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Abstract. The work presented in this paper is motivated in large measure by the appearance
of Hencky–Prandtl nets (HP-nets) in the context of planar quasi-isometries with constant principal
stretching factors (cps-mappings) and by compelling analogies between such mappings and those
given by analytic functions of one complex variable. We study the behavior of HP-nets in the
vicinity of isolated singularities and use the results of this analysis to show that if an HP-net
is regular in the entire plane except for isolated singularities, then it can have at most two of
them, and that all possibe nets of this kind fall into five classes each of which depends on a
small number of parameters. In light of the relationship between HP-nets and cps-mappings it
follows that an analogous statement holds for the latter as well, and this connection is further
exploited to prove that HP-nets regular except for isolated singularities in smoothly bounded
Jordan domains have nontangential limits in the appropriate sense at almost all boundary points.
The treatment includes, in addition, an interpretation of cps-mappings with isolated singularities
as deformations produced by the cryptocrystalline solidification with microscopic flaws of a planar
film and a discussion of the problem of just how the singularities of such mappings can actually
be distributed in a given domain.

Introduction

Disregarding considerations of regularity and connectivity, two mutually or-
thogonal one-parameter families of curves (called characteristics), covering a given
plane domain D , form a Hencky–Prandtl net (abbreviated as HP-net) if for any
two fixed curves C1 , C2 belonging to one of the families, the change in the inclina-
tion of the tangent is the same along all subarcs of curves of the other family which
join a point of C1 to a point of C2 . Such nets are of importance in the theories of
plasticity (see [Hi]) and optimal design (see [Hem]), and there is an extensive liter-
ature dealing with the analytic and numerical construction of HP-nets that satisfy
various boundary conditions arising in connection with these theories as well as
other applied problems. The local theory of such nets seems to have been worked
out fully by Prandtl [Pra], Hencky [Hen] and Carathéodory–Schmidt [CS]. A paper
of Collins [C] contains an excellent discussion of numerous aspects of the theory of
Hencky–Prandtl nets and an encyclopedic bibliography. Moreover, G. Strang and
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R.V. Kohn [SK] have described a problem which involves construction of HP-nets
in both the plasticity and optimal design contexts in different parts of a given
domain.

The present discussion is motivated by yet another connection in which HP-
nets arise, namely that of planar deformations for which the principal strains are
distinct constants, henceforth called cps-mappings. Indeed, it is not difficult to
show (see Proposition 1.1) that two mutually orthogonal families of curves covering
a simply connected domain are the families of the lines of principal strain of a cps-
mapping if and only if they form an HP-net. This class of mappings presents itself
as a natural object of study in various ways.

First of all, they constitute a simple class of quasi-isometries (essentially de-
formations with bounded principal stretching factors) introduced and studied by
F. John ([J1], [J2], [J3]). It is quite likely that for many of the as yet unresolved
distortion questions for quasi-isometries raised by John, extremal behavior is dis-
played by cps-mappings and their higher dimensional analogues. Regardless of
whether this proves to be the case, cps-mappings form a nontrivial but nonethe-
less tractable class of quasi-isometries whose study yields valuable insights into
the extent of global distortion consistent with given bounds on local stretching.

Secondly, although governed by a nonlinear hyperbolic system (equations (1.1)
in Section 1.2) cps-mappings bear, in many aspects of their behavior, notable simi-
larities to conformal mappings, more precisely to conformal mappings f for which
Re{log f ′(z)} is bounded. There are several ways in which the analogy can be
drawn, but for the purposes at hand it is enough to say that the function which
gives the inclination of the tangent line to the curves of either of the families of the
associated HP-net (to be referred to as an HP-function in the sequel) takes the role
of the harmonic function arg f ′(z) . A simple, but striking instance of this simi-
larity is the HP-version of Liouville’s theorem on bounded harmonic functions: an
HP-function regular in the entire plane is necessarily a constant. Moreover, pos-
sibilities for developing a distortion theory for cps-mappings paralleling parts of
the classical geometric theory of functions of one complex variable are described
at some length in [G1, Section 4] where a numerically sharp result in this vein
is established. In this paper we follow the function theory model in an inves-
tigation of isolated singularities of HP-nets and cps-mappings. In Section 1 we
set down formal definitions of HP-nets and cps-mappings with minimal regularity
requirements, discuss their basic properties (with proofs included for the sake of
completeness), describe several procedures for the construction of HP-nets and
define several specific nets which play a fundamental role in the succeeding devel-
opment. The following two sections are devoted to an analysis of the behavior of
HP-nets in the vicinity of an isolated singularity. Isolated singularities fall into two
distinct categories depending on whether the associated HP-function is bounded
on some characteristic terminating at the singular point or not; these two cases
are fully analyzed in Sections 2 and 3, respectively (see Theorems 2.1 and 3.1).
The results of this analysis yield information about the global consequences of the
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presence of a given singularity which stem from the hyperbolic nature of the under-
lying equations. It turns out that there are severe restrictions on the distribution
of isolated singularities of an HP-net in a given domain, the exact form of which
depends to a large extent on its shape—the less contorted the boundary the more
difficult it is for there to be a lot of singularities. The ultimate manifestation of
this phenomenon (that is, in the case in which there is no boundary) is contained
in one of the main results: in Section 4 we show that an HP-net regular in the
entire plane except for isolated singularities can have at most two singularities and
that every such net belongs to one of five families, each of which is described by
a few parameters (see Theorem 4.1). The small number of possibilities for such
HP-nets is most consistent with the analogy we have been pursuing—a harmonic
function whose conjugate is bounded and regular in the whole plane except for iso-
lated singularities must be a constant. In a somewhat different direction, we use
the relationship between HP-nets and cps-mappings to show in Section 5 that an
HP-function regular except for isolated singularities in a smoothly bounded Jordan
domain D possesses nontangential limits at almost all points of ∂D . This result
closely parallels the classical Fatou theorem (see [Pri]) on the boundary behavior
of bounded harmonic functions (and their conjugates). This section also contains
a construction which shows that, in spite of the aforementioned limitations on the
distribution of isolated singularities, on any such domain there are cps-mappings
having infinitely many of them (Theorem 5.2).

Finally, deformations with constant principal strains are of concrete interest
in connection with models of real situations, several of which are briefly discussed
in [Y]. Consider, for example, a thin liquid film on a plane surface which upon
solidification takes on a cryptocrystalline structure, that is, at each point a suitably
oriented infinitesimal square of the original liquid becomes an (again, suitably
oriented infinitesimal) rectangular crystal whose side lengths are constant multiples
of the side length of the square. In this light global geometric results for cps-
mappings acquire new significance in as much as they tell one about the extent to
which the shape of the original film can change as a result of such a solidification
process. Furthermore, one can interpret isolated singularities in this context as
microscopic flaws in the crystallized lamina, as is explained in some detail in the
final paragraph of Section 5.

1. Preliminaries

1.1. Notation and terminology. For convenience we treat the plane as C ,
rather than as R2 , and denote planar vectors as complex numbers. Let D ⊂ C be
a domain and let θ be a locally Lipschitz continuous real-valued function on D .
The complete integral curves of the fields eiθ and ieiθ will be called 1- and 2-
characteristics of θ , respectively. The convention that {i, j} = {1, 2} will hold
throughout. Arcs of i-characteristics will be called i-arcs, or less specifically,
characteristic arcs. With reference to a given θ a characteristic arc joining points
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a, b ∈ D will be denoted by ab and we shall use the abbreviation

∆θ(ab) = θ(b) − θ(a).

A domain Q ⊂ D will be said to be a characteristic quadrilateral of θ if ∂D is a
Jordan curve lying in D containing four points a , b , c , d occurring in that order
when ∂D is traversed (in either the positive or negative sense) and such that ab
and cd are i-arcs and bc and da are j -arcs. We will refer to such a Q as abcd
and use the abbreviation

∆2(abcd) = ∆θ(bc) −∆θ(ad) = ∆θ(dc) −∆θ(ab).

Furthermore, D1 and D2 will denote differentiation with respect to arc length in
the directions eiθ and ieiθ , respectively; that is, for differentiable u

D1u(z) = cos
(
θ(z)

)
ux(z) + sin

(
θ(z)

)
uy(z),

D2u(z) = − sin
(
θ(z)

)
ux(z) + cos

(
θ(z)

)
uy(z).

We use the symbol λ(E) to denote the 1-dimensional measure of the set E , so
that in particular λ(C) is the length of the simple arc C .

1.2. Definition and basic properties of HP-nets and cps-mappings.
In dealing with HP-nets it is frequently more convenient to work with the function
θ which gives the inclination of the tangent to the curves belonging to one or the
other of the two families that make up the net, rather than with the net itself.
Since, however, we shall be working with domains that are not simply connected,
an inevitable contingency in any discussion of singularities, a minor complication
arises; namely, that upon going around a hole θ may change its value by a multiple
of π , (not 2π) . Thus, in the following definition we consider functions which,
although not necessarily single-valued in the entire domain D under consideration,
do have a single-valued branch on any simply-connected subdomain of D .

Definition 1.1. Let D ⊂ C be a domain. A (possibly multivalued) function
θ on D is called an HP-function if it satisfies the following conditions:

(i) Every point p in D has a neighborhood E on which θ has a Lipschitz
continuous branch and satisfies ∆2(abcd) = 0 for all characteristic quadrilaterals
abcd of θ contained in E .

(ii) e2iθ is single-valued in D .

The set of all HP-functions on D will be denoted by HP(D) .
It is necessary to consider e2iθ in (ii), rather than eiθ , since, as noted above,

in going around a hole in D , θ might change by a multiple of π . We will use the
term HP-net to refer to the families of integral curves of the fields eiθ and ieiθ ;
through each point of D there passes exactly one curve of each family. It is evident
that the corresponding net remains unchanged if we add 1

2π to an HP-function;
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this causes, of course, an interchange of the two families of characteristics. We
use the notation HP(D) to denote the set of all HP-nets, as well as the set of all
HP-functions, on D ; this minor ambiguity will cause no confusion.

To discuss cps-mappings we need the following notation:

T (θ) =

[
cos θ sin θ
− sin θ cos θ

]
and S(m1,m2) =

[
m1 0
0 m2

]
,

where here and in what follows m1 and m2 are distinct positive numbers.

