths of all of the translates of Cy = z2(I2) along C1 = 2z1(11)
are at least m, then the area of ((I1 X I3) is at least %m)\(Cl).

Proof. Again, by a straightforward approximation procedure we can reduce
consideration to the case in which the arc length parametrizations z;, zo are C°°.
Consider a small subarc J = z1([o,0 + 6]) of Cy. The length of J is obvi-
ously 6 and the length of its translate ¢ units along (({o} x I2) is easily found
(see the proof of the preceding proposition) to be (1 — tm(a))é + O(6?%), where
k1(0) = dargz1(o)/do. For small § the translates of J are virtually straight line
segments orthogonal to the curve (({o} x I2). Since the lengths of the 2-arcs
of the characteristic quadrilateral in question are all at least m, equations (1.3)
imply that x1(0) < 1/m, so that the area of ({[o,0 + §] X I2} is then seen to be
at least .

5/ (1- L)t + o) = oM L 0(s2),
0 m 2
so that upon considering the appropriate Riemann sum and passing to the limiting
integral, the area of ((I; x I3) is indeed at least %m)\(Cl). o

We define D 6(p) to be the upper limit of |D;0(z)| as z — p. We have the
following simple consequence of Proposition 1.5.

Proposition 1.7. Let 6 be an HP-function on D. (i) If the j-characteristic
C through p is a simple curve, then

D7 6(p) <

where L is the length of the shorter of the two arcs into which p divides C'.
(ii) If the j-characteristic through p is a closed curve then D;6(p) =0.

Proof. We prove (i), the proof of (ii) involving only minor variations. For
definiteness and without loss of generality we assume that ¢ = 1. We can also
assume that D;60(p) > 0, since otherwise there is nothing to prove. From the
definition of D;6(p) it follows that for any € > 0 there is a point ¢ € E;(0)
within € of p for which |D;16(q)| > D;/6(p) — ¢ and such that there are 2-arcs
C. and C_ emanating from ¢ in the directions i€’?(?) and —ie’?(@) | respectively,
which have length greater than L —e. Assume that D;160(q) is positive. Then
applying Proposition 1.5 at the point z(s) which lies s units from ¢ along C, we
have that

D0
D16(2(s)) = ﬁ'

Thus
1 1

< < ;
T Di0(q) DO(p) —¢

L—e< )\C})
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that is, that Df6(p) —e < 1/(L —¢), which establishes the desired bound. If
D10(q) < 0 then one arrives at the same conclusion by following C_ instead
of C,. o

As an immediate corollary of Proposition 1.7 we have

Proposition 1.8. If 6 is an HP-function on all of C, then D;6(p) =0 for
all pe C, i = 1,2, so that 0 is a constant.

Proposition 1.9 (Compactness principle). For any domain D the family
{e?? . 9 € HP(D)} is compact in the topology of uniform convergence on compact
subsets of D.

Proof. This follows via elementary arguments, since Proposition 1.7 implies
that if U C D is a closed disk, then 6 satisfies a Lipschitz condition with constant
at most 1/dist(U,0D). o

We end this subsection with the discussion of an important limiting case of the
characteristic coordinate mapping construction we have been using, namely that in
which one of the initial curves degenerates to a point. Let z = 2(s), s € Iy = [0, 7]
be an arc length parametrization with Lipschitz continuous derivative, and let I
be an interval one of whose endpoints is 0 and whose length is less than 27. Let
w(t1,ta) = arg{z'(t1)} + t2. We consider the same system (1.8) of differential
equations as before, but with initial conditions corresponding to ((t1,0) = 2(t1)
and ((0,t2) = 2(0), that is, for the functions wu, v defined by u +iv = (e, the
equations are

Uty =V and vy, = —a'(t1)u,

where «(t) = arg{z1(t)} with the corresponding initial conditions
uo(t1) = Re{z(t1)e ™)} and  wo(tz) = Im{z(0)e @Ot}

This characteristic initial value problem, in light of the discussion preceding Propo-
sition 1.4, is well-posed.

Proposition 1.10. The mapping ( defined immediately above exists on
I1 x Iy and is one-to-one on J = [0,¢| x Is for some € > 0. Moreover, the function
0(z) =w(¢"*(2)) is an HP-function on the interior of ((J).

Proof. This may be proved in a fashion directly analogous to that in which
Proposition 1.2 was justified, or alternatively by applying the compactness princi-
ple to the family of HP-functions resulting from the original (i.e., nondegenerate)
characteristic coordinate mapping construction with z;(s) = 2(s), s € I1 and

z(s) = 2(0) + (/% — 1)2'(0), s€d0ly ={0s:s € Iy} = I(0).

The curve given by z, is an arc of a circle of radius ¢ orthogonal to z(I7) at z(0)
for which 2/(0) is an outward pointing normal. One then lets § — 0 and obtains
the desired result by the compactness principle together with the convexity of the
curve 2o (12(5)). o
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It is to be noted that the characteristic arcs (({t1} x I2), t1 € (0,e] are
convex (with their concave side towards z(0)). The family of orthogonal arcs
C((0,e] x{ta}), t2 € I is a fan of characteristic arcs which are confluent at z(0).
If ¢ is one-to-one in all of the rectangle, and the curve parametrized by z is C,
then we will denote the resulting uniquely defined net by Fan (C, I5).

1.3. Isolated singularities of HP-functions and cps-mappings. Hence-
forth the r-neighborhood of a point p € C will be denoted by N(p,r), and
N(p,m)\{p} will be denoted by N'(p,r). If p is a point of the domain D, an
HP-function 6 on D\{p} is said to have an isolated singularity at p. The point
p will be called a true singularity of 6 if 6 cannot be extended to an HP-function
in D. We use the terms “singularity” and “true singularity” for HP-nets also.
An HP-function (HP-net) on D\ A for some set A of isolated points of D will
be called an HP*-function (HP*-net) on D; HP* (D) will denote both the class
of HP*-functions and that of HP*-nets on D. Furthermore, we shall denote by
cps® (D) (by cps* (D, m1,ms)) the set of all cps-mappings ((m1, m2)-mappings)
which are defined on a set of the form D\ A, where A is a set of isolated points
of D, and whose continuous extensions to D are local homeomorphisms.

Proposition 1.11. If # has a true singularity at p, then the essential supre-
mum of V@ is not finite in N'(p,¢), for any € > 0.

Proof. If the essential supremum of V6 is finite in some such punctured
neighborhood N'(p,¢), then @ is single valued and Lipschitz continuous there,
and consequently can be extended by continuity to all of N(p,e) with the same
Lipschitz constant. If abcd is any characteristic quadrilateral whose closure lies
in the punctured neighborhood, then A20(abcd) = 0. By a trivial limit argument
it then follows that this is true even if p is on the boundary of the quadrilateral.
If abed is a characteristic quadrilateral of # which contains p in its interior, then
there are points a’ € ab, b’ € be, ¢’ € ed, and d' € da such that a’'¢’ and b'd are
characteristic arcs of 6 passing through p. But then

A2%f(abed) = A%0(a’bb' p) + A20(pb cc’) + A?0(d'pc’d) + A?0(aa’pd’) = 0,

so that 6 is an HP-function in N(p,¢), contrary to the hypothesis. o

Proposition 1.12. Let 8 be an HP-function which has a true singularity.
Then there is a characteristic arc of 0 of finite length one of whose endpoints is p.

Proof. Let 6 be defined in N’(p,e). From the preceding proposition it follows
that there are points ¢ # p in N(p,e/2) such that D 6(q) > 2/e for at least one
of ¢ =1 or 2. But then it follows from Proposition 1.7 that there is a j-arc of
length at most £/2 which joins ¢ to p. o

Proposition 1.12 suggests the following classification of true singularities.
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Definition 1.2. A true singularity of an HP-function 6 is said to be a sin-
gularity of type R or a Riemann singularity if 6 is bounded on some characteristic
arc of finite length which terminates at p. Otherwise it is said to be of type S or
a spiral singularity.

The reason we have chosen the names “Riemann” and “spiral” for the two
kinds of singularities will be made clear in what follows (see (i) and (ii) in the
following subsection, and Theorems 2.1 and 3.1). Here again, we apply these
terms to HP-nets also.

1.4. HP-nets with one or two singularities. In this paragraph we define
four families of HP-nets; one of the main goals of this paper is to prove that
apart from the trivial nets corresponding to constant 6, these are the only nets in
HP*(C).

(i) Spiral nets. For p € C, —%7? <a< %7?, we define

Op.a(p+ rei¢) = ¢+ a.

To see that § = 0, is an HP-function, let » = |z — p|. Simple trigonometry
shows that D160(z) = sina/r and Dsr = —sina, from which it follows that

DsD10(z) = (sina/r)? = (Dle(z))Q, so that o, , is indeed an HP-function by
Proposition 1.2. It is equally easy to see that for 0< |a| < 7 we have that
0p.a(z) — £o0 as z — p along any i-characteristic (—oo, if 0< o and ¢ =1 or
a < 0 and i = 2; 400 otherwise), so that the characteristics spiral around p.
Quite specifically, for p = 0 the polar equations of the 1- and 2-characteristics

through the point rge® are
(1.14) r = roel¢fo) cote and r= Toe_(¢_9°)tana,

respectively. The values a = 0, i%ﬂ' give rise to the degenerate case in which the
families of 1-characteristics consist of rays emanating from p (when o = 0) and
circles centered at p (when a = i%ﬂ'). The net corresponding to o0, will be
denoted by 7). « -

Let f €cps™(C,m1,mz) for which 6 = 0p. Then the curves f(C) are
congruent for all ¢-characteristics C', from which it follows that f (N (p, 5)) is a
disk N ( f(p),d ) . Simple trigonometry implies that f changes arc length on circles

ON(p,d) by a factor of \/m% sin? a + m3 cos? av. Since f changes area by a factor
of mims we have

2
mimemd? = ﬂ(é\/m% sin® o 4+ m3 cos? a) ,
so that if mq/mo = p, we have

2

,usin20z+—cos a=1,
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from which it follows that u = cot? a. Since u # 0,1, we see that in order for f to
exist, |a| must be in (0, %7‘(’)\{%7‘(’} The argument just given is easily seen to be
reversible, that is, for all such « there is an (essentially unique) (m1,ms)-mapping
for which 6 = 0, o, provided that m;/mg = cot? o

If for 0 < |a| < 17 we follow the two characteristics of o}, o through zp =
p + re’o as they move toward p, they cross infinitely often. For convenience let

0 < a < gm. Then a very simple calculation based on (1.14) shows that they

meet for the first time at the point a = p + zpe? =22 ®) where T = 27 cos® .
Let C; denote the i-arc joining zg to a. Arcs C; and C5 together form a simple
closed curve encircling p and are both convex toward the outside of this curve.
The interior angles at zy and a are seen to be %7? and %7?, respectively, so that

if 3; is the (unsigned) change in 6 along C; we have
(1.15) B1 + B2 = 2m.
(ii) Riemann nets. For p € C, « real and 0 < 3 < 7w, we define

a, a<¢<a+im

p—im, a+ir<o<a+pB+1in,
a+f8, a+f+irn<¢<a+f+m,
p—7, a+pB+rm<¢<a-+2m,

and then define p, o 5(p + re®*2™)) to be ppap(p + re'?) — nm, for n =
+1,£2,.... It is easy to verify that the multivalued function pp .g is indeed
an HP-function in C\{p}; in each of the four sectors it coincides with one of the
degenerate cases of o, , or is constant, and it is continuous (modulo 7). Quite
specifically, in the four sectors on the right-hand side of the definition of p, g
the 1-characteristics are, respectively, the rays {p + sie?® +te'® : t > 0}, s > 0,
circular arcs with center at p, rays {p + sieath) — geilath) . ¢ > 0}, s >0, and
rays {p+te' :t >0}, a+p+m < ¢ < a+2r. We also note that p, o g increases
by 7 along any simple closed curve which goes around p in the positive direction
and that Vp, o s has jumps along the rays that separate the four sectors (because
along these rays characteristics of one or the other of the families change from
straight lines to circular arcs). The net corresponding to pp, o s will be denoted
by %p.a,5. We have chosen the term “Riemann nets”, because their restrictions
to half-planes arise in connection with certain “Riemann problems” for the hyper-
bolic system (1.1). A trivial calculation based on (1.1) shows that pp o is 6 for
some f €cps*(C,m1,meo) if and only if (mi/me)B + (ma/m1)(m — ) = 7 (since
otherwise f (N (p, 0 )) would not give a simple covering of a neighborhood of f(p)).

The remaining two nets are special cases of the following general construc-
tion; no simple formula for the corresponding HP-functions would appear to be
available. Let I = [0,tx] and z;: Iy — C be arc length parametrizations of
the curves C} with Lipschitz continuous derivatives for which z;(0) = 22(0) and
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21(t1) = z2(t2). Assume furthermore that arg{zj(s)} and arg{z}(s)} are non-
increasing and nondecreasing, respectively, that z1(0), z1(¢1) are the only two
points that these curves have in common, and that

25(0) = i21(0) and 25 (t2) = iz} (t1).