Definition 1.2. A mapping of a domain D ⊂ C into C is called an (m1,m2)-
mapping if each point of D has a neighborhood N in which there are two Lipschitz
continuous functions θ = θf and φ = φf such that the Jacobian matrix Jf of f
is given by T (−φ)S(m1,m2)T (θ) .

If θ and φ are Lipschitz continuous in a simply-connected domain D , then
T (−φ)S(m1,m2)T (θ) is the Jacobian matrix of a mapping if and only if

(1.1) D1(m1θ −m2φ) = 0 and D2(m1φ−m2θ) = 0 a.e. in D,

or in other words

(1.2) miθ −mjφ is constant along i-arcs of θ.

To see this, it is enough to show, in light of the Lipschitz continuity of θ and
φ , that these conditions simply amount to the formal necessary and sufficient
compatibility conditions on the entries of a matrix in order for it to be the Jacobian
of a mapping. For a given fixed p ∈ D , let θ0 = θ(p) and φ0 = φ(p) , and let
D1u , D2u denote the directional derivatives of u at p in the directions eiθ0 and
ieiθ0 , respectively. Then functions A and B give D1u and D2u if and only if
D2A = D1B . (Note that at p D1D2u is not the same as D1D2u since the latter
involves derivatives of θ and the former does not. The compatibility conditions
can, of course, be formulated in terms of D1D2u and D2D1u—see (1.4) below—
and we shall make subsequent use of that formulation also.) Let f = u+ iv . Then
Jf = T (−φ)S(m1,m2)T (θ) is equivalent to

[
D1u D2u
D1v D2v

]
= T (−φ)S(m1,m2)T (θ)T (−θ0) = T (−φ)S(m1,m2)T (θ − θ0).

The compatibility conditions for this matrix are equivalent to those for any left
multiple by a constant invertible matrix, a convenient choice in this case be-
ing T (φ0) . If we write θ̄ = θ − θ0 and φ̄ = φ − φ0 then the compatibility
conditions simply state that the result of applying D1 to the second column of
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T (−φ̄)S(m1,m2)T (θ̄) is the same as that of applying D2 to the first column.
Since θ̄ and φ̄ are both 0 at p and

T (−φ̄)S(m1,m2)T (θ̄)

=

[
m1 cos φ̄ cos θ̄ +m2 sin φ̄ sin θ̄ m1 cos φ̄ sin θ̄ −m2 sin φ̄ cos θ̄
m1 sin φ̄ cos θ̄ −m2 cos φ̄ sin θ̄ m1 sin φ̄ sin θ̄ +m2 cos φ̄ cos θ̄

]
,

a trivial calculation shows that at p , and therefore at any point, the compatibility
equations take the form (1.1) as desired.

Equations (1.1) constitute the nonlinear hyperbolic system alluded to at the
beginning of the fourth paragraph of the introduction. We next have

Proposition 1.1. Let D be a simply connected domain and m1 , m2 distinct
positive numbers. Then θ = θf for some (m1,m2)-mapping f of D if and only
if θ is an HP-function on D .

Proof. Let θ and φ be the functions associated with an (m1,m2)-mapping
f of D and let abcd ⊂ D be a characteristic quadrilateral with 1-sides ab, dc .
Then from (1.2) we have

∆2φ(abcd) = ∆φ(dc)−∆φ(ab) =
m1

m2

(
∆θ(dc)−∆θ(ab)

)
=
m1

m2
∆2θ(abcd).

But if we write ∆2φ(abcd) as ∆φ(bc)−∆φ(ad) , we see that ∆2φ(abcd) also equals
(m2/m1)∆2θ(abcd) , so that indeed ∆2θ(abcd) = 0.

Conversely, given that θ is an HP-function, let Q be a closed characteristic
quadrilateral in D and let p be an interior point of Q . Then, since ∆2θ(Q′) = 0
for all characteristic quadrilaterals Q′ ⊂ Q , it is clear that once φ(p) = φ0 has
been assigned, there is a unique φ in Q which satisfies (1.2). This φ can then be
extended bit by bit “from one characteristic quadrilateral to the next” to all of D
so that (1.2) holds, that the resulting φ is single-valued follows from the simple
connectedness of D via the monodromy principle. By what was established above
the matrix T (−φ)S(m1,m2)T (θ) is the Jacobian of an (m1,m2)-mapping of D ,
as desired.

It is clear that given an (m1,m2)-mapping on a simply connected domain D ,
the (continuous) HP-function θ = θf is uniquely determined to within an additive
constant (which is a multiple of π ), and that all (m1,m2)-mappings g of D for
which θg = θf are of the form eiαf + z0 , α ∈ R , z0 ∈ C . The i-characteristics
are the curves along which f changes arc length by a factor of mi .

For a function θ ∈ C2(D) straightforward formal calculation shows that each
of the equations

(1.3) DjDiθ = (−1)j(Diθ)
2
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when written in terms of differentiation in the x and y directions takes the form

1
2 (sin 2θ)(θyy − θxx) + (cos 2θ)θxy = (cos 2θ)(θ2

x − θ2
y) − 2(sin 2θ)θxθy,

so that each case of (1.3) implies the other. The meaning of equations (1.3) can be
expressed in the following geometric form. If κi(z) denotes the unsigned curvature
of the i-characteristic Ci(z) through z , then the derivative of κi in the direction
orthogonal to Ci(z) towards its concave side is κ2

i . Of key importance in what is to
follow is the fact that the solution of the equation κ′(t) = κ2(t) , with κ(0) = κ0 is
κ(t) = κ0/(1−κ0t) . Equations (1.3) consequently imply that if κi 6= 0 it increases
as we move along Cj(z) towards the concave side of Ci(z) and decreases as we
move along Cj(z) in the opposite direction. In particular the length of any j -arc
emanating from z towards the concave side of Ci(z) is at most 1/κi(z) .

Proposition 1.2. Let D be a simply connected domain and θ ∈ C2(D) .
Then θ is an HP-function if and only if equations (1.3) hold on D .

Proof. Let θ ∈ C2(D) . Straightforward calculations show that functions
A,B ∈ C1(D) are of the form A = D1u and B = D2u for some u ∈ C2(D) if
and only if

(1.4) D2A−D1B = AD1θ +BD2θ

holds. That is, the compatibility conditions may be expressed in this form (see the
discussion following (1.2)). Assume that θ is an HP-function and let m1 , m2 be
distinct positive numbers. Let φ be a function (whose existence was established
in the preceding proposition) for which (1.1) holds. Applying (1.4) first with
A = D1θ , B = D2θ and then with

A = D1φ =
m1

m2
D1θ, B = D2φ =

m2

m1
D2θ,

we have

(1.5) D2D1θ −D1D2θ = (D1θ)
2 + (D2θ)

2,

and

(1.6)
m1

m2
D2D1θ −

m2

m1
D1D2θ =

m1

m2
(D1θ)

2 +
m2

m1
(D2θ)

2,

from which the equations (1.3) follow immediately.
Conversely, let θ ∈ C2(D) satisfy (1.3). We define

P =
m1

m2
D1θ and Q =

m2

m1
D2θ.

Then it follows from (1.3) that

D2P −D1Q = PD1θ +QD2θ,

so that there is a function φ satisfying D1φ = P and D2φ = Q ; that is, the
function φ satisfies (1.1). Thus θ is an HP-function by the preceding proposition.
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In order to proceed with the development of the local analytic aspects of the
theory of HP-nets and cps-mappings, and to have an important tool for the con-
struction of such we need to introduce characteristic coordinate mappings. Let
θ be an HP-function on a domain D . Let Ii = [ai, bi] , τi ∈ Ii , i = 1, 2. Let
p ∈ D and let z = zi(s) , s ∈ Ii be an arc length parametrization of the i-arc
through p with zi(τi) = p , i = 1, 2. For (t1, t2) ∈ S = I1 × I2 let ζ(t1, t2) be
the point common to the 1-characteristic through z2(t2) and the 2-characteristic
through z1(t1) . For λ(I1) and λ(I2) sufficiently small ζ: S → D is a bi-Lipschitz
homeomorphism, as follows from the Lipschitz continuity of θ and simple facts
about the dependence of solutions of ordinary differential equations on initial val-
ues. Without loss of generality we can assume that |θ(z)| < 1

4π in the correspond-
ing characteristic quadrilateral ζ(S) , so that in what follows all arguments lie in
the interval

(
− 1

4π,
3
4π
)

. We write αi(s) = arg{z′i(s)} . That θ is an HP-function
is equivalent to

(1.7) ω(t1, t2) = θ
(
ζ(t1, t2)

)
= α1(t1) + α2(t2)− α2(τ2).

Because θ is Lipschitz continuous, αi is differentiable a.e. on Ii and α′i is a
bounded measurable function. If ζ = ξ + iη , then the functions ξ , η satisfy the
system

(1.8) ξt1 sinω − ηt1 cosω = 0; ξt2 cosω + ηt2 sinω = 0.

Writing
v = −ξ sinω + η cosω and u = ξ cosω + η sinω,

that is, u+ iv = ζe−iω , the system (1.8) takes the form

(1.9) ut2 = α′2(t2)v; vt1 = −α′1(t1)u.

This is a very simple hyperbolic system which becomes even more transparent
when expressed in integral form

v(t1, t2) = v0(t2)−
∫ t1

τ1

u(τ, t2)α′1(τ ) dτ,

u(t1, t2) = u0(t1) +

∫ t2

τ2

v(t1, τ )α′2(τ ) dτ,

where

(1.10)
u0(t1) = Re{z1(t1)e−iα1(t1)},
v0(t2) = Im{z2(t2)e−i(α2(t2)+α1(τ1)−α2(τ2))}.

Clearly, u0 and v0 are Lipschitz continuous.
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A straightforward and standard argument based on iteration shows that given
continuous u0 and v0 this system of integral equations has a global solution
u, v ∈ C(S) which consequently satisfies (1.9) almost everywhere; the solution
is, moreover, unique. Furthermore, if the initial data as well as the functions α1 ,
α2 are C∞ , then the solution is likewise C∞ on S ; this standard regularity result
stems from the fact that the derivatives of u and v satisfy a system of the same
general form. Consequently, if we start with C∞ arc length parametrizations
z = zi(s) , s ∈ Ii with

(1.11) z1(τ1) = z2(τ2) and z′2(τ2) = iz′1(τ1),

then we will obtain a C∞ mapping ζ: S → C . It is easy to see that if this mapping
is one-to-one, then the images of the lines ti =const form an HP-net on ζ(S) ; that
is, that θ(z) = ω

(
ζ−1(z)

)
will be an HP-function. In general, of course, ζ will

not even be locally one-to-one, because the images of lines ti =const can cross.
However, if we are given an upper bound K for the curvatures of the initial curves
zi(Ii) , then equations (1.3) allow one to deduce that there exist δ = δ(K) and
L = L(K) such that ζ will be one-to-one in N = [τ1−δ, τ1−δ]× [τ2−δ, τ2−δ]∩S ,
and that the corresponding θ will satisfy a Lipschitz condition with constant L
in ζ(N) . From this, via a simple approximation procedure and a compactness
argument, one can show that the same is true if one only assumes that the functions
arg zi satisfy Lipschitz conditions with constant K (instead of the initial curves
being C∞ with curvatures bounded by this constant). Summarizing, we have the
following

Proposition 1.3. If z = zi(s) , s ∈ Ii , i = 1, 2 are arc length parametriza-
tions for which the arg{z′i(s)} are Lipschitz continuous and satisfy (1.11), then
there is some neighborhood N of (τ1, τ2) in S on which ζ is one-to-one and such
that θ(z) = ω

(
ζ−1(z)

)
is an HP-function on ζ(N) .

If ζ is one-to-one on all of S , as will be the case when the Ci = zi(Ii) are
adjacent sides of a characteristic quadrilateral of an already existing HP-function,
then we shall refer to the curves ζ(I1 × {t}) , t ∈ I2 as translates of C1 along
each ζ({t} × I2) , t ∈ I1 and call them parallel arcs, and analogously when the
roles of the indices 1, 2 are reversed. We shall also refer to Ci and Cj as being
perpendicular or orthogonal to each other. We shall refer to the uniquely defined
net given by θ(z) = ω

(
ζ−1(z)

)
in the image of any neighborhood of (τ1, τ2) in

which ζ is one-to-one as HP(C1, C2) .

Proposition 1.4. If, in addition to the hypotheses of Proposition 1.3, we
assume that arg{z′1(s)} is nonincreasing on I+

1 = {t ∈ I1 : t ≥ τ1} and arg{z′2(s)}
is nondecreasing on I+

2 = {t ∈ I2 : t ≥ τ2} , then ζ is locally one-to-one on I+

1 ×I+

2

and θ(z) = ω
(
ζ−1(z)

)
is an HP-function on ζ(J) for any open J ⊂ I+

1 × I+

2 on
which ζ is one-to-one.
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Proof. The hypotheses imply that z1(I+

1 ) is convex toward its left-hand side
(i.e., toward the side corresponding to increasing t2 ) and that z2(I+

2 ) is convex
toward its right-hand side (i.e., toward the side corresponding to increasing t1 ).
In the C∞ case this means, in light of the significance of equations (1.3) (see the
paragraph immediately preceding Proposition 1.2), that both families of charac-
teristics diverge, that is, that the curvatures of the i-characteristics decrease with
increasing tj . From this the locally one-to-one character of ζ follows immediately.
(The mapping might fail to be globally one-to-one due to the possibility that ζ
might not give a simple covering of ζ(I+

1 × I+

2 ) .) The general case follows by
approximating the zi by sequences {zi,n(s)} of C∞ arc length parametrizations
for which the arg{z′i,n(s)} have the stipulated monotonicity as well as uniformly
bounded derivatives which tend to d arg{z′i(s)}/ds in measure.

Next, we explain the sense in which equations (1.3) hold for general (i.e., not
necessarily C2 ) HP-functions θ . We define Ei = Ei(θ) to be the set of all points p
such that if z = z(s) , −ε < s < ε , with z(0) = p is an arc length parametrization
of an i-arc of θ containing p , then θ

(
z(s)

)
is differentiable at s = 0. Obviously,

almost all points (with respect to arc length) of each i-characteristic belong to
Ei and almost all points of the domain on which θ is defined (with respect to
2-dimensional measure) belong to E1 ∩ E2 .

Proposition 1.5. Let θ be an HP-function on D and let Ck , k = 1, 2 , be
the k -characteristic through p ∈ Ei . Then Cj ⊂ Ei , and equation (1.3) holds
along Cj , when Dj is iterpreted as arc length differentiation along Ck in the
direction ik−1eiθ , k = 1, 2 .

Proof. Without loss of generality we assume, for definiteness, that p ∈ E1 .
Let z = zi(s) , −α ≤ s ≤ α , i = 1, 2 be arc length parametrizations of small
pieces of C1 and C2 with zi(0) = p and with the directions of increasing s
correspond to eiθ and ieiθ , respectively. Let κi(s) = d arg{z′i(s)}/ds . Let ζ
be the corresponding characteristic coordinate mapping and let Fi(t1, t2) denote
the translate of zi([0, ti]) along Cj from p to zj(tj) . Since κ0/(1− tκ0) is the
solution of the initial value problem κ′ = κ2 , κ(0) = κ0 , it is clearly enough to
show that for each t ∈ (0, α]

(1.12) lim
s→0+

θ
(
ζ(s, t)

)
− θ
(
ζ(0, t)

)

λ
(
F1(s, t)

) =
κ1(0)

1− tκ1(0)
.

That (1.12) also holds for negative t and as s → 0− , can be deduced with
minor notational adjustments to the argument to follow. Because of trivial com-
pactness considerations the size of α > 0 is not important, so that we may assume
that

(1.13) sup{|κi(s)| : i = 1, 2, |s| ≤ α} ≤ 1

100α
.
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Here “sup” is to be interpreted as “essential supremum”. This condition implies
that the Fi(t1, t2) are very close to being straight line segments, and in addition
that if we start with C∞zi satisfying it, then the corresponding characteristic
coordinate mapping will be one-to-one in [−α,α] × [−α,α] . We fix such an α .
Very simple estimates show that

lim
s→0

λ
(
F2(s, t)

)
= t, 0 < t ≤ α,

uniformly over the class of all ζ arising from C∞zi satisfying (1.13).
The equation D2D1θ = (D1)2 , expressed in terms of the radius of curvature

R1 = 1/κ1 , says that D2R1 = −1. Now, for such C∞ initial curves, a simple cal-
culus argument involving an appropriate Riemann sum and passage to the limiting
integral, together with this differential equation for R1 shows that

λ
(
F1(s, t)

)
=

∫ s

0

1− κ(σ)λ
(
F2(σ, t)

)
dσ,

so that

λ
(
F1(s, t)

)
=

∫ s

0

1− κ(σ)
(
t+ o(1)

)
dσ =

∫ s

0

1− κ(σ)t dσ + o(s)

= s − t
(
θ
(
z1(s)

)
− θ(z1(0)

))
+ o(s),

where the “little-o” is uniform over the entire C∞ class indicated above. From
the HP-property we have that

θ
(
ζ(s, t)

)
− θ
(
ζ(0, t)

)
= θ
(
z1(s)

)
− θ
(
z1(0)

)
.

Abbreviating this difference by ∆ we see that the difference quotient on the left-
hand side of (1.12) is equal to

∆

s − t∆ + o(s)
=

∆/s

1− t∆/s+ o(1)
.

By approximation by C∞ functions as in the proof of the preceding proposition
we have that the same holds for the original HP-net. But ∆/s → κ1(0), so that
(1.12) is indeed true.

Because of Proposition 1.5 the comments contained in the paragraph imme-
diately preceding Proposition 1.2 are relevant in the context of general (i.e., not
necessarily C2 ) HP-nets and their content will play a key role in much of what
follows. For convenience we formulate the next proposition, which gives a lower
bound for the area of a characteristic quadrilateral, in terms of the characteristic
coordinate mapping ζ discussed above.
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Proposition 1.6. Let the mapping ζ be one-to-one on all of I1 × I2 , where
Ii = [τi, σi] . If the lengths of all of the translates of C2 = z2(I2) along C1 = z1(I1)
are at least m , then the area of ζ(I1 × I2) is at least 1

2mλ(C1) .

Proof. Again, by a straightforward approximation procedure we can reduce
consideration to the case in which the arc length parametrizations z1 , z2 are C∞ .
Consider a small subarc J = z1([σ, σ + δ]) of C1 . The length of J is obvi-
ously δ and the length of its translate t units along ζ({σ} × I2) is easily found
(see the proof of the preceding proposition) to be

(
1 − tκ1(σ)

)
δ + O(δ2) , where

κ1(σ) = d arg z1(σ)/dσ . For small δ the translates of J are virtually straight line
segments orthogonal to the curve ζ({σ} × I2) . Since the lengths of the 2-arcs
of the characteristic quadrilateral in question are all at least m , equations (1.3)
imply that κ1(σ) ≤ 1/m , so that the area of ζ{[σ, σ + δ]× I2} is then seen to be
at least

δ

∫ m

0

(
1− t

m

)
dt+O(δ2) =

δm

2
+O(δ2),

so that upon considering the appropriate Riemann sum and passing to the limiting
integral, the area of ζ(I1 × I2) is indeed at least 1

2mλ(C1) .

We define D+

i θ(p) to be the upper limit of |Diθ(z)| as z → p . We have the
following simple consequence of Proposition 1.5.

Proposition 1.7. Let θ be an HP-function on D . (i) If the j -characteristic
C through p is a simple curve, then

D+

i θ(p) ≤
1

L
≤ 1

dist (p, ∂D)
,

where L is the length of the shorter of the two arcs into which p divides C .
(ii) If the j -characteristic through p is a closed curve then D+

i θ(p) = 0 .

Proof. We prove (i), the proof of (ii) involving only minor variations. For
definiteness and without loss of generality we assume that i = 1. We can also
assume that D+

i θ(p) > 0, since otherwise there is nothing to prove. From the
definition of D+

i θ(p) it follows that for any ε > 0 there is a point q ∈ E1(θ)
within ε of p for which |D1θ(q)| > D+

i θ(p) − ε and such that there are 2-arcs
C+ and C− emanating from q in the directions ieiθ(q) and −ieiθ(q) , respectively,
which have length greater than L − ε . Assume that D1θ(q) is positive. Then
applying Proposition 1.5 at the point z(s) which lies s units from q along C+ we
have that

D1θ
(
z(s)

)
=

D1θ(q)

1− sD1θ(q)
.