One sees that the simple closed curve C7UC5 is the boundary of a “heart-shaped”
domain whose “point” is at z1(t1) = 22(t2). Now apply the characteristic coordi-
nate construction of Section 1.2. By Proposition 1.4 and simple geometry it follows
that the characteristic coordinate mapping is one-to-one on [0,%1) x [0,%2). Let
E(C1,C2) = ¢ ([0,11) x [0, 2)) , Z(C1) = C([0,01] x {t2}), Z(Ca) = C({t1} x [0, 11]).
From the convexity of the original curves C; and Cs together with the assumption
that they meet at right angles at both endpoints, it easily follows that E(C1 C2)
lies in the complement of the interior of the simple closed curve C; U Cy and
that Z(C1) and Z(C5) satisfy exactly the same conditions as the original curves
C; and Cy did. We inductively define Ci(o) =}, C’i(kﬂ) = Z(Ci(k)), 1=1,2,
k=0,1,2,.... It is then easy to see that the HP-nets so defined in the interiors
of the E(C’gﬂ)C’Q(k)), k =0,1,2,..., fit together to form a single HP-net in the
interior of their union, that is, in the doubly connected domain which constitutes
the exterior of the original simple closed curve C7 U Cs.

Figure 1.

(iii) Double Riemann nets. We shall define nets %, 4 4,3,y where p # ¢ are
points, 0 < 3, v < 7, a real, and 0 < arg(e_ia(q —p)) < %7?. They are called
double Riemann nets because in neighborhoods of p and ¢ they coincide with
Rp,o,3 a0d Xy o+x,~, respectively. The construction is facilitated by reference to
Figure 1, in which o = —%7?, and 0 < 8,7 < wm. Changing « simply requires a
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rotation of the figure; the cases in which 3 or v is 0 or 7 require self-evident
modifications which are left to the reader. This picture, in which some character-
istic arcs have been drawn, is merely descriptive and is not meant to show exactly
what these arcs look like, but only their general form.

Since the nets %, 3 and %, o4+=,~ coincide in the rectangle prgs, the two
together give an HP-net in the curvilinear polygon whose sides (listed in positive
order) are the 2-arc ap”, the 2-arc p”r, the 1l-arc rq’, the 1-arc ¢’'b, the 2-
arc bqg”, the 2-arc ¢”s, the l-arc sp’, and the l-arc p’a (except, of course,
at the singularities p and ¢). Note that the only jumps in the argument of
the tangent when this simple closed curve is traversed in the positive direction
are jumps of %7? at a and b and —%7? at r and s. Using the characteristic
coordinate mapping construction and Proposition 1.4, it is clear that this net can
be extended to the heart shaped region bounded by the union of the curves C; and
Cy which are made up of the arcs rp”, p”a, ac, and rq’, ¢'b, be, respectively. The
construction described in the paragraph immediately preceding this discussion of
double Riemann nets can then be used to extend this net to the entire complement
of {p,q}. It is obvious that the only singularities of this net are the ones of type R
at p and q.

(iv) Degenerate double Riemann nets. We shall define nets .#, , » 3, where
p # q are points, 0 < 3,7 < 7w, and 0 = + or —. These nets arise as limiting cases
of double Riemann nets as arg(e‘io‘(q - p)) tends to 0 or %7?. The description is
again facilitated by reference to the corresponding Figure 2 in which ¢ = 4+, and
0 < 3, v < 7. The value of ¢ indicates the sign of arg((p' —p)/(¢—p)) € [-7, ).
The cases in which 3 or « is 0 or 7 require self-evident modifications which are
left to the reader, and similarly for the case 0 = —. The net is defined initially as
%p,arg(q_p)_ﬁ/g,ﬁ and %q,arg(p_q)_ﬁ/gﬁ inside the circular sectors pgp’ and gpq’,
respectively. One then uses the fan construction summed up in Proposition 1.10
to define Fan (pq’, [ — m,0]) and Fan(gqp’, [y —m,0]), which gives an HP-net in the
interior of the curvilinear polygon pwq’qup’p. One then extends this net by tacking
on HP (¢qq'w, qu) (that is, the characteristic quadrilateral qwwvu ), so that the net
is now defined in the interior of the heart-shaped region bounded by the mutually
orthogonal characteristics pp’ U p'uUwuv and pwUwv (except at the singularities
p and ¢). Finally, the construction given just before the discussion of double
Riemann nets is applied to define the net in the entire complement of {p,q}. The
case 0 = — is the same except that (p’ —p)/(¢ —p) and (¢’ —q)/(p — ¢) lie in the
lower half-plane.

2. Riemann singularities

We shall establish a series of lemmas which lead to the complete description
of singularities of type R given in Theorem 2.1. The reader is reminded that A
denotes 1-dimensional measure and that the term “translate” is used in the sense
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explained in the paragraph immediately following the statement of Proposition 1.3.
We begin with

Figure 2.

Lemma 2.1. Let 6 have a singularity of type R at p. Then there is a
characteristic arc of 0, one of whose endpoints is p and along which 0(z) has a
limit as z tends to p.

Proof. From the definition of this type of singularity it follows that we can
assume that 6 is regular in N = N(p,d)\{p}, and that there is an i-arc C of
0 of finite length which joins a point lying outside of N(p,d) to p and on which
0 is bounded. Let w = w(s), 0 < s < §, with w(d) = p be the arc length
parametrization of a final segment of C'. Let 6(s) = §(w(s)). The curvature
k(s) = 0'(s), exists for s € A, where A\(A) = §. We may assume that limgs_s
0(s) does not exist, since otherwise C' is itself a characteristic arc of the kind we
are seeking. For any ko > 0 and 0 < ¢’ < § we have

A{s e (0',0)NA:k(s) > rko}) >0

and
A{s € (6',0)NA:Kk(s) < —ko}) >0,

since if either of these sets had measure zero for any such kg and ¢’, the bound-
edness of (s) on (0,0) would imply the existence of lims_,56(s). From this it is
easy to see that there is an s1 € (0/2,9) such that x(s;) > 2/§, and s; is a den-
sity point of {s € A: k(s) > 0}. The part Cy of the j-characteristic emanating
from w(s1) to the left of C' (as it is traversed in the direction of increasing s)
has length at most §/2 (by Proposition 1.5), and so lies entirely in the punctured
neighborhood N and terminates at p. Similarly, there is an so € (s1,d) for which
k(s2) < —2/6, and which is a density point of {s € A: k(s) < 0}. The part Cy of
the j-characteristic emanating from w(sz2) to the right of C' again has length at
most /2, and so lies entirely in the punctured neighborhood N and terminates
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at p. Also, the opposite signs of the curvature of C' at the points w(s;) and
w(s2), together with simple topological considerations show that C1 N Cy = {p}.
Now, we do not know a priori that C'; does not intersect C' at more than one
point, so we let s} < s2 be the greatest number less than s, such that w(s}) € Cy
and we let C] denote that part of C; which connects w(s}) to p. (The arc C]
might, of course, be all of C;.) It follows from the fact that p is the only point
common to C7; and (5 and the fact that the lengths of these curves as well as
that of C' are all less than §, that C] Uw([s], s2]) U C2 is a simple closed curve
whose interior D lies entirely in the punctured neighborhood N of p; the exterior
of D is easily seen to lie to the right as w([s], s2]) is traversed from s} to ss.
We denote by E the part of the j-characteristic emanating to the left of C' from
w(s2); obviously, E C D. Let v = v(s), 0 < s < L be the arc length parametriza-
tion of F, with v(0) = w(s2). (We are not a priori excluding the possibility that
L = ~0.) Since we chose sz to be a density point of {s € A: k(s) < 0}, there is
a positive € < § — s2, s — s} such that

(2.1) AM{s€InNA:k(s) <0}) > ie,
both when I = I and I = Is, where I; and I are the left and right halves
of the interval J = [s2 —e,82 +¢]. Let L’ > 0 denote the supremum of all

s € (0,L) for which the translates of w(J) along E down to wv(s) exist. (Here
again we are not assuming a priori that L’ is finite, although we shall show
shortly that this must be the case.) These translates of w(.J) are all contained
in D. For t € [—¢,¢] and s € [0,L') we let v(t,s) be the point which lies both
on the translate of w(J) through v(s) and on the translate of an initial arc of
E through w(se +t). Now, it follows from (2.1) that for s € [0, L) the lengths
of the translates of w(/1) and w(I3) down to v(s), are both at least /2, which
together with Proposition 1.6 implies that %8[/ < 6%, Thus, L' is finite. Also,
Proposition 1.7 implies that D (v(s)) <2/e, for s € (0,L'). This, together with
the finiteness of L' means that lim,_z/ 0(v(s)) exists, so that by the defining
property of HP-nets, lim,_ 1/ 0(v(¢, s)) exists for each ¢ € J. This then says that
lims_, 7 v(t, s) exists for each ¢t € J. But the definition of L’ implies that for some
t =to € J this limit is p. The j-arc parametrized by v(tg,s), 0 < s < L', can
therefore be taken as the desired arc. o

Lemma 2.2. Let 0 be regular in N = N'(p,6). Let Cy be a k-arc of
lying in N and with arc length parametrization zp(s), 0 < s < Lg, k = 1,2.
Let lims— 1, zi(s) = p and lim,_p, 6(z(s)) exist. Let z;(0) = z;(0). Then either
(i) for some ¢ > 0 all translates of C; along z;([0,¢]) lie in N and terminate
at p, or (ii) for some ¢ > 0 the translate of z; ((0,5]) along C; provides a j-arc
terminating at p, along which 6(z) has a limit as z tends to p and which is
orthogonal to C; at p.

Proof. By replacing C; by a sufficiently small final subarc, and J by a smaller
number if necessary, we may assume that the values of 8 on C; lie in some small
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interval, say of length 1/100. Let 1 > 0 be so small that the values of 6(z;(s))
on [0,n] also lie in an interval of length 1/100 and all translates of z;([0,n])
along C; lie in N. Let E; denote the translate of C; with initial point z;(s),
and let p(s) denote its terminal point. If for some sy € (0,7], p(so) = p, then
the small variability of 6 on z;(][0,n]) implies that the length of the translates of
2j([0, s0]) down to z;(s) tend to 0 as s tends to L;. This means that (i) holds
with € = sp. In the opposite case p(s), 0 < s < 7, parametrizes a j-arc for
which limg_ g O(p(s)) exists. Now, because of the small variability of # on Cj,
sup{\(Fs): 0 < s < L;} = L < 36. It is easy to show by C'* approximation and
simple calculus that the length of all translates of z;([0, s]) along C; is at most
s+ L&(s), where £(s) is the total variation of 6 on z;([0, s]). Since s+ L&(s) — 0
as s — 0, it follows that p(s) — p as s — 0, so that (ii) is true with ¢ = 7.
The orthogonality of p([0,n]) to C; at p follows immediately from the fact that
£(s) = 0. o

Lemma 2.3. Let 6 be regular in N = N'(p,6). Let z(s), 0 < s < L be an
arc length parametrization of an i-arc C of 0 lying in N. Let lims_. 2(s) = p
and let limg_,, 9(2(8)) exist. Then one of the following must happen:

(i) There is an open j-arc containing some point of C' such that none of the
translates of C' along this arc terminates at p.

(ii) Passing through some point of C' there is a closed j-arc C’ of positive
length such all translates of C along C’ terminate at p, but on one side of each
end point of C’ no nearby translates of C' terminate at p. Furthermore, the
former translates are mutually nontangential at p.

(iii) @(z) is given by arg(z — p) or arg(z — p) £ im (to within an integral
multiple of 7) in a punctured neighborhood of p.

Proof. By replacing d by a smaller number if necessary, we may assume that
0 is regular in N'(p,66), that C joins ON(p,60) to p and that the values of 6 on
C' all lie in a very small interval, of length 1/100, say. Let ¢ denote the point of C
for which |¢ — p| = d. To facilitate the exposition we assume that j = 1 and that
at ¢ the unit tangent to C' pointing towards p is ie?(9 . Let w(s), K < s < K',
be the arc length parametrization of the j-characteristic in N'(p,36) for which
w(0) = ¢ and such w'(s) = () (It is possible that this j-characteristic is
a simple closed curve or that it has infinite length; to cover these possibilities we
allow either one or both of K, K’ to be infinite.) Assume that (i) does not hold.
Let .# denote the set of all subintervals I of (K, K’) which contain 0 and are
such that for all s in I, w(s) is joined to p by an i-arc Cs in N'(p,20) (which is
just a translate of the part of C' which joins ¢ to p). By Lemma 2.2, .# contains
intervals of positive length. Let I € .#. By the defining property of HP-nets, the
set {0(z) : z € Cs} is the same for all s € I, and by assumption it is an interval
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of length less than 1/100. From this it follows that

(2.2) arg Z_(ﬂ)@ég j ' <1/100, sel,
and that
(23 w(s) = pl S A(C) < 2fuw(s) —pl,  sel

(The constant 2 is, of course, much larger than necessary.) It furthermore follows
from the fact that all of the Cs, s € I, meet at p, together with Proposition 1.5
that,

(2.4) df(w(s))/ds = 1/X(Cs), a.e. on I.

Indeed, were this not the case, a simple argument shows that there would be a
positive distance between two of the arcs Cs, which is not consistent with their all
meeting at p. Let ¢(s) denote the argument of the tangent (the one pointing away
from p, to be definite) to Cs at p. Note that by the defining property of HP-nets
all of the Cs have tangents at p because the original C' did. A straightforward
argument based on this property shows that ¢'(s) = df (w(s)) /ds. From this,
together with (2.3) and (2.4) it follows that

(2.5) ¢'(s) = df(w(s))/ds > 1/(2|w(s) — p|) a.e. on I.
If A(0(w(I))) < 2m, it follows from (2.2) and the fact that |¢ — p| =6 that

(2.6) §/2 < |w(s) — p| < 20, sel,
and in particular that w(I) C N’(p, 39).