Thus

L− ε < λ(C+) ≤ 1

D1θ(q)
<

1

D+

i θ(p) − ε
;



Hencky–Prandtl nets and constant principal strain mappings 199

that is, that D+

i θ(p) − ε < 1/(L− ε) , which establishes the desired bound. If
D1θ(q) < 0 then one arrives at the same conclusion by following C− instead
of C+ .

As an immediate corollary of Proposition 1.7 we have

Proposition 1.8. If θ is an HP-function on all of C , then D+

i θ(p) = 0 for
all p ∈ C , i = 1, 2 , so that θ is a constant.

Proposition 1.9 (Compactness principle). For any domain D the family
{e2iθ : θ ∈ HP(D)} is compact in the topology of uniform convergence on compact
subsets of D .

Proof. This follows via elementary arguments, since Proposition 1.7 implies
that if U ⊂ D is a closed disk, then θ satisfies a Lipschitz condition with constant
at most 1/dist(U, ∂D) .

We end this subsection with the discussion of an important limiting case of the
characteristic coordinate mapping construction we have been using, namely that in
which one of the initial curves degenerates to a point. Let z = z(s) , s ∈ I1 = [0, τ1]
be an arc length parametrization with Lipschitz continuous derivative, and let I2

be an interval one of whose endpoints is 0 and whose length is less than 2π . Let
ω(t1, t2) = arg{z′(t1)} + t2 . We consider the same system (1.8) of differential
equations as before, but with initial conditions corresponding to ζ(t1, 0) = z(t1)
and ζ(0, t2) = z(0), that is, for the functions u , v defined by u+ iv = ζe−iω , the
equations are

ut2 = v and vt1 = −α′(t1)u,

where α(t) = arg{z1(t)} with the corresponding initial conditions

u0(t1) = Re{z(t1)e−iα(t1)} and v0(t2) = Im{z(0)e−iα(0)−t2}.
This characteristic initial value problem, in light of the discussion preceding Propo-
sition 1.4, is well-posed.

Proposition 1.10. The mapping ζ defined immediately above exists on
I1×I2 and is one-to-one on J = [0, ε]×I2 for some ε > 0 . Moreover, the function
θ(z) = ω

(
ζ−1(z)

)
is an HP-function on the interior of ζ(J) .

Proof. This may be proved in a fashion directly analogous to that in which
Proposition 1.2 was justified, or alternatively by applying the compactness princi-
ple to the family of HP-functions resulting from the original (i.e., nondegenerate)
characteristic coordinate mapping construction with z1(s) = z(s) , s ∈ I1 and

z2(s) = z(0) + δ(eis/δ − 1)z′(0), s ∈ δI2 = {δs : s ∈ I2} = I2(δ).

The curve given by z2 is an arc of a circle of radius δ orthogonal to z(I1) at z(0)
for which z′(0) is an outward pointing normal. One then lets δ → 0 and obtains
the desired result by the compactness principle together with the convexity of the
curve z2

(
I2(δ)

)
.
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It is to be noted that the characteristic arcs ζ({t1} × I2) , t1 ∈ (0, ε] are
convex (with their concave side towards z(0)). The family of orthogonal arcs
ζ((0, ε]×{t2}) , t2 ∈ I2 is a fan of characteristic arcs which are confluent at z(0).
If ζ is one-to-one in all of the rectangle, and the curve parametrized by z is C ,
then we will denote the resulting uniquely defined net by Fan(C, I2) .

1.3. Isolated singularities of HP-functions and cps-mappings. Hence-
forth the r -neighborhood of a point p ∈ C will be denoted by N(p, r) , and
N(p, r)\{p} will be denoted by N ′(p, r) . If p is a point of the domain D , an
HP-function θ on D\{p} is said to have an isolated singularity at p . The point
p will be called a true singularity of θ if θ cannot be extended to an HP-function
in D . We use the terms “singularity” and “true singularity” for HP-nets also.
An HP-function (HP-net) on D\A for some set A of isolated points of D will
be called an HP*-function (HP*-net) on D ; HP*(D) will denote both the class
of HP*-functions and that of HP*-nets on D . Furthermore, we shall denote by
cps*(D) (by cps*(D,m1,m2)) the set of all cps-mappings ((m1,m2)-mappings)
which are defined on a set of the form D\A , where A is a set of isolated points
of D , and whose continuous extensions to D are local homeomorphisms.

Proposition 1.11. If θ has a true singularity at p , then the essential supre-
mum of ∇θ is not finite in N ′(p, ε) , for any ε > 0 .

Proof. If the essential supremum of ∇θ is finite in some such punctured
neighborhood N ′(p, ε) , then θ is single valued and Lipschitz continuous there,
and consequently can be extended by continuity to all of N(p, ε) with the same
Lipschitz constant. If abcd is any characteristic quadrilateral whose closure lies
in the punctured neighborhood, then ∆2θ(abcd) = 0. By a trivial limit argument
it then follows that this is true even if p is on the boundary of the quadrilateral.
If abcd is a characteristic quadrilateral of θ which contains p in its interior, then
there are points a′ ∈ ab , b′ ∈ bc , c′ ∈ cd , and d′ ∈ da such that a′c′ and b′d′ are
characteristic arcs of θ passing through p . But then

∆2θ(abcd) = ∆2θ(a′bb′p) + ∆2θ(pb′cc′) + ∆2θ(d′pc′d) + ∆2θ(aa′pd′) = 0,

so that θ is an HP-function in N(p, ε) , contrary to the hypothesis.

Proposition 1.12. Let θ be an HP-function which has a true singularity.
Then there is a characteristic arc of θ of finite length one of whose endpoints is p .

Proof. Let θ be defined in N ′(p, ε) . From the preceding proposition it follows
that there are points q 6= p in N(p, ε/2) such that D+

i θ(q) > 2/ε for at least one
of i = 1 or 2. But then it follows from Proposition 1.7 that there is a j -arc of
length at most ε/2 which joins q to p .

Proposition 1.12 suggests the following classification of true singularities.
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Definition 1.2. A true singularity of an HP-function θ is said to be a sin-
gularity of type R or a Riemann singularity if θ is bounded on some characteristic
arc of finite length which terminates at p . Otherwise it is said to be of type S or
a spiral singularity.

The reason we have chosen the names “Riemann” and “spiral” for the two
kinds of singularities will be made clear in what follows (see (i) and (ii) in the
following subsection, and Theorems 2.1 and 3.1). Here again, we apply these
terms to HP-nets also.

1.4. HP-nets with one or two singularities. In this paragraph we define
four families of HP-nets; one of the main goals of this paper is to prove that
apart from the trivial nets corresponding to constant θ , these are the only nets in
HP*(C) .

(i) Spiral nets. For p ∈ C , − 1
2π ≤ α ≤ 1

2π , we define

σp,α(p+ reiφ) = φ+ α.

To see that θ = σρ,α is an HP-function, let r = |z − p| . Simple trigonometry
shows that D1θ(z) = sinα/r and D2r = − sinα , from which it follows that

D2D1θ(z) = (sinα/r)2 =
(
D1θ(z)

)2
, so that σρ,α is indeed an HP-function by

Proposition 1.2. It is equally easy to see that for 0< |α| < 1
2
π we have that

σp,α(z) → ±∞ as z → p along any i-characteristic (−∞ , if 0< α and i = 1 or
α < 0 and i = 2; +∞ otherwise), so that the characteristics spiral around p .
Quite specifically, for p = 0 the polar equations of the 1- and 2-characteristics
through the point r0e

iθ0 are

(1.14) r = r0e
(φ−θ0) cotα and r = r0e

−(φ−θ0) tanα,

respectively. The values α = 0,± 1
2π give rise to the degenerate case in which the

families of 1-characteristics consist of rays emanating from p (when α = 0) and
circles centered at p (when α = ± 1

2π ). The net corresponding to σp,α will be
denoted by Sp,α .

Let f ∈cps*(C,m1,m2) for which θf = σp,α . Then the curves f(C) are
congruent for all i-characteristics C , from which it follows that f

(
N(p, δ)

)
is a

disk N
(
f(p), δ′

)
. Simple trigonometry implies that f changes arc length on circles

∂N(p, δ) by a factor of
√
m2

1 sin2 α+m2
2 cos2 α . Since f changes area by a factor

of m1m2 we have

m1m2πδ
2 = π

(
δ

√
m2

1 sin2 α+m2
2 cos2 α

)2

,

so that if m1/m2 = µ , we have

µ sin2 α+
1

µ
cos2 α = 1,
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from which it follows that µ = cot2 α . Since µ 6= 0, 1, we see that in order for f to
exist, |α| must be in (0, 1

2π)\{ 1
4π} . The argument just given is easily seen to be

reversible, that is, for all such α there is an (essentially unique) (m1,m2)-mapping
for which θf = σp,α , provided that m1/m2 = cot2 α .

If for 0 < |α| < 1
2
π we follow the two characteristics of σp,α through z0 =

p + reiθ0 as they move toward p , they cross infinitely often. For convenience let
0 < α < 1

2π . Then a very simple calculation based on (1.14) shows that they

meet for the first time at the point a = p + z0e
T (i−tanα) , where T = 2π cos2 α .

Let Ci denote the i-arc joining z0 to a . Arcs C1 and C2 together form a simple
closed curve encircling p and are both convex toward the outside of this curve.
The interior angles at z0 and a are seen to be 1

2π and 3
2π , respectively, so that

if βi is the (unsigned) change in θ along Ci we have

(1.15) β1 + β2 = 2π.

(ii) Riemann nets. For p ∈ C , α real and 0 ≤ β ≤ π , we define

ρp,α,β(p+ reiφ) =





α, α ≤ φ ≤ α+ 1
2π,

φ− 1
2π, α+ 1

2π ≤ φ ≤ α+ β + 1
2π,

α+ β, α+ β + 1
2π ≤ φ ≤ α+ β + π,

φ− π, α+ β + π ≤ φ < α + 2π,

and then define ρp,α,β(p + rei(φ+2πn)) to be ρp,α,β(p + reiφ) − nπ , for n =
±1,±2, . . . . It is easy to verify that the multivalued function ρp,α,β is indeed
an HP-function in C\{p} ; in each of the four sectors it coincides with one of the
degenerate cases of σp,α or is constant, and it is continuous (modulo π ). Quite
specifically, in the four sectors on the right-hand side of the definition of ρp,α,β
the 1-characteristics are, respectively, the rays {p + sieiα + teiα : t ≥ 0} , s ≥ 0,
circular arcs with center at p , rays {p+ siei(α+β) − tei(α+β) : t ≥ 0} , s ≥ 0, and
rays {p+ teiφ : t ≥ 0} , α+β+π ≤ φ ≤ α+2π . We also note that ρp,α,β increases
by π along any simple closed curve which goes around p in the positive direction
and that ∇ρp,α,β has jumps along the rays that separate the four sectors (because
along these rays characteristics of one or the other of the families change from
straight lines to circular arcs). The net corresponding to ρp,α,β will be denoted
by Rp,α,β . We have chosen the term “Riemann nets”, because their restrictions
to half-planes arise in connection with certain “Riemann problems” for the hyper-
bolic system (1.1). A trivial calculation based on (1.1) shows that ρp,α,β is θf for
some f ∈cps*(C,m1,m2) if and only if (m1/m2)β + (m2/m1)(π − β) = π (since
otherwise f

(
N(p, δ)

)
would not give a simple covering of a neighborhood of f(p)).

The remaining two nets are special cases of the following general construc-
tion; no simple formula for the corresponding HP-functions would appear to be
available. Let Ik = [0, tk] and zk: Ik → C be arc length parametrizations of
the curves Ck with Lipschitz continuous derivatives for which z1(0) = z2(0) and
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z1(t1) = z2(t2) . Assume furthermore that arg{z′1(s)} and arg{z′2(s)} are non-
increasing and nondecreasing, respectively, that z1(0), z1(t1) are the only two
points that these curves have in common, and that

z′2(0) = iz′1(0) and z′2(t2) = iz′1(t1).

One sees that the simple closed curve C1∪C2 is the boundary of a “heart-shaped”
domain whose “point” is at z1(t1) = z2(t2) . Now apply the characteristic coordi-
nate construction of Section 1.2. By Proposition 1.4 and simple geometry it follows
that the characteristic coordinate mapping is one-to-one on [0, t1) × [0, t2) . Let
E(C1,C2) = ζ

(
[0, t1)× [0, t2)

)
, Z(C1) = ζ([0, t1]×{t2}) , Z(C2) = ζ({t1}× [0, t1]) .

From the convexity of the original curves C1 and C2 together with the assumption
that they meet at right angles at both endpoints, it easily follows that E(C1,C2)
lies in the complement of the interior of the simple closed curve C1 ∪ C2 and
that Z(C1) and Z(C2) satisfy exactly the same conditions as the original curves

C1 and C2 did. We inductively define C
(0)
i = Ci , C

(k+1)
i = Z(C

(k)
i ) , i = 1, 2,

k = 0, 1, 2, . . . . It is then easy to see that the HP-nets so defined in the interiors

of the E(C
(k)
1, C

(k)
2 ) , k = 0, 1, 2, . . . , fit together to form a single HP-net in the

interior of their union, that is, in the doubly connected domain which constitutes
the exterior of the original simple closed curve C1 ∪ C2 .

        Figure 1.

(iii) Double Riemann nets. We shall define nets Dp,q,α,β,γ where p 6= q are
points, 0 ≤ β , γ ≤ π , α real, and 0 < arg

(
e−iα(q − p)

)
< 1

2π . They are called
double Riemann nets because in neighborhoods of p and q they coincide with
Rp,α,β and Rq,α+π,γ , respectively. The construction is facilitated by reference to
Figure 1, in which α = − 1

2π , and 0 < β, γ < π . Changing α simply requires a
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rotation of the figure; the cases in which β or γ is 0 or π require self-evident
modifications which are left to the reader. This picture, in which some character-
istic arcs have been drawn, is merely descriptive and is not meant to show exactly
what these arcs look like, but only their general form.

Since the nets Rp,α,β and Rp,α+π,γ coincide in the rectangle prqs , the two
together give an HP-net in the curvilinear polygon whose sides (listed in positive
order) are the 2-arc ap′′ , the 2-arc p′′r , the 1-arc rq′ , the 1-arc q′b , the 2-
arc bq′′ , the 2-arc q′′s , the 1-arc sp′ , and the 1-arc p′a (except, of course,
at the singularities p and q ). Note that the only jumps in the argument of
the tangent when this simple closed curve is traversed in the positive direction
are jumps of 1

2π at a and b and − 1
2π at r and s . Using the characteristic

coordinate mapping construction and Proposition 1.4, it is clear that this net can
be extended to the heart shaped region bounded by the union of the curves C1 and
C2 which are made up of the arcs rp′′ , p′′a , ac , and rq′ , q′b , bc , respectively. The
construction described in the paragraph immediately preceding this discussion of
double Riemann nets can then be used to extend this net to the entire complement
of {p, q} . It is obvious that the only singularities of this net are the ones of type R
at p and q .

(iv) Degenerate double Riemann nets. We shall define nets Fp,q,σ,β,γ where
p 6= q are points, 0 ≤ β, γ ≤ π , and σ = + or − . These nets arise as limiting cases
of double Riemann nets as arg

(
e−iα(q− p)

)
tends to 0 or 1

2
π . The description is

again facilitated by reference to the corresponding Figure 2 in which σ = +, and
0 < β , γ < π . The value of σ indicates the sign of arg

(
(p′−p)/(q−p)

)
∈ [−π, π] .

The cases in which β or γ is 0 or π require self-evident modifications which are
left to the reader, and similarly for the case σ = − . The net is defined initially as
Rp,arg(q−p)−π/2,β and Rq,arg(p−q)−π/2,γ inside the circular sectors pqp′ and qpq′ ,
respectively. One then uses the fan construction summed up in Proposition 1.10
to define Fan(pq′, [β−π, 0]) and Fan(qp′, [γ−π, 0]) , which gives an HP-net in the
interior of the curvilinear polygon pwq′qup′p . One then extends this net by tacking
on HP(qq′w, qu) (that is, the characteristic quadrilateral qwvu), so that the net
is now defined in the interior of the heart-shaped region bounded by the mutually
orthogonal characteristics pp′ ∪ p′u∪ uv and pw ∪wv (except at the singularities
p and q ). Finally, the construction given just before the discussion of double
Riemann nets is applied to define the net in the entire complement of {p, q} . The
case σ = − is the same except that (p′ − p)/(q− p) and (q′− q)/(p− q) lie in the
lower half-plane.

2. Riemann singularities

We shall establish a series of lemmas which lead to the complete description
of singularities of type R given in Theorem 2.1. The reader is reminded that λ
denotes 1-dimensional measure and that the term “translate” is used in the sense
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explained in the paragraph immediately following the statement of Proposition 1.3.
We begin with

        

Figure 2.

Lemma 2.1. Let θ have a singularity of type R at p . Then there is a
characteristic arc of θ , one of whose endpoints is p and along which θ(z) has a
limit as z tends to p .

Proof. From the definition of this type of singularity it follows that we can
assume that θ is regular in N = N(p, δ)\{p} , and that there is an i-arc C of
θ of finite length which joins a point lying outside of N(p, δ) to p and on which
θ is bounded. Let w = w(s) , 0 ≤ s ≤ δ , with w(δ) = p be the arc length
parametrization of a final segment of C . Let θ(s) = θ

(
w(s)

)
. The curvature

κ(s) = θ′(s) , exists for s ∈ A , where λ(A) = δ . We may assume that lims→δ
θ(s) does not exist, since otherwise C is itself a characteristic arc of the kind we
are seeking. For any κ0 > 0 and 0 ≤ δ′ < δ we have

λ({s ∈ (δ′, δ) ∩A : κ(s) > κ0}) > 0

and
λ({s ∈ (δ′, δ) ∩A : κ(s) < −κ0}) > 0,

since if either of these sets had measure zero for any such κ0 and δ′ , the bound-
edness of θ(s) on (0, δ) would imply the existence of lims→δ θ(s) . From this it is
easy to see that there is an s1 ∈ (δ/2, δ) such that κ(s1) > 2/δ , and s1 is a den-
sity point of {s ∈ A : κ(s) > 0} . The part C1 of the j -characteristic emanating
from w(s1) to the left of C (as it is traversed in the direction of increasing s)
has length at most δ/2 (by Proposition 1.5), and so lies entirely in the punctured
neighborhood N and terminates at p . Similarly, there is an s2 ∈ (s1, δ) for which
κ(s2) < −2/δ , and which is a density point of {s ∈ A : κ(s) < 0} . The part C2 of
the j -characteristic emanating from w(s2) to the right of C again has length at
most δ/2, and so lies entirely in the punctured neighborhood N and terminates
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at p . Also, the opposite signs of the curvature of C at the points w(s1) and
w(s2) , together with simple topological considerations show that C1 ∩ C2 = {p} .
Now, we do not know a priori that C1 does not intersect C at more than one
point, so we let s′1 < s2 be the greatest number less than s2 such that w(s′1) ∈ C1

and we let C ′1 denote that part of C1 which connects w(s′1) to p . (The arc C ′1
might, of course, be all of C1 .) It follows from the fact that p is the only point
common to C1 and C2 and the fact that the lengths of these curves as well as
that of C are all less than δ , that C ′1 ∪ w([s′1, s2]) ∪ C2 is a simple closed curve
whose interior D lies entirely in the punctured neighborhood N of p ; the exterior
of D is easily seen to lie to the right as w([s′1, s2]) is traversed from s′1 to s2 .
We denote by E the part of the j -characteristic emanating to the left of C from
w(s2) ; obviously, E ⊂ D . Let v = v(s) , 0 ≤ s < L be the arc length parametriza-
tion of E , with v(0) = w(s2) . (We are not a priori excluding the possibility that
L = ∞ .) Since we chose s2 to be a density point of {s ∈ A : κ(s) < 0} , there is
a positive ε < δ − s2 , s2 − s′1 such that

(2.1) λ({s ∈ I ∩A : κ(s) < 0}) > 1
2ε,

both when I = I1 and I = I2 , where I1 and I2 are the left and right halves
of the interval J = [s2 − ε, s2 + ε] . Let L′ > 0 denote the supremum of all
s ∈ (0, L) for which the translates of w(J) along E down to v(s) exist. (Here
again we are not assuming a priori that L′ is finite, although we shall show
shortly that this must be the case.) These translates of w(J) are all contained
in D . For t ∈ [−ε, ε] and s ∈ [0, L′) we let v(t, s) be the point which lies both
on the translate of w(J) through v(s) and on the translate of an initial arc of
E through w(s2 + t) . Now, it follows from (2.1) that for s ∈ [0, L′) the lengths
of the translates of w(I1) and w(I2) down to v(s) , are both at least ε/2, which
together with Proposition 1.6 implies that 1

2εL
′ ≤ πδ2 . Thus, L′ is finite. Also,

Proposition 1.7 implies that D+

j

(
v (s)

)
≤ 2/ε , for s ∈ (0, L′) . This, together with

the finiteness of L′ means that lims→L′ θ
(
v(s)

)
exists, so that by the defining

property of HP-nets, lims→L′ θ
(
v(t, s)

)
exists for each t ∈ J . This then says that

lims→L′ v(t, s) exists for each t ∈ J . But the definition of L′ implies that for some
t = t0 ∈ J this limit is p . The j -arc parametrized by v(t0, s) , 0 ≤ s < L′ , can
therefore be taken as the desired arc.