First, assume that sup{A(6(w(I))) : I € #} < 2r. Then it is easy to see
that U{I : [ € #} = Iy € .# is closed. This gives the first sentence in (ii); the
second sentence follows from the lower bound for ¢’(s) in (2.5).

To complete the proof it therefore suffices to assume that Sup{)\(¢(I )) S
#} > 2. If this is the case, then there is an I = [«, 3] € ., such that for all s
in I, w(s) is joined to p by an i-characteristic arc Cs in N’(p,3d) and such that
»(B) = ¢(a) + 2. But then it follows that either C, and Cg coincide or one is a
proper subarc of the other, since distinct characteristics cannot be tangent at p, as
follows immediately from the positiveness of ¢’(s). First we consider the case that
they coincide, that is, that w([a, §]) is a simple closed convex curve (recall that
arg(w’'(s)) is nondecreasing) containing p in its interior. Let w(y) be the point
on this curve at maximum distance from p. Then D;G(w(’y)) > 1/|w(v) —pl|, so
that by Proposition 1.7, C', must be a straight line segment, from which it follows
that all of Cs are straight line segments. This means that there are straight
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line j-characteristics terminating at p at all angles ¢, 0 < ¢ < 2w, so that (iii)
holds. The other possibility cannot, in fact occur. To see this, we assume for
definiteness that Cp is a proper subarc of C,. Thus w([a, (]) starts at a point
w(a) on C,, goes around p once and ends up at a point w(3) on C, between
w(a) and p. But then it is easy to see that on [o, K'), w(s) winds around p
infinitely many times in the counterclockwise direction, crossing C, successively
at points w(s,), n = 0,1,2,..., each of which lies farther along C, towards p
than its predecessor. Since the arcs w(s,)w(s,+1) are translates of each other,
if there were any variation of 6 on the j-arc w(sg)w(s1), #(z) would not have
a limit as z — p along C,, an obvious contradiction, since C, is parallel to a
terminal segment of our original i-arc C'. But then the arcs w(s, )w(s,+1) are all
line segments of the same length, which is obviously impossible. o

Definition 2.1. In the case that (ii) of the preceding lemma holds, the
family F(C) of translates of the i-arc C joining the points of the j-arc C’ to
p will be called an i-fan of the net at p, and the characteristics passing through
the endpoints of C’ are called the bounding characteristics of F(C). The angle
formed at p by the bounding characteristics is called the angle of the fan. In the
case that (i) holds we regard C' alone as constituting a (degenerate) fan with angle
0 and both bounding characteristics coinciding with C'.

In dealing with such fans we will usually restrict attention to a small neigh-
borhood of p so that on C', 6 takes values in a small interval (taken to have length
less than 1/100, to be specific). In this way all of the i-arcs making up an i-fan
are virtually straight line segments and join p to the boundary of the disk about
p in which we are working. These i-arcs are connected by almost circular j-arcs
whose curvature increases uniformly to infinity as they approach p.

With these preliminaries out of the way we are in a position to derive a de-
scription of singularities of type R. For the sake of descriptive simplicity we assume,
without loss of generality, that p = 0. We apply Lemma 2.1 and then Lemma 2.3
and assume that we are not in case (iii) of the latter. There is therefore an i-fan
of characteristic arcs terminating at 0 (which might consist of a single arc—case
(i) of Lemma 2.3), which, without loss of generality, we assume to be “symmetric”
with respect to the positive x-axis, that is, that the bounding characteristics C;"
and C; have outgoing tangents which make angles of :l:%¢>, respectively, with the
positive x-axis. As we saw in the proof of Lemma 2.3, 0 < ¢ < 27 (since we
are not in case (iii)). By choosing an appropriate 6 > 0, we can assume that 6
is regular in N’(0,20), and that along each of the characteristics of the fan the
values of # lie in an interval of length 1/100, say. From the definition of fan in
conjunction with Lemma 2.2, we see that there are distinct j-characteristics C' ]+
and C; emanating from 0, whose outgoing tangents at 0 form angles of :E%?T
with those of C;" and C; , respectively. By picking a smaller ¢, if necessary, we
can assume that along each of these j-characteristics the values of 6 lie in an
interval of length 1/100. We note the following.
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(1) ¢ <. This is clear since were m < ¢ < 27, nearby translates of C” would
cross nearby translates of C; in N'(0,26) and form an angle strictly between 0
and 7, a patent impossibility.

(2) If ¢ = 0, the fans F(C}) and F(C;) cannot both consist of a single
characteristic. To see that this is so, assume otherwise. Then there would be an
i-characteristic, F/, tangent to the z-axis and emanating to the left of 0. We can
assume as before that along E the values of 6 lie in an interval of length 1/100.
But this means that through each point of C;" = C;, C’j , C; and E there passes
a perpendicular characteristic which joins two points of AN (0,2d) without passing
through p. This, in turn, implies that |V0(z)| < 2/§, a.e. in N'(0,d), which, by
Proposition 1.11, is impossible, because we are assuming that the net has a true
singularity at 0.

(3) F(CJ) = F(C;). This is obvious if ¢ = 7, since then C and C; are
tangent at 0 and consequently coincide (see (ii) of Lemma 2.3), and the corre-
sponding fan is degenerate. To handle the case in which 0 < ¢ < 7, we assume to
the contrary that these fans are disjoint. Let E* and E~ be the other bounding
j-characteristics of F((C]) and F(C; ), respectively. Then it follows from (2), or
the condition 0 < ¢ < 7, whichever is applicable, that the angle between these
distinct j-characteristics is strictly between 0 and 7. But then by the defini-
tion of fan there are i-characteristics perpendicular to Et and E~, respectively,
which intersect in N'(0,¢) and form an angle strictly between 0 and 7, which is
obviously absurd.

We are now in a position to state in the form of several theorems the basic
facts about Riemann singularities which we shall use in what follows.

Theorem 2.1. Let p be a Riemann singularity of an HP-function 6. Then
there exists a 0 > 0 such that one of the following holds.

(A) 6(z) is given by arg(z — p) or arg(z — p) & im (to within an integral
multiple of w) in N'(p,9).

(B) There are four arcs C;", C;, C;, C; with the following properties:

(1) Each one joins ON(p,d) to p.

(2) The arc length parametrization each of them has a Lipschitz continuous
derivative.

(3) Cf and C] have their single common point at p, where they meet at
right angles, and similarly for C; and C; .
4) C} and C either have their single common point at p or coincide,
2

) The four arcs occur in the indicated order in the counterclockwise sense.
6) If o, € [0,7] denotes the (unsigned) angle between C, and C; , k =
1,2, then in the smaller curvilinear sector of N (p, %5) between C; and C; the
characteristics of the net coincide with those of Fan(C;, [0, ;]) and in the smaller
curvilinear sector of N(p, %5) between C; and C; they coincide with those of

Fan (C7, [0, aj]) .

k—

o~~~
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(7) In the two parts into which N (0, 36) is divided by the removal of these
fans, the characteristic arcs of the net coincide with those of HP(C;",C[) and
HP(C;,C;), respectively.

(8) ; + o =T,

Proof. If (A) (which is (iii) of Lemma 2.3) does not occur, then it follows from
the preceding discussion that there is one fan of i-arcs and one of j-arcs, and that
at most one of these fans can be degenerate. If, as above, we assume that 0 is
regular in N’(0,29), and that along each of the curves belonging to these fans the
values of # lie in a small interval (say of length 1/100), then, by Proposition 1.7,
the curvature on the parts of these curves lying in N’(0,0) is bounded above by
1/§, since for any point on any these curves there is an orthogonal characteristic
arc of length at least § emanating to either side and lying in N’(0,24); this proves
point (2). Points (3) and (4) follow from the preceding discussion and point (5)
is merely of a notational nature. Point (6) follows from Proposition 1.10 and the
discussion preceding it. It follows from point (2) and the discussion preceding
Proposition 1.4 that in each of the two parts into which N(0,d) is divided by the
removal of the fans, 6 is the solution of the characteristic initial value problem
corresponding to bounding characteristics of the two fans; that is, in those regions
the HP-net is given by HP(C;,C}) and HP(C;,C;), respectively. That the
angles of the fans sum to 7, follows from the preceding discussion. o

Definition 2.2. In case (A) of the preceding theorem the singularity p will be
called a degenerate spiral singularity; in case (B) it will be called a nondegenerate
Riemann singularity.

The following theorem is essentially the converse of Theorem 2.1; its proof is
an immediate consequence of the constructions of HP-nets given in Section 1.2.

Theorem 2.2. Let Cy, C2 be closed arcs with bounded curvature (i.e.,
whose arc length parametrizations have Lipschitz continuous first derivatives) with
an endpoint p in common and which form a right angle at p. Let ¢1,¢2 > 0 and
¢1+ ¢2 = w. Then in some punctured neighborhood N of p there is a unique HP-
net which coincides with HP(C1,C3) in the part of N in the smaller curvilinear
sector determined by these curves and which has fans F(C1) and F(C3) with
angles ¢1, ¢s, respectively.

As an immediate consequence of the foregoing discussion we also have the
following

Theorem 2.3. Let p be a Riemann singularity of an HP-net. Let C; be
an t-characteristic arc which terminates at p and let C; be an open j-arc which
intersects C;. If all of the translates of C; along C; exist and terminate at p,
then C; is strictly concave towards p.

Here we mean, of course, that if z(s), a < s < b, is an arc length parametriza-
tion of C; for which iz/(s) points in the direction along i-arcs towards p, then
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the essential infimum of dargz’(s)/ds is strictly positive. The following theorem
follows immediately from Theorem 2.1 together with Proposition 1.5.

Theorem 2.4. Let p be a Riemann singularity of an HP -net for which the
angle of the i-fan is m and let E1 and F- be the bounding characteristic arcs of
the i-fan at p. Then FE1 and Fs cannot be both concave or both convex towards
the (unique) j-characteristic terminating at p.

We end this section with

Theorem 2.5. If 7 is an HP -net regular in C except for a single nonde-
generate Riemann singularity at p, then S is an %y 3.

Proof. 1t is clearly sufficient to prove that the fans at p consist entirely of
straight lines. If this were not so, then one, and hence all of the characteristics in
the i-fan, say, would have nonvanishing curvature on some set of positive measure.
Thus, there would be a j-arc C; which joins a point ¢ on a bounding characteristic
C; of the i-fan to p. The i-arc E joining ¢ to p (including the endpoints) together
with C; forms a simple closed curve. Simple topological considerations show that
either C; is an initial arc of one of the bounding characteristics of the j-fan at p,
or one of these bounding characteristics has an initial arc lying in the interior of
the simple closed curve £ U C; and joining p to some point ¢’ on E. But then
consideration of nearby translates of E produces an i-arc joining two points of a
j-characteristic, yielding an i-arc and a j-arc joining a pair of distinct points and
thereby forming a simple closed curve on and inside of which the net is regular, a
patent absurdity. o

3. Spiral singularities

Now that we have completely described Riemann (type R) singularities, we
deal with the remaining possibility, spiral or type S singularities. In this section
we shall consequently assume that p is an isolated singularity of an HP-function
such that if C' is a characteristic arc joining ¢ # p to p, then either C' has infinite
length or (z) is unbounded as z tends to p along C'.

Lemma 3.1. Let 0 be regular in N'(p,20) and have a spiral singularity at p.
Let C be an i-arc of 6 lying in N'(p,d), one of whose endpoints is p. Then C' is
not tangent to any of the concentric circles ON(p,d), 0 < d < 9.

Proof. Without loss of generality we may assume that p = 0. Assume, to the
contrary, that z(s), 0 < s < L, is the arc length parametrization of a subarc of
C" of C with lims_. 1, 2(s) =0, such that 2’(0) - z(0) = 0, where for simplicity we
regard complex numbers as vectors and use the dot notation for inner product.
Let w(s) = 2/(s) - z(s). Since z(s) tends to 0 as s tends to L, lims_. 7, w(s) =0.
Thus there is a point ¢ € (0, L) at which |w| attains its maximum. Arbitrarily
close to o there are numbers s; < s9 such that

0 =w(s2) —w(s1) = (2'(s2) = 2'(s1)) - 2(s2) + 2 (1) - (2(s2) — 2(51)).
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Dividing by s2 — s1, and taking into account that z’ is continuous and |2'(0)| =1,
we see that [z(0)|D] (2(c)) > 1. But then it follows from Proposition 1.7 that
z(0) is joined to p by a j-arc which is a straight line segment. But this contradicts
the hypothesis that p is a spiral singularity. o

The following lemma is similar to Lemma 2.2; we have chosen not to combine
the two in a single more general lemma, since to do so requires some discussion
not necessary for the purposes at hand.

Lemma 3.2. Let 0 be regular in N'(p,20) and have a spiral singularity at p.
Let Cy, be a k-arc of 6 lying in N'(p,d) with arc length parametrization zj(s),
0<s< Ly, k=1,2. Let lims_.1, 2i(s) = p. Let 2;(0) = 2;(0). Then for some
e > 0 each point of z;([0,¢]) is joined to p by an i-arc lying in N(p,0).

Proof. We begin with the following observation. Let w,(s), 0 < s < ay,
n = 1,2,..., be arc length parametrizations of j-arcs E,, C N'(p,d) of 6 for
which A(E,) > & > 0 and A(6(E,)) < 1/100. Because of the latter condition
the FE, are close to being line segments, so that in particular £ < A(E,,) < 39 for
all n > 1. Thus, the sequence of functions v, (t) = wy, ()\(En)t), 0<t<l1,is
uniformly bounded and equicontinuous, and consequently has a subsequence which
converges uniformly on [0,1] to some function v. A straightforward argument
shows that either v(t), 0 < ¢t < 1, gives a parametrization of a j-arc of 6 in
N(p,9)\{p} with one endpoint possibly coinciding with p, or there is a to € (0,1)
such that v, when restricted to each of the intervals [0,¢o] and [to, 1], parametrizes
such a j-arc. Furthermore, the values of 6 on any of these arcs parametrized by
v lie in an interval of length at most 1/100.

By replacing C; with an initial subarc, if necessary, we may assume that
A(6(C;)) < 1/100 and that C; intersects C; only at z;(0) = z;(0). For s € (0, L;)
and n € (0, L;] let C(s,n) denote the translate of the subarc z;([0,7]) of C; along
C; down to z;(s), provided it exists and lies in N’(p,d). For each n € (0, L;] let
L(n) be the supremum of all s € [0,L;) such that C(s,n) exists. Obviously,
L(n) > 0 for all n € (0,L;]. We claim that there is some n > 0 for which
L(n) = L;. This could only fail to be true if for each n € (0, L;] there is an
increasing sequence {s,,(n)} in [0,L(n)) which tends to some o(n) < L; such
that one of the following happens:

(i) dist(C(sm(n),n),ON(p,8)) — 0

or

(ii) dist(C (sm(n),n),p) — 0.

First we show that (i) cannot happen for arbitrarily small 7. Say, to the
contrary, that (i) actually happens for n = #n,,, where 7, — 0. Then, since
)\(G(Zj ([O, 77]))) — 0 as 1 — 0, the observation of the first paragraph of the proof
will produce a straight line j-arc E joining ON(p,d) to some point of Cy U {p}.
But this contradicts the hypothesis that p is a spiral singularity, since there would
then be a straight line j-arc (a translate of an initial segment of F) of length
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at least dist(C’l,@N(p, 5)) > 0 emanating from each point of Cq U {p}. Thus
there is some 79 > 0 such that (i) cannot happen if n < 9. Now let n < ng
and assume that (ii) happens. But then, again by the initial observation, there
will be a j-arc J joining z;(c(n)) to p for which A(A(J)) < 1/100, which again
contradicts the hypothesis that p is a spiral singularity. Thus, indeed, there is
some ¢ > 0 such that C(s,e) is well defined for all s € [0, L;). This, of course,
is the same as saying that all the translates of C; along z;(]0,¢]) exist and lie
in N'(p,8). To finish we only have to show that A(C(s,e)) — 0 as s — L;. But
if this were not true we would have a sequence {s,,} in [0, L;) tending to L; for
which )\(C’ (S, 8)) > £ > 0, and the observation with which we began would give
us a j-arc J of length at least £ terminating at p = lim,, o 2;(Sy) for which
)\(O(J )) < 1/100, which again contradicts the assumption that 6 has a spiral
singularity at p. o

Lemma 3.3. Let 6 be a HP -function with a type S singularity at p. Then
there exists some d; > 0 such that 6 is regular in N'(p,2d1) and such that each
point ¢ in N'(p,d1) is joined to p in N(p,|q—p|) by characteristic arcs from both
families neither of which is tangent to ON (p,|q — p|).

Proof. Let 6 be regular in N(p,0), and let C' be an i-arc lying in N(p,0),
with arc length parametrization z(s), 0 < s < L, and which terminates at p.
We begin by observing that (the measurable function) [df(z(s))/ds| must be un-
bounded on [0, L). Assume, to the contrary, that it is bounded. Then L must be
oo, since if L < oo, lims_,7, 0(s) would exist, which would contradict the hypoth-
esis that p is a spiral singularity. But if |df(z(s))/ds| is bounded and L = oo,
then clearly lim, .7, z(s) cannot exist. Thus indeed |d6(z(s))/ds| is unbounded
on [0,L). Proposition 1.7 then implies that there exists a 41 in (0, 36) such that
some point ¢ of ON(p,8;) N C is joined by a j-arc lying in N(p, £4). A simple
application of Lemma 3.1 shows that we can assume in addition that this j-arc
as well as a subarc C’" of C join ¢ to p inside N(p,01)\{p}. For 0 < e < 6,
let A;(e) be the set of z € N (p,e) which can be joined to p by an i-arc lying
in N(p,e)\{p}. From what we have shown it follows that A;(e) # 0, ¢ = 1,2,
0<e<d.

We show that A;(e) is open in ON(p,e). If there is an i-arc which joins a
point z of the circle ON(p,e) to p in N(p,e), then it follows immediately from
Lemma 3.2 that there is a neighborhood S of z on this circle such that all w
in S can also be joined to p by an i-arc lying in N(p, %5) Moreover, it follows
from Lemma 3.1 that these i-arcs are not tangent to the circle and that they lie
in N(p,e).

Next we show that ON(p,e)\A;(e) is also open in ON(p,e). If z € ON(p,¢)
is not joined to p by an i-arc lying in N(p,e), then we claim that if we proceed
along the i-characteristic through z in either direction, we will be led outside of
N(p,e). Assume, to the contrary, that we can proceed indefinitely along an i-arc
C C N(p,e), beginning at z but without coming to p. Then C has infinite length,
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and if w(s), 0 < s < 0o, is the arc length parametrization of C', then lim_, o w(s)
is not p. In consequence, if ¢ is the infimum of all n such that N(p,n) contains
w((s,00)) for some s, then 0 < £ < e. Let § > & > ¢ > ¢” > 0. Then
for some s, w((s’,oo)) lies in N(p,&’), but for arbitrarily large s, w(s) lies
outside of N(p,£”). From this it easily follows that there are arbitrarily large
s for which w(s) lies in N(p,&)\N(p,£"), but such that Dj0(w(s)) > 1/¢.
However, for such s there is a j-arc of length less than &’ which joins w(s) to
p, by Proposition 1.7. Obviously, the length of such an arc must be at least £”,
so that these arcs come closer and closer to straight line segments as & and £”
approach ¢. By a simple limit argument (see the first paragraph of the proof
of Lemma 3.2) we conclude that there is a straight line j-arc joining a point
of ON(p,§) to p. But this is impossible, since p is a spiral singularity. Thus
indeed, by following the ¢-characteristic through z in either direction we will be
led outside N(p,e). From this it follows that there is a neighborhood S of z on
OA(p,e) such that no w in S can be joined to p by an i-arc lying in N(p,¢);
that is, ON(p,e)\A;(¢) is open in ON(p,e). From the connectedness of ON(p,e)
it now follows that A;(¢) = ON(p,e), which is to say that each point of ON (p,¢)
is joined to p by characteristic arcs of both families lying inside this circle. That
these arcs are not tangent to this circle follows from Lemma 3.1 o

We are now in a position to completely characterize type S singularities.

Theorem 3.1. If the HP -function 6 has a singularity of type S at p, then
in some neighborhood of p, 0(z) = arg(z — p) + «, where « is a constant.

Proof. In this proof we use U to denote the unit punctured disk, N'(0,1).
Without loss of generality we may assume that p = 0. Let d; be as in the
conclusion of Lemma 3.3. By replacing 6 with the HP-function 6(d1z) we may
assume that 6; = 1. It follows from Lemma 3.3 and the continuity of 6 that
¢®(2) /2 must lie in one of the four open quadrants for all z in U\{0} and on a
compact subset thereof on each concentric circle roU , 0 < r < 1; to be specific, we
shall assume that it is the second quadrant, so that the vectors e??(*) and ie*(?)
point in the direction of movement towards 0 along the 1- and 2-characteristics,
respectively. From the confluence of characteristics at 0 implied by Lemma 3.2,
it follows that

(3.1) (=) 'Dif(2) >0  ae. inU, i=1,2,

so that 6 varies monotonically on characteristics in U. Because we have a sin-
gularity of type S at 0 it follows that 6 tends monotonically to oo (—o0) as
we move along 1-characteristics (2-characteristics) towards 0. The construction
given just before the discussion of double Riemann nets in Section 1.4 shows that
§ has a unique extension to an HP-function in C\{0}, so that for convenience
we may regard it as being defined in the entire punctured plane. In light of that
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construction it follows that 6 tends monotonically to —oo (00) as we move along
1-characteristics (2-characteristics) away from 0.

Let L;(z) denote the distance along the i-characteristic from z to 0. From
the convexity properties of the characteristics implied by (3.1) it follows that
L;(z) is nondecreasing as z moves along a j-characteristic away from 0. From
Proposition 1.7 it follows that D] 60(z) < 1/L;(z). This means that L;(z) is
never infinite, since if it were infinite at some point, we would have straight line
j-arcs, and by translating them along ¢-arcs down to 0 we would obtain straight
line characteristic arcs terminating at 0, a contradiction. From this, in turn, it
follows that |D;6(z)| = 1/L;(z) a.e. on each i-characteristic, since otherwise a
simple argument shows that the j-characteristics would not be confluent at 0.
Since the function L; is obviously continuous in the punctured plane, we must
actually have that this last equation holds everywhere there; more precisely we
have D;0(z) = (—1)""1/L;(z), z # 0. Thus the continuous branches of  are C'
functions, and |D;0(z)| >0 on C — {0}, i =1,2.

From the spiral nature of the characteristics, it follows that for any a in the
punctured plane there are i-arcs C;(a), i = 1,2, which both join a to a point
b = b(a) closer to 0, and whose only points in common are a and b. These arcs
are, moreover, uniquely determined by these conditions. Let 7;(a) denote A6f(ab)
along C;(a), so that 71(a) > 0 and 72(a) < 0. Simple geometry implies that

(3.2) T1(a) — 12(a) = 2.

If we replace a by a point a’ near it on the 2-characteristic through it, then b
will be replaced by & = b(a’). Consideration of the characteristic quadrilateral
with vertices a, o/, b, b shows that 71(a’) = 71(a), which in light of (3.2)
implies that m5(a) = 72(d’), also. Similarly, these functions are unchanged by small
movements along 1-characteristics. This means that 71 and 7 are constants. In
other words if, starting from any point a in the punctured plane, we move along
the i-characteristic towards 0 in such a way that 6 changes by 7; we come to the
same point independently of whether ¢ is 1 or 2.

For a given characteristic C' and two points a,b € C we let Ax60(a,b) denote
the change in # as one moves along C' from a to b, i.e., Acf(a,b) = 0(b) — 0(a),
where # denotes any branch of § which is continuous on C. (This is the same
“A6” notation we have been using up to now, with the subscript indicating the
characteristic added to avoid possible confusion.) Let F; be the i-characteristic
through 1 € C. For i = 1,2 we define a mapping of R? onto C\{0} as follows.
For (t1,t2) € R?, let ¢ be the point on F; for which Ap6(lq) = 7;t;/7 and
let z = (;(t1,t2) be the point on the j-characteristic C' through ¢ for which
Acb(qz) = 1jtj/m. It follows immediately from the defining property of HP-nets
that if (q(t1,t2) = (2(t1,t2), then there is a § > 0 such that (1(t],t2) = (2(t], t2)
and (1(t1,th) = Ca(tr,th) for all ¢}, t) such that |[t) —t1| < § and |th — t2] <
d. Since (1(0,0) = 1 = (2(0,0), the continuity of ¢; and (2 then implies that
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C1(t1,t2) = (Ca(ty,ta) for all t1,t2 € R; their common value will be denoted by
C(t1,t2). Let (t1,t2) € R? and let ¢,r € F; be such that

t t
AFle(lq) et Tltl and AFle(l/’d) — 7-1( 1 +7T) — T1l1 +T1_
T

s s

Then by what was said in the preceding paragraph Ac6(qr) = 72, where C' is the
2-characteristic through ¢. From this it follows immediately that (i(¢1 + 7, t2) =
C1(t1,t2 + ), that is, that

(33) C(tl—l—ﬂ',tg) ZC(tl,tQ—i—ﬂ') for all t1,t2 € R.
One easily calculates that

i0(¢)
06 Tk €0y
Ot s DkO(C)

(using the fact that ((t1,t2) = ((t1,t2), where {k,l} = {1,2}), so that since
continuous branches of 6 are C'!' functions, ¢ is also of class C'!. If we define

7'1251 + TQtQ

(34) w(tl,tg) = .

+0(1),
then it is clear that
0 0
(3.5) arg{a—ti} = w(ty t2) and arg{a—ti} = w(ty,t2) + g
We also point out that for n€e Z, Te R, 1=1,2,

(36) C({(tl,tg) nm <t; < (TL+ 1)7‘(’, tj > T}) D N/(O,(S),

for some 6 > 0.