Lemma 2.2. Let θ be regular in N = N ′(p, δ) . Let Ck be a k -arc of θ
lying in N and with arc length parametrization zk(s) , 0 ≤ s < Lk , k = 1, 2 .
Let lims→Li zi(s) = p and lims→Li θ

(
z(s)

)
exist. Let zi(0) = zj (0) . Then either

(i) for some ε > 0 all translates of Ci along zj([0, ε]) lie in N and terminate
at p , or (ii) for some ε > 0 the translate of zj

(
(0, ε]

)
along Ci provides a j -arc

terminating at p , along which θ(z) has a limit as z tends to p and which is
orthogonal to Ci at p .

Proof. By replacing Ci by a sufficiently small final subarc, and δ by a smaller
number if necessary, we may assume that the values of θ on Ci lie in some small
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interval, say of length 1/100. Let η > 0 be so small that the values of θ
(
zj(s)

)

on [0, η] also lie in an interval of length 1/100 and all translates of zj([0, η])
along Ci lie in N . Let Es denote the translate of Ci with initial point zj(s) ,
and let p(s) denote its terminal point. If for some s0 ∈ (0, η] , p(s0) = p , then
the small variability of θ on zj([0, η]) implies that the length of the translates of
zj([0, s0]) down to zi(s) tend to 0 as s tends to Li . This means that (i) holds
with ε = s0 . In the opposite case p(s) , 0 < s ≤ η , parametrizes a j -arc for
which lims→0 θ

(
p(s)

)
exists. Now, because of the small variability of θ on Ci ,

sup{λ(Es) : 0 ≤ s < Li} = L < 3δ . It is easy to show by C∞ approximation and
simple calculus that the length of all translates of zj([0, s]) along Ci is at most
s+Lξ(s) , where ξ(s) is the total variation of θ on zj([0, s]) . Since s+Lξ(s) → 0
as s → 0, it follows that p(s) → p as s → 0, so that (ii) is true with ε = η .
The orthogonality of p([0, η]) to Ci at p follows immediately from the fact that
ξ(s) → 0.

Lemma 2.3. Let θ be regular in N = N ′(p, δ) . Let z(s) , 0 ≤ s < L be an
arc length parametrization of an i-arc C of θ lying in N . Let lims→L z(s) = p
and let lims→L θ

(
z(s)

)
exist. Then one of the following must happen:

(i) There is an open j -arc containing some point of C such that none of the
translates of C along this arc terminates at p .

(ii) Passing through some point of C there is a closed j -arc C ′ of positive
length such all translates of C along C ′ terminate at p , but on one side of each
end point of C ′ no nearby translates of C terminate at p . Furthermore, the
former translates are mutually nontangential at p .

(iii) θ(z) is given by arg(z − p) or arg(z − p) ± 1
2π (to within an integral

multiple of π ) in a punctured neighborhood of p .

Proof. By replacing δ by a smaller number if necessary, we may assume that
θ is regular in N ′(p, 6δ) , that C joins ∂N(p, 6δ) to p and that the values of θ on
C all lie in a very small interval, of length 1/100, say. Let q denote the point of C
for which |q − p| = δ . To facilitate the exposition we assume that j = 1 and that
at q the unit tangent to C pointing towards p is ieiθ(q) . Let w(s) , K < s < K ′ ,
be the arc length parametrization of the j -characteristic in N ′(p, 3δ) for which
w(0) = q and such w′(s) = eiθ(w(s)) . (It is possible that this j -characteristic is
a simple closed curve or that it has infinite length; to cover these possibilities we
allow either one or both of K , K ′ to be infinite.) Assume that (i) does not hold.
Let I denote the set of all subintervals I of (K,K ′) which contain 0 and are
such that for all s in I , w(s) is joined to p by an i-arc Cs in N ′(p, 2δ) (which is
just a translate of the part of C which joins q to p). By Lemma 2.2, I contains
intervals of positive length. Let I ∈ I . By the defining property of HP-nets, the
set {θ(z) : z ∈ Cs} is the same for all s ∈ I , and by assumption it is an interval
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of length less than 1/100. From this it follows that

(2.2)

∣∣∣∣arg
w′(s)

i
(
w(s) − p

)
∣∣∣∣ < 1/100, s ∈ I,

and that

(2.3) |w(s) − p| ≤ λ(Cs) ≤ 2|w(s) − p|, s ∈ I.

(The constant 2 is, of course, much larger than necessary.) It furthermore follows
from the fact that all of the Cs , s ∈ I , meet at p , together with Proposition 1.5
that,

(2.4) dθ
(
w(s)

)
/ds = 1/λ(Cs), a.e. on I.

Indeed, were this not the case, a simple argument shows that there would be a
positive distance between two of the arcs Cs , which is not consistent with their all
meeting at p . Let φ(s) denote the argument of the tangent (the one pointing away
from p , to be definite) to Cs at p . Note that by the defining property of HP-nets
all of the Cs have tangents at p because the original C did. A straightforward
argument based on this property shows that φ′(s) = dθ

(
w(s)

)
/ds . From this,

together with (2.3) and (2.4) it follows that

(2.5) φ′(s) = dθ
(
w(s)

)
/ds ≥ 1/

(
2|w(s) − p|

)
a.e. on I.

If λ
(
θ
(
w(I)

))
≤ 2π , it follows from (2.2) and the fact that |q − p| = δ that

(2.6) δ/2 < |w(s) − p| < 2δ, s ∈ I,

and in particular that w(I) ⊂ N ′(p, 3δ) .
First, assume that sup

{
λ
(
θ
(
w(I)

))
: I ∈ I

}
< 2π . Then it is easy to see

that ∪{I : I ∈ I } = I0 ∈ I is closed. This gives the first sentence in (ii); the
second sentence follows from the lower bound for φ′(s) in (2.5).

To complete the proof it therefore suffices to assume that sup
{
λ
(
φ(I)

)
: I ∈

I
}
≥ 2π . If this is the case, then there is an I = [α, β] ∈ I , such that for all s

in I , w(s) is joined to p by an i-characteristic arc Cs in N ′(p, 3δ) and such that
φ(β) = φ(α) + 2π . But then it follows that either Cα and Cβ coincide or one is a
proper subarc of the other, since distinct characteristics cannot be tangent at p , as
follows immediately from the positiveness of φ′(s) . First we consider the case that
they coincide, that is, that w([α, β]) is a simple closed convex curve (recall that
arg
(
w′(s)

)
is nondecreasing) containing p in its interior. Let w(γ) be the point

on this curve at maximum distance from p . Then D+

j θ
(
w(γ)

)
≥ 1/|w(γ)− p| , so

that by Proposition 1.7, Cγ must be a straight line segment, from which it follows
that all of Cs are straight line segments. This means that there are straight
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line j -characteristics terminating at p at all angles φ , 0 ≤ φ ≤ 2π , so that (iii)
holds. The other possibility cannot, in fact occur. To see this, we assume for
definiteness that Cβ is a proper subarc of Cα . Thus w([α, β]) starts at a point
w(α) on Cα , goes around p once and ends up at a point w(β) on Cα between
w(α) and p . But then it is easy to see that on [α,K ′) , w(s) winds around p
infinitely many times in the counterclockwise direction, crossing Cα successively
at points w(sn) , n = 0, 1, 2, . . . , each of which lies farther along Cα towards p
than its predecessor. Since the arcs w(sn)w(sn+1) are translates of each other,
if there were any variation of θ on the j -arc w(s0)w(s1) , θ(z) would not have
a limit as z → p along Cα , an obvious contradiction, since Cα is parallel to a
terminal segment of our original i-arc C . But then the arcs w(sn)w(sn+1) are all
line segments of the same length, which is obviously impossible.

Definition 2.1. In the case that (ii) of the preceding lemma holds, the
family F (C) of translates of the i-arc C joining the points of the j -arc C ′ to
p will be called an i-fan of the net at p , and the characteristics passing through
the endpoints of C ′ are called the bounding characteristics of F (C) . The angle
formed at p by the bounding characteristics is called the angle of the fan. In the
case that (i) holds we regard C alone as constituting a (degenerate) fan with angle
0 and both bounding characteristics coinciding with C .

In dealing with such fans we will usually restrict attention to a small neigh-
borhood of p so that on C , θ takes values in a small interval (taken to have length
less than 1/100, to be specific). In this way all of the i-arcs making up an i-fan
are virtually straight line segments and join p to the boundary of the disk about
p in which we are working. These i-arcs are connected by almost circular j -arcs
whose curvature increases uniformly to infinity as they approach p .