For each z € U let p;(z) be the point on the i-characteristic through z for
which Af(zp;(z)) = (—1)""'27, that is, the point on this characteristic which we
arrive at by moving along it towards 0 from z in such a way that 6 changes by
27 in the case ¢ = 1 and by —27 in the case i = 2. We claim that |p;(2)/z],
which is clearly less than 1 for all z in U, is actually bounded away from 1 there.
If it were not, then there would be a sequence {zx} of points in U tending to 0
and such that |p;(zx)/zk| approaches 1. Application of the compactness principle
(Proposition 1.9) to the family of nets corresponding to the HP-functions 6(|zx|z)
would then yield a subsequence converging to a net 7 in the entire punctured
plane for which QU is an i-arc. But then it is clear that % is the degenerate
spiral net /5 /5. This in turn means that the original net would have to have
i-arcs arbitrarily close to a full circle centered at 0, which contradicts the fact that
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|7i| < 27. Thus indeed, the |p;(z)/z| are bounded away from 1 in U. In terms of
our characteristic coordinates this means that |((t1,t2)| decreases exponentially
as either of the ¢; tends to oco; more precisely it means that there exist A, K > 0,
such that

(3.7) C(t1, t2)| < Ae™Ktt+t2) — for 41 ¢y > 0.

In light of (3.5) and (3.6) we must show that if wu(ti,t2) = ((t1,t2) - €,
v(ty,ta) = ((t1,t2) - i€, then u/|C|, v/|¢| are constant in some half-strip nm <
t; < (n+1)m, t; > T. (Here again we are using the dot to denote inner product.)
In terms of the real and imaginary parts x and y of (, the equations (3.5) may
be written as (see equations (1.8))

coswyy, — sinwxy, =0 and sinwyg, + coswzy, = 0,

which in turn imply

(3.8) vy, = ——u and Up, = 2.
™ ™
For w = u or v we let w(s,t) stand for w(5(¢t+s), 3(t —s)), so that by (3.2),
(3.3) and (3.4), u(s,t) and v(s,t) are periodic with period 27 in s.
Let 72 = —T17'2/7T2, v > 0. Since 0 < 71,—72 < 27 and 7 — T2 = 2m, it
follows that 0 < v < 1. If we write equations (3.8) in integral form and take the
bound (3.7) into account, we see that both u and v satisfy the equation

w(ty,t2) = / / w(s1,s2) dsz dsy.

A standard argument based on this equation, the bound (3.7), and the continuity
of u and v shows that they are both C'°°-functions on R?. The integral equation
written in differential form is simply the well-known telegraph equation

Wiy, — 7w =0,
so that in terms of the variables s and ¢, u and v satisfy
2
Wiy — Wgs = 7 w,

are periodic with period 27 in s and tend uniformly to 0 as ¢t — oco. It is easily
established by separation of variables that the solutions of the telegraph equation
for which w(s + 27,t) = w(s,t), with smooth periodic Cauchy data on ¢t =0 are
given in the upper half-plane ¢ > 0 by

t) =Y Fi(s,t),
k=0
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where
Fo(s,t) = Age? + Bge "

and for k>1

Fy.(s,t) = (Ag cos ks + By sin ks) COS((kQ _ 72)1/%)
+ (C) cosks + Dy sinks) sin((k2 — ’}’2)1/2t),

with the exception that when v =1
Fi(s,t) = Ay coss + Bisins + (C cos s + Di sin s)t.

When « < 1 the uniform exponential decay of w(s,t) to 0 as ¢ — oo implies that
there is a K > 0 such that for t > K, k> 1,

‘Ak cos((k* — 72)1/21‘,) + Csin((k* — 72)1/2t)‘ =

™

1 27
—/ w(s,t)cosksds| < e.
0

This clearly implies that Ax and Cy are 0 for k£ > 1. Similarly, By and D
are 0 for k > 1. The case v = 1 is handled in a similar way. Thus u and v
are of the form Age + Boe 7*. But since u(s,t) — 0 as t — oo, we must have
Ag = 0, so that @(s,t) = Boe ?*. Similarly, 9(s,t) = Bje ", for some other
constant Bj). But then |¢| = (B2 + B'3)Y/2e¢™" so that @/|¢| = By /(B2 + B'5)'/?
and ©/|¢| = B} /(B2 + B'3)'/2 are constants in the upper half-plane, and therefore
u/|¢] and v/|C| are indeed constant in some half-strip nm < t; < (n + 1)m,
t; >T. o

Theorem 3.2. If 7 € HP*(C) has a spiral or degenerate spiral singularity,
then ¢ is one of the %) « .

Proof. Let 5 as in the hypothesis have a spiral singularity at p and let
g be another singularity of . at minimum distance from p. The convexity of
the characteristics emanating from p shows that ¢ is a Riemann singularity. But
then Theorem 2.4 shows that there is, in fact, no singularity at ¢. Thus p is
the only singularity of #. The conclusion follows from Theorem 3.3 together
with the uniqueness of the nets resulting from the construction process described
just before the discussion of double Riemann nets in Section 1.4. The case of a
degenerate spiral singularity is handled similarly. o

Theorem 3.2 together with Theorem 2.5 gives us the following complete de-
scription of HP-nets with a single singularity.

Theorem 3.3. If 57 is an HP -net regular in C except for a single singularity
at p, then J is an Xp,ap or an Sy q.
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4. More than one singularity
We begin with the following

Lemma 4.1. Let D be a Jordan domain with C' boundary. Let 6 be an
HP* -function on D with singularity set A. Let R denote the set of nondegenerate
Riemann singularities of 6. Then

(4.1) S dist(a,0D) < 2MP).
a€ER i

and

(4.2) S dist(a,0D) < M),
a€A\R T

Proof. We begin with the following observation. Let () be a characteristic
quadrilateral of # in D\ A one of whose j-sides is C = ab, and let E C @ be a
simple arc joining the i-sides of ). Assume, furthermore, that C' is everywhere
convex toward the inside of (). Then

(4.3) AME) > |Af(ab)| min{[p —e| : p€ C, e € E}.

To see this we recall that if p € C is a point at which D;0 exists and z = z(s),
0 < s < o, is the arc length parametrization of the j-arc F joining p to the
other j-side of @, then the (unsigned) radius of curvature R(s) = 1/|D;6(z(s))|
is differentiable and satisfies R'(s) = 1. Since D;60(p) exists for almost all p € C
and the length of the i-arc joining p to a point e € E in Q\F is at least |p — ¢/,
a simple calculus argument shows that (4.3) indeed holds.

It is clearly sufficient to show that if D’ is any smoothly bounded subdomain
of D for which AN9D" =, then

2A(OD') AOD')

™

(4.4) Z dist(a,0D") < and Z dist(a,0D") <
a€ERND’ g a€(A\R)ND’

It follows from Theorems 2.3 and 2.4 that each nonbounding characteristic of the
i-fan F,; of a € R has a unique subarc which joins a to some point dD’. Denote
the set of all such points of 9D’ by E, ;. It is clear that for each ¢ all of the sets
E,,; are disjoint. Let € > 0 and let G be an open j-arc in N(a,e¢) which joins
the bounding characteristics of F, ;. Then each point p € G is contained in an
open subarc C' of G which is the side of a characteristic quadrilateral in D\ A for
which the other j-side lies outside of D’. By the initial observation the length of
the part of E,; in this quadrilateral is at least (5(dist(a, oD") — 5) , where ¢ is the
change in 6 on C'. From this it follows that

ME, ;) > 7a,idist(a,0D"),
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Ya,i being the i-fan angle at a. Thus

2
Z Z Ya.i dist(a,0D") < 2X(0D"),

1=1 a€ RND’

so that the first bound of (4.4) follows upon taking into account that v, 14742 =
.

The second inequality of (4.4) follows in essentially the same way. For a
true spiral singularity a, by Theorem 3.1, 6 coincides with o, , for some a.
As explained at the end of the discussion of spiral nets in Section 1.4, there are
k-arcs Cy, k = 1,2, contained in N(a,¢) along which 6 has change (o > 0
with (4.1 + Ba,2 = 2m. If we replace the i-fan used above in the case of Riemann
singularities with the set of j-arcs issuing from C; and moving away from a, the
argument proceeds just as in that case and we obtain that

)\(Ea,i) Z ﬂa,i dist(a, 8D/)

The same holds in the case of degenerate spiral singularities, with the difference
that one of the [, 5 vanishes. In any event, the second bound of (4.4) now follows
immediately. o

Corollary 4.1. Let D be a Jordan domain with C' boundary. Let § be an
HP* -function on D with singularity set S. Then

3\(AD)

™

Z dist(a,0D) <

a€sS

Corollary 4.2. An HP* -function # on C can have at most four singularities.

Proof. Let pi,...,p, be distinct singularities of 6. If any of them is a
spiral or degenerate spiral singularity then, by Theorem 3.2, n = 1. Thus we
assume that they are all nondegenerate Riemann singularities. If N(0,R) is a
disk containing all of these singularities and such that 6 is regular on ON(0, R),
then by Lemma 4.1

n

> (R—|pk|) <4R,

k=1
from which the desired conclusion follows upon letting R — oco. o
For each p € D, a very similar argument shows that there is a neighborhood
U =U(D,p) of p such that any # € HP*(D) can have at most four singularities

in U. This, together with the compactness principle for HP(D) (Proposition 1.9)
and a straightforward diagonal argument, gives the following
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Corollary 4.3 (Compactness principle for HP*(D)). For any sequence {6}
of functions in HP*(D) there exists a subsequence {6,.} and a § € HP*(D) such
that €% converges to e?" in the topology of uniform convergence on compact
subsets of D\ A, where A is the singularity set of 6.

The remainder of this section is devoted to proving the following

Theorem 4.1. An HP"-net in all of C can have at most two singularities.
If it has no singularities, then the corresponding 6 is a constant. If it has one
singularity then it is either one of the Riemann nets %p o3 or one of the spiral
nets .y o. If it has two singularities then it is either one of the double Riemann
nets Yy q.a,3,4 Or one of the degenerate double Riemann nets %y, 4 53, -

The case of zero or one singularity is covered by Proposition 1.8 and The-
orem 3.3. In light of Theorem 3.2 any HP*-net in C which has a spiral or a
degenerate spiral singularity is an .%, . Thus, for the remainder of this section
we shall assume that 7 is an HP-net which is regular in all of C except for
distinct nondegenerate Riemann singularities p1,p2,...,pn, 2 < n < 4. We shall
show that the corresponding net is one of the double Riemann nets %, 4.o.3,4 Or
one of the degenerate double Riemann nets .%, , 3, described in Section 1.4.
We begin with a number of preliminary observations and the introduction of some
further notation and terminology that will facilitate the discussion.

It is easy to see that no singularity can be joined to itself by a characteristic.
Indeed, if C' is an 7-characteristic which both begins and ends at one of the
singularities p, then what we know about the i-fan of p implies that there is
a subarc E of C' whose endpoints are also joined by a j-arc E’ and such that
the domain between E and E’ contains no singularities, an obvious impossibility.
Thus, each characteristic either emanates from some singularity and has infinite
length, extends from one singularity to another in finite length or extends infinitely
in both directions. If p is a singularity, the fan of i-characteristics emanating from
p will be denoted by F;(p). In addition, R;(p) and L;(p) will denote the bounding
characteristics of F;(p) on the right and left sides of this fan (with respect to
movement away from p). For each pair (p,i), where p is a singularity and the
angle of F;(p) is positive, we choose a fixed nonbounding characteristic M;(p) of
F;(p) and let z(s), 0 < s < L, be the arc length parametrization of M;(p). For
all sufficiently small s there is an open j-arc Cj(p,s) containing z(s) and joining
a point of R;(p) to a point of L;(p). This arc is everywhere concave towards p.
Because of this, in light of Theorems 2.3 and 2.4, all characteristics of F;(p),
with the possible exception of R;(p) and L;(p), can be extended indefinitely away
from p (without terminating at any other singularity), so that L = oo and C;(p, s)
is well defined for all s > 0. (The arbitrariness of the choice of M;(p) will be of
no consequence.)

Lemma 4.2. Let p be a singularity of an HP -function 6 on C which has
only nondegenerate Riemann singularities. Let C' be an i-arc of § with arc length
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parametrization z(s), 0 < s < L < co. Then there exist 0 = so < $1 < -++ <
Sm = L such that for 1 <1 <m—2, Z((Si’sl‘_’_l)) is either a straight line segment
or Cj(a, s) for some singularity a and some s > 0. Fori =0 or m—1, z((s;,8i41))
is either a straight line segment or a subarc of some such Cj(a,s).

Proof. The only way this could fail to be so would be for there to be infinitely
many disjoint arcs of the form Cj(a,s) on C. But, since the associated fan angles
have at most four different positive values, this is inconsistent with the fact that
0(z) is continuous on C' and possesses limits as z approaches the endpoints of C'. o

The proof that the only possible nets are the (nondegenerate and degenerate)
double Riemann nets is broken down into two main cases according to whether or
not some pair of (distinct) singularities are joined by a characteristic; each of these
cases is further broken down into subcases. In each instance the proof reduces to
showing that there are only two singularities and that a certain characteristic arc
is a straight line segment.

Case 1. There are singularities p, ¢ joined by a characteristic ¢-arc C'. We
begin by noting the following simple consequences of this hypothesis.

(1) There is a neighborhood N of C' such that 6 is regular in N — {p, q}.

This is obvious from the definition of isolated singularity and the regularity
of 8 along C'.

(2) C is the only i-arc joining p to q.

Assume, to the contrary, that there is another one C’. Then from what we
know about the structure of Riemann singularities, C' and C’ both belong to both
Fi(p) and Fj;(q). But then the orthogonal characteristics connecting C' and C’
inside these fans must have nonvanishing curvature, and have their concave side
towards both p and ¢, which is impossible.

(3) C e {Ri(p), Li(p)} N {Riq), Li(q)}-

If C were neither R;(p) nor L;(p), then from the structure of Riemann sin-
gularities it follows that there are j-characteristic arcs forming an angle of 7w at
q and which are strictly concave towards p. But this contradicts Theorem 2.4.

(4) C is R;(p) and R;(q) or L;(p) and L;(q).

If either of the fans F;(p) or F;(q) is made up of a single characteristic then
there is nothing to prove, so we assume that this is not the case. Say that C
is Ri(p). If it were L;(q), then it is easy to see that there would be two distinct
i-characteristics joining p and ¢, which contradicts point (1) above.

We now begin the analysis of Case I. For the sake of definiteness we assume
C is Ri(p) and R;(q). We also assume for the time being that angles 3, v of
the fans Fj(p) and F;(q) satisfy 0 < 3,7 < 7; we will discuss the degenerate
cases separately. The accompanying Figure 3 has been included to facilitate un-
derstanding the following discussion. We shall show that the net is .%#, ; + 5.+, s0
that this figure is to be compared to Figure 2. Let e € {p,q}. We consider that
Cj(e, s) is oriented so that movement in the positive direction along it coincides
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Figure 3.

with increasing 6; the initial and terminal points of its closure will be denoted by
ae(s) and b(s); for completeness we set a.(0) = b.(0) = e. For small s, a.(s)
lies on the curve C'. Let {e, f} = {p,q}. We follow the movement of Cj(e,s) as
s varies from 0 to co. On an initial interval [soe,S1.e], So.e = 0, ae(s) traces
out C from e to f, while b.(s) traces out an arc of L;(e). Next, on an interval
[S1.e,82.e], ae(s) is stable at f while b.(s) traces out a j-arc which is concave to-
wards f. Then, on an interval [s2 ¢, S3.¢], ae(s) runs along the arc bs([so,f, 51,f])-
Continuing in this manner we see that there are two increasing sequences {sy.},
e = p,q, such that on [sgpi2.,Sk13.], ae(s) runs along the arc by ([sk,f, Sk+1,£])
of Li(f). The arcs Cj(e,s), S € [Sk+2.e;Sk+3,e] and C;(f,s), s € [sk,f, Sk+1,£] lie
on opposite sides of L;(f). In addition, they are both concave towards f. From
this, together with Theorem 2.3 it follows that L;(p) and L;(¢q) are both infinite
(that is, as we move out from p and ¢ along them we never encounter singularities.

For k > 1, let Qr(e) denote the (closed) characteristic quadrilateral with
vertices be(sp—1.e), Ge(Sk—1.e), Ge(Ske) and be(sge). These are all bona fide
characteristic quadrilaterals with the exception of Q1(e), Q2(e) which have de-
generate sides at ee and ff, respectively. The fact that there are no singu-
larities on any of the Cj(e,s), s > 0, nor on the L;(e) means that the only
singularities in any of the Qx(e) are the points p and ¢. It is easy to see that
|be(s) — ae(s)] > KA(Cj(p,s)) — oo so that the union of the @ is the entire
plane. Thus indeed the only singularities are p and ¢. Finally, since none of the
points of C' is joined to a singularity by a j-characteristic, C' is a straight line
segment. Comparison with the construction of the degenerate double Riemann
nets now shows that this net is indeed %, + g.~.

We still have to discuss those degenerate situations in which the angles of
one or both of the fans F;(p) and Fj(q) is 0 or w. By interchanging p and ¢, if
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necessary, it is sufficient to consider the following possibilities:

(A) o< pf<m, v=0.

B)o<pg<m, y=m.

(C) B=v=m.

(D) B=0,y=m.

(E) B=~v=0.

Cases A—D. Cases A-D are very similar to the case in which 0 < 8,y < 7,
which we have just treated, the only difference being that some of the quadrilat-
erals Qr(p), Qr(q) degenerate into characteristic arcs or do not even appear, and
the proof proceeds with minor alterations, the details of which we leave to the
reader. In Case A none of the Qx(q) appear, because the fact that v = 0 causes
the Cj(g,s), in effect, to degenerate to a point. Nonetheless, the Qi (p) cover the
plane, and allow us to reach the desired conclusion as before. In Case B the degen-
eracy of C;(q,s) makes Q2(p), Q4(q), Qs(p), Qs(p),... degenerate into j-arcs,
but again the remaining quadrilaterals cover the plane in the necessary fashion.
In Case C it is all the even numbered quadrilaterals that degenerate into j-arcs
because of the degeneracy of both C;(p,s) and C;(q,s), but once again the re-
maining quadrilaterals cover the plane in the necessary manner. Finally, in Case D
(see Figure 4) all of the Q(p) degenerate (more precisely, (Q2(p) degenerates to
the point ¢ and all the other Qx(p) degenerate to arcs) because the C;(p,s) and
the C;(q,s) degenerate to points; again the Q(q) cover the plane. In all four of
these cases the only singularities are p and ¢ and the ¢-arc C' is a straight line,
so that the net is seen to be #, ;1 5.~.

Case E. The treatment of this case differs substantially from that of the other
four, since none of the quadrilaterals actually appears because of the degeneracy
of both Cj(p,s) and Cj(q,s). Let M, be any fixed nonbounding characteristic of
Fj(e), and let z.(s), 0 < s < oo be an arc length parametrization of M.. (The
characteristics M, are infinite by Theorems 2.3 and 2.4 as pointed out above.)
We apply the decomposition of Lemma 4.2 to M.. The first subarc must be a
straight line segment, since otherwise it would have to be a subarc of a Cj(f,s)
or Cj(e,s), which is inconsistent with the hypothesis that the angle of the j-fan
at both e and f is 0. Let s; > 0 be such that G = ze((O,sl)) is a straight
line segment. It follows that for small positive s, there is a single i-characteristic
N, which is a simple closed curve consisting of semicircles of radius s (which are
Cj(p,s’), Cj(q,s") for appropriate values of s") joined by translates of C'. Let
o be a fixed such s. Let w(t), 0 <t < L, be an arc length parametrization of
N, traversed once starting at and ending on G. Let G; denote the associated
translates of G along N,. We claim that 6 is regular on all of these G;. If not,
let o/, where 0 < ¢/ < s1, be the smallest number for which a singularity is
encountered on a translate of z.((0,0’]). In the event that there is more than one
such singularity we consider the one lying on the G; with the smallest possible
value of ¢ € (0, L). It is clear that for all s < o', there is an Ny as described above.
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It is also clear that for this singularity the angle of the j-fan is 7, since it lies in
the interior of one of the straight j-arcs G;. But this means that points z.(s), for
s < o’ near ¢’ are joined by i-characteristics to points z.(s), for s > ¢’ near o/,
which is inconsistent with the existence of the simple closed i-characteristics Ny,
of the kind described above, for s < ¢’. Now assume that in the decomposition
of M, according to Lemma 4.2 we have a second interval, that is, ze((O, 81)) is
a straight line segment, but ze((sl, 32)) = Cj(c,7), for some singularity ¢, and
some 7 > 0. But then the argument we used before will again show that there
can be no singularities on the translates of ze((O, 82)) around N, away from c,
that is, in the direction of the side towards which z.((s1,s2)) is convex. But this
contradicts the existence of the singularity ¢. Thus no such s; exists, and the
M, are both straight lines on all of whose translates 6 is regular. From this it
follows the j-characteristic through each point of C' is a straight line (infinite in
both directions) so that C is itself straight. From the straightness of the M, it
follows that the net in question is %, 4+ 0.0 = Fp.q,—,0,0-

Case II. No two singularities are joined by a characteristic arc.

We assume that there are at least two singularities and that no two of them
are joined by a characteristic. Let p be a singularity. It follows that the bounding
characteristics of the fans F;(p), i = 1,2, are all free of singularities, so that when
we apply the decomposition of Lemma 4.2 to each of them the initial piece is
always a line segment. It is easy to see that all of these initial segments must be
finite. Assume, to the contrary, that all the characteristics making up F;(p) are
rays. It is enough to show that all translates of R;(p) along L;(p) (and of L;(p)
along R;(p)) are free of singularities, since then L;(p) and R;(p) will be rays
also, from which the desired conclusion follows immediately. Say, to the contrary,
that as we translate R;(p) along L;(p) we encounter a first singularity at ¢. It
is clear that the angle of the j-fan at ¢ must be 0. Then L;(q) is a ray. But
this cannot be because L;(q) contains C;(p,7) for some 7, and these curves are
nowhere straight. Thus, indeed, all of the initial segments are finite.

We examine translates of these initial segments; to be specific we consider the
initial line segment Sk of R;(p). It is clear that the initial straight line segment
St of Li(p) has the same length o as Sr. Let {T,U} = {R,L}. Let zy(s),
0 < s < 0o, be the arc length parametrization of U;(p). Let sz be the smallest
s > 0 for which the translate St(s) of St along U;(p) to zy(s) has a singularity,
where sp = oo if no such s exists. If sp is finite it is clear that the singularity
encountered must be at distance %a from Uj(p), and that the angle of its j-fan
must be 0 with this j-fan consisting of a single characteristic extending back
towards F;(p) at distance o from Uj;(p). From this it follows that we cannot
have both sp and sy finite, since we would then have two singularities joined by
a characteristic. We bear these preliminary comments in mind as we deal with the
various subcases into which Case II is divided.
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Figure 4.

Case II-1. There are no singularities with fan angles 0 and 7.

It follows from the preceding comments that all four initial segments are of
finite length and that all their translates are free of singularities. Consider the
initial segments Sr and S on R;(p) and L;(p), respectively. In reference to
the decomposition of Lemma 4.2, the piece of R;(p) which follows the straight
line segment Sg is of the form C;(q,0) for some singularity ¢. In light of the
underlying assumption the angles of both fans at ¢ are strictly between 0 and =,
we can assume this arc curves away from the fan F;(p) (that is, that as we move
away from p along this piece of R;(p), the argument of the tangent decreases),
since if it had the opposite sign we could work with S; and L;(p) instead of Sr
and R;(p) and have it curve away from the fan. The remainder of the discussion
of this case is very similar to that of the nondegenerate Case 1. Indeed, let e be p
or q. For 0 < s < 0o, we let E(e,s) be the open i-arc made up of the Cj(e, s), its
endpoint ¢(s) on Lj(e) and the translate of Sr one of whose endpoints is ¢(s).
Furthermore, we let E(e,0) be the translate of Sr one of whose endpoints is e and
which lies to the left of L;(e) (when movement along this characteristic is away
from e), so that E(e,s) is continuous for s > 0. (Note that E(p,0) = Sr.) The
desired conclusion is obtained by following the movement of E(p,s) and E(q, s)
as s varies from 0 to co. Let {e, f} = {p,q}. We consider that E(e,s) is oriented
so that the positive direction along it coincides with that of nondecreasing # and
we denote the initial and terminal points of its closure by a.(s) and b.(s). We let
so,e = 0. Then on an interval [sge,51.e], be(s) traces out an arc of L;(f), which
ends at f. Then we define si ., k > 2, inductively by be(se ) = @e(sk—2,7). Note
that be(s) = f, for s € [s1.¢, S2,¢); on this interval the arcs E(e, s) are initial arcs
of the characteristics of the ¢-fan at f.

For k > 1, let Qr(e) denote the (closed) characteristic quadrilateral with
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vertices b(sp—1.e), a(Sk—1,e), a(Sk,e) and b(sk). These are all bona fide charac-
teristic quadrilaterals, except for QQ2(e) which has the degenerate side ff. The
fact that there are no singularities on any of the E(e, s), s > 0, nor on the Rj(e),
L;(e) means that the only singularities in any of the Q)x(e) are the points p and gq.
It is easy to see that |be(s) — ac(s)] = KA(E(p, s)) — oo so that the union of the
Q1. is the entire plane. Thus indeed the only singularities are p and ¢. Finally,
it is clear that none of the points of ¢([s¢.e,51.¢]) is joined to a singularity by an
i-characteristic, so that this arc is a straight line segment. Comparison with the
construction of the double Riemann nets in Section 1.4 now shows that in this case
the net is Zp ¢ 8,v,o, Where [ is the angle of F;(q), v is the angle of Fj(p) and
« is the inclination of the initial segment of L;(p). This finishes the discussion of
Case II-1.

Case 1I-2. There is a singularity with fan angles 0 and 7 at p. This case is
further divided into the following subcases, where the angles of F;(p) and Fj(p)
are 0 and 7, respectively.

(A) All translates of the initial segments at p are free of singularities.

(B) The midpoint of some translate of an initial segment of L;(p) = R;(p) is
a singularity of 6.

(C) The midpoint of some translate of the initial segments of L;(p) and R;(p)
is a singularity of 6.