With these preliminaries out of the way we are in a position to derive a de-
scription of singularities of type R. For the sake of descriptive simplicity we assume,
without loss of generality, that p = 0. We apply Lemma 2.1 and then Lemma 2.3
and assume that we are not in case (iii) of the latter. There is therefore an i-fan
of characteristic arcs terminating at 0 (which might consist of a single arc—case
(i) of Lemma 2.3), which, without loss of generality, we assume to be “symmetric”
with respect to the positive x-axis, that is, that the bounding characteristics C+

i

and C−i have outgoing tangents which make angles of ± 1
2φ , respectively, with the

positive x-axis. As we saw in the proof of Lemma 2.3, 0 ≤ φ < 2π (since we
are not in case (iii)). By choosing an appropriate δ > 0, we can assume that θ
is regular in N ′(0, 2δ) , and that along each of the characteristics of the fan the
values of θ lie in an interval of length 1/100, say. From the definition of fan in
conjunction with Lemma 2.2, we see that there are distinct j -characteristics C+

j

and C−j emanating from 0, whose outgoing tangents at 0 form angles of ± 1
2π

with those of C+

i and C−i , respectively. By picking a smaller δ , if necessary, we
can assume that along each of these j -characteristics the values of θ lie in an
interval of length 1/100. We note the following.
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(1) φ ≤ π . This is clear since were π < φ < 2π , nearby translates of C+

j would
cross nearby translates of C−j in N ′(0, 2δ) and form an angle strictly between 0
and π , a patent impossibility.

(2) If φ = 0, the fans F (C+

j ) and F (C−j ) cannot both consist of a single
characteristic. To see that this is so, assume otherwise. Then there would be an
i-characteristic, E , tangent to the x-axis and emanating to the left of 0. We can
assume as before that along E the values of θ lie in an interval of length 1/100.
But this means that through each point of C+

i = C−i , C+

j , C−j and E there passes
a perpendicular characteristic which joins two points of ∂N(0, 2δ) without passing
through p . This, in turn, implies that |∇θ(z)| ≤ 2/δ , a.e. in N ′(0, δ) , which, by
Proposition 1.11, is impossible, because we are assuming that the net has a true
singularity at 0.

(3) F (C+

j ) = F (C−j ) . This is obvious if φ = π , since then C+

j and C−j are
tangent at 0 and consequently coincide (see (ii) of Lemma 2.3), and the corre-
sponding fan is degenerate. To handle the case in which 0 ≤ φ < π , we assume to
the contrary that these fans are disjoint. Let E+ and E− be the other bounding
j -characteristics of F (C+

j ) and F (C−j ) , respectively. Then it follows from (2), or
the condition 0 < φ < π , whichever is applicable, that the angle between these
distinct j -characteristics is strictly between 0 and π . But then by the defini-
tion of fan there are i-characteristics perpendicular to E+ and E− , respectively,
which intersect in N ′(0, δ) and form an angle strictly between 0 and π , which is
obviously absurd.

We are now in a position to state in the form of several theorems the basic
facts about Riemann singularities which we shall use in what follows.

Theorem 2.1. Let p be a Riemann singularity of an HP-function θ . Then
there exists a δ > 0 such that one of the following holds.

(A) θ(z) is given by arg(z − p) or arg(z − p) ± 1
2π (to within an integral

multiple of π ) in N ′(p, δ) .
(B) There are four arcs C+

i , C+

j , C−j , C−i with the following properties:
(1) Each one joins ∂N(p, δ) to p .
(2) The arc length parametrization each of them has a Lipschitz continuous

derivative.
(3) C+

i and C+

j have their single common point at p , where they meet at
right angles, and similarly for C−i and C−j .

(4) C+

k and C−k either have their single common point at p or coincide,
k = 1, 2 .

(5) The four arcs occur in the indicated order in the counterclockwise sense.
(6) If αk ∈ [0, π] denotes the (unsigned) angle between C−k and C+

k , k =
1, 2 , then in the smaller curvilinear sector of N(p, 1

2
δ) between C−i and C+

i the
characteristics of the net coincide with those of Fan(C−i , [0, αi]) and in the smaller
curvilinear sector of N(p, 1

2δ) between C+

j and C−j they coincide with those of
Fan(C+

j , [0, αj]) .
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(7) In the two parts into which N(0, 1
2
δ) is divided by the removal of these

fans, the characteristic arcs of the net coincide with those of HP(C+

i , C
+

j ) and
HP(C−j , C

−
i ) , respectively.

(8) αi + αj = π .

Proof. If (A) (which is (iii) of Lemma 2.3) does not occur, then it follows from
the preceding discussion that there is one fan of i-arcs and one of j -arcs, and that
at most one of these fans can be degenerate. If, as above, we assume that θ is
regular in N ′(0, 2δ) , and that along each of the curves belonging to these fans the
values of θ lie in a small interval (say of length 1/100), then, by Proposition 1.7,
the curvature on the parts of these curves lying in N ′(0, δ) is bounded above by
1/δ , since for any point on any these curves there is an orthogonal characteristic
arc of length at least δ emanating to either side and lying in N ′(0, 2δ) ; this proves
point (2). Points (3) and (4) follow from the preceding discussion and point (5)
is merely of a notational nature. Point (6) follows from Proposition 1.10 and the
discussion preceding it. It follows from point (2) and the discussion preceding
Proposition 1.4 that in each of the two parts into which N(0, δ) is divided by the
removal of the fans, θ is the solution of the characteristic initial value problem
corresponding to bounding characteristics of the two fans; that is, in those regions
the HP-net is given by HP(C+

i , C
+

j ) and HP(C−j , C
−
i ) , respectively. That the

angles of the fans sum to π , follows from the preceding discussion.

Definition 2.2. In case (A) of the preceding theorem the singularity p will be
called a degenerate spiral singularity; in case (B) it will be called a nondegenerate
Riemann singularity.

The following theorem is essentially the converse of Theorem 2.1; its proof is
an immediate consequence of the constructions of HP-nets given in Section 1.2.

Theorem 2.2. Let C1 , C2 be closed arcs with bounded curvature (i.e.,
whose arc length parametrizations have Lipschitz continuous first derivatives) with
an endpoint p in common and which form a right angle at p . Let φ1, φ2 ≥ 0 and
φ1 +φ2 = π . Then in some punctured neighborhood N of p there is a unique HP-
net which coincides with HP(C1, C2) in the part of N in the smaller curvilinear
sector determined by these curves and which has fans F (C1) and F (C2) with
angles φ1 , φ2 , respectively.

As an immediate consequence of the foregoing discussion we also have the
following

Theorem 2.3. Let p be a Riemann singularity of an HP-net. Let Ci be
an i-characteristic arc which terminates at p and let Cj be an open j -arc which
intersects Ci . If all of the translates of Ci along Cj exist and terminate at p ,
then Cj is strictly concave towards p .

Here we mean, of course, that if z(s) , a < s < b , is an arc length parametriza-
tion of Cj for which iz′(s) points in the direction along i-arcs towards p , then
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the essential infimum of d arg z′(s)/ds is strictly positive. The following theorem
follows immediately from Theorem 2.1 together with Proposition 1.5.

Theorem 2.4. Let p be a Riemann singularity of an HP-net for which the
angle of the i-fan is π and let E1 and E2 be the bounding characteristic arcs of
the i-fan at p . Then E1 and E2 cannot be both concave or both convex towards
the (unique) j -characteristic terminating at p .

We end this section with

Theorem 2.5. If H is an HP -net regular in C except for a single nonde-
generate Riemann singularity at p , then H is an Rp,α,β .

Proof. It is clearly sufficient to prove that the fans at p consist entirely of
straight lines. If this were not so, then one, and hence all of the characteristics in
the i-fan, say, would have nonvanishing curvature on some set of positive measure.
Thus, there would be a j -arc Cj which joins a point q on a bounding characteristic
Ci of the i-fan to p . The i-arc E joining q to p (including the endpoints) together
with Cj forms a simple closed curve. Simple topological considerations show that
either Cj is an initial arc of one of the bounding characteristics of the j -fan at p ,
or one of these bounding characteristics has an initial arc lying in the interior of
the simple closed curve E ∪ Cj and joining p to some point q′ on E . But then
consideration of nearby translates of E produces an i-arc joining two points of a
j -characteristic, yielding an i-arc and a j -arc joining a pair of distinct points and
thereby forming a simple closed curve on and inside of which the net is regular, a
patent absurdity.

3. Spiral singularities

Now that we have completely described Riemann (type R) singularities, we
deal with the remaining possibility, spiral or type S singularities. In this section
we shall consequently assume that p is an isolated singularity of an HP-function
such that if C is a characteristic arc joining q 6= p to p , then either C has infinite
length or θ(z) is unbounded as z tends to p along C .

Lemma 3.1. Let θ be regular in N ′(p, 2δ) and have a spiral singularity at p .
Let C be an i-arc of θ lying in N ′(p, δ) , one of whose endpoints is p . Then C is
not tangent to any of the concentric circles ∂N(p, d) , 0 < d < δ .

Proof. Without loss of generality we may assume that p = 0. Assume, to the
contrary, that z(s) , 0 ≤ s < L , is the arc length parametrization of a subarc of
C ′ of C with lims→L z(s) = 0, such that z′(0) · z(0) = 0, where for simplicity we
regard complex numbers as vectors and use the dot notation for inner product.
Let w(s) = z′(s) · z(s) . Since z(s) tends to 0 as s tends to L , lims→Lw(s) = 0.
Thus there is a point σ ∈ (0, L) at which |w| attains its maximum. Arbitrarily
close to σ there are numbers s1 < s2 such that

0 = w(s2) − w(s1) =
(
z′(s2)− z′(s1)

)
· z(s2) + z′(s1) ·

(
z(s2) − z(s1)

)
.
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Dividing by s2−s1 , and taking into account that z′ is continuous and |z′(σ)| = 1,
we see that |z(σ)|D+

i

(
z(σ)

)
≥ 1. But then it follows from Proposition 1.7 that

z(σ) is joined to p by a j -arc which is a straight line segment. But this contradicts
the hypothesis that p is a spiral singularity.

The following lemma is similar to Lemma 2.2; we have chosen not to combine
the two in a single more general lemma, since to do so requires some discussion
not necessary for the purposes at hand.

Lemma 3.2. Let θ be regular in N ′(p, 2δ) and have a spiral singularity at p .
Let Ck be a k -arc of θ lying in N ′(p, δ) with arc length parametrization zk(s) ,
0 ≤ s < Lk , k = 1, 2 . Let lims→Li zi(s) = p . Let zi(0) = zj(0) . Then for some
ε > 0 each point of zj([0, ε]) is joined to p by an i-arc lying in N(p, δ) .