Case A. The following discussion is illustrated in Figure 5. As in Case II-1, all
initial segments are of finite length and all their translates are free of singularities.
The piece of R;(p) which follows its initial line segment Sg is of the form Cj(q,0),
o > 0, for some singularity ¢. We may assume that as one moves along R;(p) away
from p, 6 decreases; if this is not the case, one works with L;(p) instead of R;(p).
We assume that the angles of the fans at ¢ are strictly between 0 and 7 ; the minor
modifications required if this is not so (i.e., the angle of F;(q) is 7) are left to the
reader. By assumption R;(p) = L;(p) is free of singularities. Let [ > 0 be the
length of Si. There are translates of Sg (which are all free of singularities) with
endpoints on R;(p) extending outward on both sides of R;(p). Let z(s), s > 0, be
the arc length parametrization of R;(p), and let E(s) denote the open line segment
j-arc of length 2] and with midpoint z(s). We see that starting with E(0), E(s)
moves towards ¢ with one endpoint on L;(¢q), and then on some interval [r,7’]
has an endpoint at ¢ while it rotates around ¢ in the counterclockwise direction
forming initial segments of the characteristics in Fj(q), until E(7') forms the
initial segment of L;(q). Thereafter it has one of its endpoints on R;(g). We now
define E’(s), s > 7/, to be the j-arc consisting of E(s), its endpoint on R;(q)
together with the Cj(q,t) which shares this endpoint. For s = 7" we let E’(s)
consist of E(7’) alone (since the corresponding Cj(q,t) tends to the single point
q as t tends to 0). It is clear that there are no singularities on any of the E’(s)
since there are none on the Cj(q,t), on R;(q) or on the E(s). It follows from the
definition of the E’(s) that both of their endpoints are on L;(q). This, together



Hencky—Prandtl nets and constant principal strain mappings 229

with the fact that L;(q) is free of singularities, implies that

Lwu (U Fe)u( U Be)ua-c

s>1/ 0<s< 7’

where A denotes the semidisk consisting of those translates of Sr which are the
initial segments of the characteristics of Fj(p). But then the only singularities of 6
are p and ¢, so that in particular there are no singularities on any of the translates
of z((O, T)) , which means that this arc is a straight line segment. Hence, this net
is Dy q.x.8,a, where [ is the angle of F;(q), and « is the inclination of the initial
segment of L;(q).

Case B. It is easy to see that this case is identical to the situation which arises
in the foregoing Case A when the angle of F;(q) is m if we interchange the roles
of p and ¢, and 7 and j.

Case C. To be specific, assume that the midpoint m of the translate of the
initial segment Sr of R;(p) along L;(q) = Ri(q) is the singularity ¢g. The line
joining m to ¢ is the initial arc of L;(q) = R;(q); by the defining assumption of
Case II one encounters no singularities as one moves along R;(q) away from q.
Let z(s), s > 0, be the arc length parametrization R;(q), and let E(s) denote
that translate of Sg whose midpoint is z(s). Let 7 > 0 be such that E(7) = Sg.
We assign the (continuously varying) initial point a(s) of E(s) so that a(r) = p.
Then a(s) moves back along R;(p) from a(0) to p, remains at p while E(s)
rotates through an angle of m about p in the counterclockwise direction then
moves along R;(p) for s > 7" =7+ |p—m|r. As s > 7’ increases a(s) traverses
a translate of z((O,T)), a semicircle Cj(q,t), another translate of z((O,T)), a
semicircle Cj(p,t’), and so on. From this it is easy to see that the E(s), s > 0,
together with R;(p) (including p itself) make up all of C. But then once again
the only singularities of # are p and ¢, so that in particular none of the points of
z((O, T)) is joined to a singularity by a j-characteristic, and therefore this arc is a
line segment. Hence, the net is 2, ¢ x.x,a, Where « is the inclination of the initial
segment of R;(q).

5. Boundary limits and constant principal strain mappings
We begin with the following

Lemma 5.1. Let 6 be a nonconstant HP -function on a simply connected
domain D. Then there is an open interval I such that for all M € I the (M,1)-
mappings corresponding to 6 are not one-to-one in D.

Proof. It follows from the hypothesis that there is a point zy at which 0 is
differentiable and at which its gradient does not vanish. Assume for the moment
that ko = D10(z9) # 0. Without loss of generality we may also assume that
0(z0) = 0. Let z(s), |s| < so, 2(0) = 20, be an arc length parametrization of
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an open arc of the 1-characteristic of # through zg, so that 2/(s) = e7(®)* with
7(s) = 0(2(s)). Then 7(s) = kos + o(s), as s — 0. Let f be an (M, 1)-mapping
corresponding to the HP-function 6, and let w(s) = f(z(s)). Again without loss
of generality we can assume that w’(0) > 0. It then follows from the compatibility
equations (1.1) and the fact that f is an (M, 1)-mapping that

’U}/(S) — MeMT(s)i — Meriosi—i—Mo(s) — Meriosi(l +MO(S)),
so that for [t| < 47 /M|ko|

w(t) — w(0) :/OtMeM’“)“'(HMo(S)) d8=w+M20(( o )2)

Kol Mk
(erioti _ 1)

:—,+0(1), as M — oo.
Rt

From this together with the fact that on 2-arcs f does not alter arc length
and changes curvature by a factor of 1/M (as follows from the second equation
in (1.1)) it is clear that for sufficiently large M, f is not one-to-one in D. If we
had D26(zp) # 0, the analogous procedure would give us noninvertible (1, M)-
mappings f for all sufficiently large M ; the desired mappings are then given

by (1/M)f. o

Definition 5.2. We say that 6, is the nontangential limit of § € HP*(D) at
p € 0D if there exists a £ € R such that given any ¢ > 0 there is a § > 0 with
the property that the set

U={p+=z: |arg{z/e®}| < sm—e}t NN'(p,6)

consists entirely of regular points of # in D and the limit as z tends to p of some
single-valued branch of 6(z) in U is 6.

Theorem 5.1. Let D be a domain bounded by a C' Jordan curve. If 0
is an HP* -function on D, then 0 has nontangential limits at almost all points
of OD.

Proof. Let 6 be as in the hypothesis and let S denote the set of singularities
of 6. We shall use (M,1)-mappings f for which 6; = 6. To do so, however,
we must work with a simply connected subdomain of D, which we obtain by
removing from D small pieces which join the points of S to 0D. Every point
of 0D is contained in an almost straight closed subarc C' such that there is a
circular arc C’ lying in D which joins the end points of C' and contains no point
of S. Obviously, it is enough to prove the theorem for the domain bounded by
C U (', so that we shall assume that D has this form. Clearly, there is a bi-
Lipschitz homeomorphism A of D onto the rectangle R with vertices —2, 2,
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2+ 2i, —2 4 2i such that A(S) is contained in the rectangle R and such that
the sum of the imaginary parts of all of the points in A(S) is at most 1. That the
latter is possible follows immediately from Corollary 4.1. Let zx = xx + yx¢ be an
enumeration of the points of A(S) with k starting at 1. Let € > 0 and let g be
the real function on [—2,2] whose graph consists of the segments [—2, z), —£/2%],
[xx —e/2%, 21], [z, v +¢/2F], [x4+¢/2%,2], and let g be the sum of all of the gy c .
We have 0 < ¢.(x) < 1, z € [-2,2]. The domain R, bounded by the graph
of g. and OR\[—2,2| is a Jordan domain contained in R\A(S) whose boundary
contains all of OR except for a set of 1-dimensional measure at most €. Let § > 0.
Since A is bi-Lipschitz, for sufficiently small e, D* = A~1(R.) C D\S is a Jordan
domain whose boundary is rectifiable and contains all of 9D except for a set of
1-dimensional measure less than ¢. Since § > 0 is arbitrary it is sufficient to show
that (any continuous branch of) § on D* has nontangential boundary limits a.e.
on dD*. (Implicit in this construction of D* was the assumption that S # ; if
S =0 welet D*=D.)

E()- SRJD%@)
q

~E(r)

~Efs)

Figure 5.

For each positive M # 1, let fy; be an (M, 1)-mapping of D* corresponding
to 0. Let v(s), 0 < s < L, v(0) = v(L) be a positively oriented arc length
parametrization of the simple closed curve dD*. Obviously, v is differentiable
on a subset B of (0,L) of measure L. It follows from the manner in which
D* was constructed that there is a K such that given any n > 0, for any two
£1,€2 € (0, L), v(&1) and v(&2) can be joined in D* by an arc of length at most
K& — &1l + 1. (Note that the domain R, used to construct D* in the preceding
paragraph has this property with K = 1.) Because of this and the fact that fas
is Lipschitz, fas has a unique continuous extension to D*. Clearly, ¥ (s) =
fm (v(s)) is Lipschitz continuous with constant K max{M,1/M}, so that it is
differentiable on a set Ap; C (0, L) of measure L. Let P denote the set of positive
rationals different from 1, and let A = (;,.p Ax. Let £ € BNA. It is enough to
show that the nontangential limit of 6§ exists at v(£) since A(9D\v(B N A)) = 0.
Without loss of generality we may make the normalizing assumption that v(§) = 0
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and argv’(£) = 0. By appropriately choosing the constants of integration we may
also stipulate that ¥ (€) = 0.

Let H denote the open upper half-plane. All (M, 1)-mappings in H have
a unique continuous extension to H which is Lipschitz continuous with constant
max{M,1/M}, and in dealing with such mappings we implicitly consider that
they have been so extended. Although 6;(z) = 6(tz) is not defined in all of H, for
any compact X C H, 6; is defined in X for all sufficiently small ¢, so that it is
meaningful to talk about local uniform convergence in H of 6; as t — 0. Indeed,
we will have established the desired conclusion if we can show that 6; converges
in H to a constant in this sense. To do so we show first that if for some {¢x}
approaching 0, 6;, tends locally uniformly to x, then x must be a constant xg
which satisfies

(5.2) 4cos® xo + sin® xo = (¢ (5))2.

Let {tx} be such a sequence. By replacing it with a subsequence, if necessary,
we may assume that for each M € P the (M, 1)-mappings far(txz)/tx converge
locally uniformly to an (M, 1)-mapping gas corresponding to x. Since £ € BN A,
it follows that the gps are linear on 0H = R. Assume that x were not a constant.
By Lemma 5.1 there is a g4 € P such that g, is not one-to-one on H. For
convenience we assume that g > 1; the opposite case is dealt with in the same
way apart from minor notational differences. By general injectivity criteria for
quasi-isometries developed by John [J3],

7 =1inf{M € PN (1,00) : gpr is noninjective on H} > 1.

Let {Mj} be a sequence in P N (7,7 + 1) approaching 7 and such that gas, is
noninjective in H. That is, for each k£ there are distinct points ax,by € H for
which g, (ar) = gar, (bk).

It also follows from results of John [J3] that if ¢ is an (M, 1)-mapping in
N(a,r), then g is one-to-onein N(a,r/M). Thus Imay, Imbx < (24 7)|bg — ak|,
since if, for example, Imby > (2 4+ 7)|bx — ag|, then gpr, would be one-to-one
in N (b, (24 7)|bx — ag|/(1+ 7)), which contains both aj and by. Let af =
(ar, —Reay)/|br — ar| and b}, = (b — Reay)/|bx — ak|. Then {a}} and {b)} are
bounded. By replacing { M} by an appropriate subsequence we may assume that
aj, and b) converge to a and b, respectively. Clearly, |b —a| = 1. Let

hi(2) = (9ar, (|br — aklz + Reay) — gu (Reay,)) /[br, — ax].

Then hy is an (Mj,1)-mapping of H associated with the HP-function xx(z) =
Xx(|bx — ax|z + Reay) for which hg(a)) = hi(b),) and hg(0) = 0. Again, by
replacing {Mj} with an appropriate subsequence we may assume that there is
an HP-function X’ on H such that e?X* converges to e2ix’ locally uniformly on
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H and that the hj converge to a (7,1)-mapping h of H associated with x’;
the convergence of the hy is locally uniform on H. But since for M € (1,7),
(M, 1)-mappings associated with y are injective, so are those associated with yg
and therefore also those associated with x’. If [j; denotes the (M,1)-mapping
associated with x’ for which lj;(i) = h(¢) and for which 6;,,(i) = 0x(i) and
®1,,(1) = ¢n(i), then lpy — h as M — 7 uniformly on compact subsets of H .
Since the [j; are injective on H for M € (1,7), so is h. On the other hand,
h(a) = h(b), since hi(a;,) = hg(b,). Thus, a,b € OH. However, since each hy
is linear on OH, so is h. Since a # b, this means that h is a constant on 0H .
But this cannot be since it would imply that the image under h of the strip
0 < Imz < 1, which obviously has infinite area, is contained in a disk of radius 7.
Our assumption that x is not a constant has therefore led to a contradiction, so
that x is indeed a constant xo. That x( satisfies equation (6.2), follows from the
fact that go is a linear (2,1)-mapping of H.

Finally, we show that the #; do in fact converge as ¢ tends to 0. If they
did not, the compactness principle (Proposition 1.9) together with the preceding
paragraphs, would imply that there are two sequences {t;} and {t;} for which
the corresponding sequences {6;, } and {e% } converge to constants x1 < x2, both
of which satisfy equation (5.2) above. Let x3 € (x1,x2) be a number which does
not satisfy that equation. Let zp € H. Since 6(trz0) and 6(t}.z0) tend to xi
and Y2, respectively, it follows from the intermediate value theorem that for all
sufficiently large k there is an s, between t;, and ¢, for which 6(sr20) = x3. But
then by the compactness principle {6s, } has a subsequence which converges to an
HP-function x for which x(z9) = x3. This contradicts what was established in
the preceding paragraph. o

We now relate the class cps* (D, m1,ms) to HP*(D). We define the dilata-
tion pu(p) = pp(p) of an HP-net H (for which the two families of characteristics
have been numbered) as follows. If p is a Riemann singularity with k-fan an-
gles ag, k= 1,2, then p(p) = as/a1, when ag,as # 0, %7‘(’,7‘(’, and is undefined
otherwise. If p is a spiral singularity and «; is the positive acute angle between
the 1-characteristics and the rays emanating from p, then p(p) = cot? a;, when
ag # 0, %7‘(’, 7, and is undefined otherwise. There is an (mj, ms)-mapping f in a
neighborhood of an isolated singularity if and only if p(p) = m1/ms2. Indeed, the
relevant calculations for the spiral nets .7, , were made in (i) of Section 1.4. The
case of Riemann singularities follows immediately from the observation that if
has a Riemann singularity at p with fan angles oy and as, then a necessary and
sufficient condition that there be a one-to-one single-valued (m1,ms)-mapping f
in a neighborhood of p is that the images of these fans have angles which sum
to m. Since these angles are given by (m;/m;)a; the desired conclusion follows
immediately. A standard argument then shows that in order for an HP*-net in a
simply connected domain D to correspond to some (mq,ms)-mapping with the
same set of singularities, it is necessary and sufficient that for all singularities p
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of , pw(p) =mi/me. Note also that from this we have the obvious corollary
to Theorem 4.1: any f €cps™(C) can have at most 2 singularities; those with
no singularities are linear, those with a single singularity correspond to . «,
0 < |a| < g7 and Zpa,p, 0 < |3 — im| < 47, and those with two singularities
correspond to the double Riemann and degenerate double Riemann nets %, 4.«.3,3
and Zp .03, with 0 < |8 — 37| < 7. All questions about the distribution of
singularities of HP*-functions therefore have a direct but more restrictive coun-
terpart for cps*-functions.

We next present a construction which shows that for any smoothly bounded
Jordan domain D there are mappings in cps®(D) which have infinitely many
singularities, but before going into the details, we make a few relevant comments.
If D is a simply connected domain and if s € HP*(D) is known to have a
singularity at some point p € D then there can be no singularity at any point
which is joined to p by a nonbounding characteristic of either of the fans associated
with p in the case of a Riemann singularity or by any characteristic in the case of
a spiral singularity. For this reason it is much easier for an HP-net to have many
singularities if 0D is highly contorted, since pockets formed by 0D will allow
characteristics emanating from p to hit the boundary before covering too much
of D. For this reason it is easy to construct HP*-nets and cps*mappings with
infinitely many singularities (even with infinitely many spiral singularities), but
such constructions will result in domains for which the boundary is not smooth. It
is therefore of interest to see that the appearance of infinitely many singularities
is possible even when the boundary is smooth; this follows immediately from the
following

Theorem 5.2. There is a number M, such that for all M > M there is an
f € cps*(H,1,M), with Riemann singularities at 2¥z;, —0co < k < oo, for some
20 € H={z:Imz > 0}.

Proof. For (small) € > 0 let 7= T(e) denote the circular sector
{1 +itan_1(%5) +pe T 0<p<1, %8 <7 <21 — %5}

We begin by applying the characteristic coordinate constructions of Section 1.2
to obtain an HP*-net with an isolated singularity at p = 1 + itan~'(3¢) with
C1 = {|ple* : %5 <t < m+¢e} and Cy = [0,p] and fan angles € and 7 — ¢,
respectively. For the resulting net the bounding characteristics of the 2-fan are
the sides [p,0] and [p,2] of the sector T+ 1 ={z+1: 2z € T} and the bounding
characteristics of the 1-fan are C; and a convex arc C’" which joins p to a point
b in the third quadrant (whose distance from e*("*+¢) is O(g)). Let Fy be the
translate of C’ along the 2-arc formed by the segment [p,2]; Fy is also a convex
curve and joins 2 to some point ¢y in the third quadrant. Note that the line
segment 2-arc [b,co| is horizontal. The HP*-net so constructed is defined in the
domain bounded by the 1-arc {p+¢e' : 7+ %5 <7< 21— %5} U Fy and the 2-arc
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[co,b] Ubg U [q,0], where ¢ = —e®*. We now extend this net outward to larger and
larger parts of H.

Assume inductively that we have a convex curve F}, k > 0, with the following
properties:

(i) Fy starts at ax = 6-2¥ — 4 on the positive real axis and joins this point
to a point cx in the third quadrant.

(ii) The tangents to Fy at ar and ¢ have argument %(7? —¢) and %7?,
respectively.

(iii) There is an HP*-net in a domain D), which contains the region bounded
by the part of Fj lying in the upper half-plane and a segment of the real line and in
which the only singularities of the net are at the points 5-2™ —4 442" tan™*(1¢),
0<m<k.

(iv) F) is a 1-characteristic of this net.

(v) Each point of Fj other than ay is joined to 0 by a 2-characteristic of the
net of (iii) which consists of a line segment [0,¢""], e < 7 < 7+ ¢, followed by a
curve along which the argument of the tangent lies in the interval [r — %5, T+ %5] .

The arc Fy satisfies (i)—(v). A simple compactness argument shows that
(v) implies that there is an ey, 0 < g9 < 1/100, such that if ¢ < g¢, then
AFk) < 2may . (The number g is an absolute constant which does not depend
on k.) Henceforth we assume that ¢ < ¢y.

Let Ej be the circle of radius 2% csc(%e) centered at the point 7-2F —4 +
i2* cot(4e) which joins the point ax to 8 -2F — 4 in the lower half-plane. Note
that the tangent to this arc at 8 - 2¥ — 4 has argument %5. We apply the usual
characteristic quadrilateral HP-construction (Proposition 1.3) with Fj as the 1-
arc and

Gr=ErU[8-2F —4,10-2" — 4 + 2" tan™" (Le)]

as the 2-arc. It is clear from the definition of ¢y that we have an a prior: bound of
27-10-2F = 57 -28+2 on the length of the translates of F}, along the 2-arc Ej, so
that the concavity of Ej causes no singularity formation (that is, the mapping ¢
of Proposition 1.3 is one-to-one in the whole rectangle I; x I5) since the curvature

of the curved part of this arc is 27*sin(3¢), and

2~k sin(3¢) - 57 - M2 < 107e < 107meg < T < 1.

Denote by Fj the translate of Fj, along Gj. We then put a singularity with
1- and 2-fan angles ¢ and 7 — ¢, respectively, at 10 - 2% — 4 4 §2F+1 tan_l(%e),
constructed in accordance with the procedures of Section 1.2, with 1-arc F} and
2-arc Gi. The 2-fan contains the entire sector Typyq = 2FH1T + 5. 2FF1 — 4,
Let F}' be the other bounding arc of the 1-fan, and let Fj4; be the translate
of F}' along the right-hand segment of 07)41. One sees that Fj4; starts at
6-2F+1 — 4 and has the correct tangent angle there. For Dyy1 we take Dy U Tk

together with the region covered by the translates of Fjy along Gy, the 1-fan
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with bounding characteristics F} and F]' and the translates of F}' along the
right-hand segment of 0Ty11. The 2-arcs lying in this new region and joining
points of Fj and Fjy; consist of two line segments and two curved arcs which
have total curvature (when reckoned as one moves away from the origin) € and
—e, respectively. From this it follows that the terminal point of Fj4; indeed lies
in the third quadrant and that its tangent there has argument %7?. It is also
clear that (v) holds for k£ + 1. The result of the entire inductive process is an
HP*-net in all of H having singularities with dilatation (m — €)/e at the points
2F(5 +itan~'(3¢)) — 4, k > 0. Consideration of a convergent subsequence of
{6(2"z) : n > 0}, where 6 is a corresponding HP-function, yields a HP*-net with
singularities of this kind at the points 2* (5 +itan_1(%€)) , —00 < k < oo, which,
in turn gives the desired cps*-mapping. o

The discussions of this and the preceding sections allow us to give some jus-
tification for identifying microscopic flaws in cryptocrystalline laminae with iso-
lated singularities of the corresponding cps-mappings, or to be more precise, with
isolated singularities of the HP-function 6 corresponding to the inverse of the cps-
mapping giving the deformation. Assume that the original uncrystallized lamina
is represented by D C C and that the deformation produced by the crystalliza-
tion is given by a homeomorphism f: D — C which is a cps-mapping on D\S.
Here S is a closed set with components Si, k& € I C N. The flaws will be
the f(Sk). In the first place, because small flaws in close proximity to one an-
other are apt to be perceived as a single larger flaw, it is reasonable to consider that
a truly tiny flaw should be isolated as well as minute, that is, that for some T" > 0,
dist(f(Sk), f(S1)) > T for all distinct k,l € I and diam(f(Sk)) <e, k € I, where
¢ > 0 is some suitably small number. A simple compactness argument shows that
for given T,d1,d2 > 0, there is an € > 0 such that if § € HP (N(p, T)\F) with
F C N(p,e), then there is a 6y € HP (N’(p, T)) such that

sup{|0(z) — 0o (2)| : 61 < |z —p| < T} < 02.

In a neighborhood of f(Sk), €;-: is therefore either close to an HP-function 6
with an isolated singularity at some p € f(Sk) or to one which is regular in
that neighborhood, these two possibilities being mutually exclusive since, as our
analysis shows, the 6y with a true singularity at p are not approximable in any
reasonable sense by functions in HP (N (p, T )) . In the case that 6 is regular we
discard the flaw f(Sy) from consideration as such since its presence would produce
no macroscopic effects. It would therefore appear that cps*-mappings provide a
reasonable mathematical description of deformations induced by the solidification
of planar liquid films which result in laminae known only to have microscopic flaws.

6. Further questions

In line with the geometric function theory focus outlined in the fourth para-
graph of the introduction, the most immediate issues raised by the foregoing in-
volve extremal questions about the possible distribution of the singularities of
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0 € HP*(D) and f €cps*(D), and more specifically f €cps®(D,m1,mz). The
cps-cases of this question have clear-cut significance in physical situations involving
deformations with constant principal strains.

Since Corollary 4.1 says that for any Jordan domain D with smooth boundary
the sum of the distances to the boundary of the singularities of any § € HP*(D) is
bounded by 3A(0D)/m, it is most reasonable to ask about the smallest possible up-
per bounds for this sum, and for its analogues for cps™ (D) and cps* (D, m1,m2).
Although in general it is probably not possible to give an explicit answer to this
question in terms of transparent geometric parameters of the domain D, it may
well be in the case of disks; it is not clear, however, whether these problems
have corresponding extremal functions. Somewhat more accessible, perhaps, is
the determination of the greatest number of singularities that can appear in a
given compact subset K of D; again the disk case, with K a concentric disk,
is the most interesting instance. Theorem 5.2 tells us that given m;, mo with
m1/mgo > 1 sufficiently large, cps™ (D, m1, m2) contains mappings with infinitely
many singularities. One wonders if the condition that m/ms be sufficiently large
can be removed. Moreover, given the interpretation of cps-mappings in the context
of cryptocrystalline laminae, it would be of considerable interest to determine if
there always exist injective f €cps* (D, m1, me) with infinitely many singularities,
since noninjective f correspond to laminae which overlap themselves upon solid-
ification. We believe that it should not be too difficult to resolve this issue. In a
less quantitative direction we mention the possibility that if § € HP(D\S), where
S is a “sufficiently small set” (linear measure 0 is perhaps small enough), then,
in fact, # can be extended to an HP-function in D\S’, where S’ C D consists
entirely of isolated points of D.

The distribution of isolated singularities is only one of the numerous issues
regarding HP-nets and cps-mappings which invite investigation. In addition to
the distortion questions touched on in [G1], specific mapping problems offer an-
other possibility. Here the analogy with conformal mappings becomes somewhat
thin, since as will be shown in the sequel [G4] to this paper (see also [G3]), given
any smoothly bounded Jordan domain D there is another such domain E such
that for no f €cps(D) is f(D) = E. This raises the problem of finding general
(but not necessarily exhaustive) intrinsic conditions on domains D and E which
imply the existence of cps-homeomorphisms of one onto the other; particularly
interesting is the question of when a domain has cps-self-homeomorphisms. An
important tool for studying such mapping questions is the fact that if D and F
are smoothly bounded domains and if f is a cps-homeomorphism of D onto E,
then characteristics of the associated HP-function 6 which meet 9D do so at a
well defined angle. This by no means trivial fact, to be proved in [G4], implies
that the boundary values of 6 are well defined (in an appropriate sense) and as a
result allows one to relate such mapping questions to Cauchy problems. This, in
turn, makes it possible to give simple descriptions of all cps-self-homeomorphisms
of the half-plane and the exterior of a disk. All of these mapping questions have
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corresponding cps*-versions and obvious interpretations in the context of cryp-
tocrystalline laminae.

Constant principal strain mappings between 2-manifolds are treated in [ChG]
and one can ask if it is possible to say something about the distribution of sin-
gularities in that context. In that paper a complete description of the infinite di-
mensional family of cps-self-homeomorphisms of the hyperbolic plane H? is given,
so that it would be interesting to find the H?-analogue of Theorem 4.1. One
might also ask if it is possible to derive some global results for higher dimensional
mappings with constant principal strains, which are governed by a much more
complex nonlinear hyperbolic system (see [G2]) or whether the results on HP-nets
contained in this paper can be generalized to families of nets associated with other
2 x 2 genuinely nonlinear hyperbolic systems.
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