Proof. We begin with the following observation. Let wn(s) , 0 ≤ s ≤ αn ,
n = 1, 2, . . . , be arc length parametrizations of j -arcs En ⊂ N ′(p, δ) of θ for
which λ(En) ≥ ξ > 0 and λ

(
θ(En)

)
< 1/100. Because of the latter condition

the En are close to being line segments, so that in particular ξ ≤ λ(En) ≤ 3δ for
all n ≥ 1. Thus, the sequence of functions vn(t) = wn

(
λ(En)t

)
, 0 ≤ t ≤ 1, is

uniformly bounded and equicontinuous, and consequently has a subsequence which
converges uniformly on [0, 1] to some function v . A straightforward argument
shows that either v(t) , 0 ≤ t ≤ 1, gives a parametrization of a j -arc of θ in
N(p, δ)\{p} with one endpoint possibly coinciding with p , or there is a t0 ∈ (0, 1)
such that v , when restricted to each of the intervals [0, t0] and [t0, 1], parametrizes
such a j -arc. Furthermore, the values of θ on any of these arcs parametrized by
v lie in an interval of length at most 1/100.

By replacing Cj with an initial subarc, if necessary, we may assume that
λ
(
θ(Cj )

)
< 1/100 and that Cj intersects Ci only at zi(0) = zj(0). For s ∈ (0, Li)

and η ∈ (0, Lj ] let C(s, η) denote the translate of the subarc zj([0, η]) of Cj along
Ci down to zi(s) , provided it exists and lies in N ′(p, δ) . For each η ∈ (0, Lj ] let
L(η) be the supremum of all s ∈ [0, Li) such that C(s, η) exists. Obviously,
L(η) > 0 for all η ∈ (0, Lj ] . We claim that there is some η > 0 for which
L(η) = Li . This could only fail to be true if for each η ∈ (0, Lj ] there is an
increasing sequence {sm(η)} in

[
0, L(η)

)
which tends to some σ(η) < Li such

that one of the following happens:

(i) dist
(
C
(
sm(η), η

)
, ∂N(p, δ)

)
→ 0

or
(ii) dist

(
C
(
sm(η), η

)
, p
)
→ 0.

First we show that (i) cannot happen for arbitrarily small η . Say, to the
contrary, that (i) actually happens for η = ηn , where ηn → 0. Then, since
λ
(
θ
(
zj
(
[0, η]

)))
→ 0 as η → 0, the observation of the first paragraph of the proof

will produce a straight line j -arc E joining ∂N(p, δ) to some point of C1 ∪ {p} .
But this contradicts the hypothesis that p is a spiral singularity, since there would
then be a straight line j -arc (a translate of an initial segment of E ) of length
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at least dist
(
C1, ∂N(p, δ)

)
> 0 emanating from each point of C1 ∪ {p} . Thus

there is some η0 > 0 such that (i) cannot happen if η ≤ η0 . Now let η ≤ η0

and assume that (ii) happens. But then, again by the initial observation, there
will be a j -arc J joining zi

(
σ(η)

)
to p for which λ

(
θ(J)

)
< 1/100, which again

contradicts the hypothesis that p is a spiral singularity. Thus, indeed, there is
some ε > 0 such that C(s, ε) is well defined for all s ∈ [0, Li) . This, of course,
is the same as saying that all the translates of Ci along zj ([0, ε]) exist and lie
in N ′(p, δ) . To finish we only have to show that λ

(
C(s, ε)

)
→ 0 as s → Li . But

if this were not true we would have a sequence {sm} in [0, Li) tending to Li for
which λ

(
C(sm, ε)

)
≥ ξ > 0, and the observation with which we began would give

us a j -arc J of length at least ξ terminating at p = limm→∞ zi(sm) for which
λ
(
θ(J)

)
≤ 1/100, which again contradicts the assumption that θ has a spiral

singularity at p .

Lemma 3.3. Let θ be a HP-function with a type S singularity at p . Then
there exists some δ1 > 0 such that θ is regular in N ′(p, 2δ1) and such that each
point q in N ′(p, δ1) is joined to p in N(p, |q−p|) by characteristic arcs from both
families neither of which is tangent to ∂N(p, |q − p|) .

Proof. Let θ be regular in N(p, δ) , and let C be an i-arc lying in N(p, δ) ,
with arc length parametrization z(s) , 0 ≤ s < L , and which terminates at p .
We begin by observing that (the measurable function) |dθ

(
z(s)

)
/ds| must be un-

bounded on [0, L) . Assume, to the contrary, that it is bounded. Then L must be
∞ , since if L <∞ , lims→L θ(s) would exist, which would contradict the hypoth-
esis that p is a spiral singularity. But if |dθ

(
z(s)

)
/ds| is bounded and L = ∞ ,

then clearly lims→L z(s) cannot exist. Thus indeed |dθ
(
z(s)

)
/ds| is unbounded

on [0, L) . Proposition 1.7 then implies that there exists a δ1 in (0, 1
2
δ) such that

some point q of ∂N(p, δ1) ∩ C is joined by a j -arc lying in N(p, 1
2δ) . A simple

application of Lemma 3.1 shows that we can assume in addition that this j -arc
as well as a subarc C ′ of C join q to p inside N(p, δ1)\{p} . For 0 < ε ≤ δ1

let Ai(ε) be the set of z ∈ ∂N(p, ε) which can be joined to p by an i-arc lying
in N(p, ε)\{p} . From what we have shown it follows that Ai(ε) 6= ∅ , i = 1, 2,
0 < ε ≤ δ1 .

We show that Ai(ε) is open in ∂N(p, ε) . If there is an i-arc which joins a
point z of the circle ∂N(p, ε) to p in N(p, ε) , then it follows immediately from
Lemma 3.2 that there is a neighborhood S of z on this circle such that all w
in S can also be joined to p by an i-arc lying in N(p, 1

2δ) . Moreover, it follows
from Lemma 3.1 that these i-arcs are not tangent to the circle and that they lie
in N(p, ε) .

Next we show that ∂N(p, ε)\Ai(ε) is also open in ∂N(p, ε) . If z ∈ ∂N(p, ε)
is not joined to p by an i-arc lying in N(p, ε) , then we claim that if we proceed
along the i-characteristic through z in either direction, we will be led outside of
N(p, ε) . Assume, to the contrary, that we can proceed indefinitely along an i-arc
C ⊂ N(p, ε) , beginning at z but without coming to p . Then C has infinite length,
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and if w(s) , 0 ≤ s <∞ , is the arc length parametrization of C , then lims→∞w(s)
is not p . In consequence, if ξ is the infimum of all η such that N(p, η) contains
w
(
(s,∞)

)
for some s , then 0 < ξ ≤ ε . Let δ > ξ′ > ξ > ξ′′ > 0. Then

for some s′ , w
(
(s′,∞)

)
lies in N(p, ξ′) , but for arbitrarily large s , w(s) lies

outside of N(p, ξ′′) . From this it easily follows that there are arbitrarily large
s for which w(s) lies in N(p, ξ′)\N(p, ξ′′) , but such that D+

i θ
(
w(s)

)
> 1/ξ′ .

However, for such s there is a j -arc of length less than ξ′ which joins w(s) to
p , by Proposition 1.7. Obviously, the length of such an arc must be at least ξ ′′ ,
so that these arcs come closer and closer to straight line segments as ξ ′ and ξ′′

approach ξ . By a simple limit argument (see the first paragraph of the proof
of Lemma 3.2) we conclude that there is a straight line j -arc joining a point
of ∂N(p, ξ) to p . But this is impossible, since p is a spiral singularity. Thus
indeed, by following the i-characteristic through z in either direction we will be
led outside N(p, ε) . From this it follows that there is a neighborhood S of z on
∂∆(p, ε) such that no w in S can be joined to p by an i-arc lying in N(p, ε) ;
that is, ∂N(p, ε)\Ai(ε) is open in ∂N(p, ε) . From the connectedness of ∂N(p, ε)
it now follows that Ai(ε) = ∂N(p, ε) , which is to say that each point of ∂N(p, ε)
is joined to p by characteristic arcs of both families lying inside this circle. That
these arcs are not tangent to this circle follows from Lemma 3.1

We are now in a position to completely characterize type S singularities.

Theorem 3.1. If the HP-function θ has a singularity of type S at p , then
in some neighborhood of p , θ(z) = arg(z − p) + α , where α is a constant.

Proof. In this proof we use U to denote the unit punctured disk, N ′(0, 1).
Without loss of generality we may assume that p = 0. Let δ1 be as in the
conclusion of Lemma 3.3. By replacing θ with the HP-function θ(δ1z) we may
assume that δ1 = 1. It follows from Lemma 3.3 and the continuity of θ that
eiθ(z)/z must lie in one of the four open quadrants for all z in U\{0} and on a
compact subset thereof on each concentric circle r∂U , 0 < r ≤ 1; to be specific, we
shall assume that it is the second quadrant, so that the vectors eiθ(z) and ieiθ(z)

point in the direction of movement towards 0 along the 1- and 2-characteristics,
respectively. From the confluence of characteristics at 0 implied by Lemma 3.2,
it follows that

(3.1) (−1)i+1Diθ(z) ≥ 0 a.e. in U, i = 1, 2,

so that θ varies monotonically on characteristics in U . Because we have a sin-
gularity of type S at 0 it follows that θ tends monotonically to ∞ (−∞) as
we move along 1-characteristics (2-characteristics) towards 0. The construction
given just before the discussion of double Riemann nets in Section 1.4 shows that
θ has a unique extension to an HP-function in C\{0} , so that for convenience
we may regard it as being defined in the entire punctured plane. In light of that
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construction it follows that θ tends monotonically to −∞ (∞) as we move along
1-characteristics (2-characteristics) away from 0.

Let Li(z) denote the distance along the i-characteristic from z to 0. From
the convexity properties of the characteristics implied by (3.1) it follows that
Li(z) is nondecreasing as z moves along a j -characteristic away from 0. From
Proposition 1.7 it follows that D+

i θ(z) ≤ 1/Lj(z) . This means that Li(z) is
never infinite, since if it were infinite at some point, we would have straight line
j -arcs, and by translating them along i-arcs down to 0 we would obtain straight
line characteristic arcs terminating at 0, a contradiction. From this, in turn, it
follows that |Diθ(z)| = 1/Lj(z) a.e. on each i-characteristic, since otherwise a
simple argument shows that the j -characteristics would not be confluent at 0.
Since the function Lj is obviously continuous in the punctured plane, we must
actually have that this last equation holds everywhere there; more precisely we
have Diθ(z) = (−1)i+1/Lj(z) , z 6= 0. Thus the continuous branches of θ are C1

functions, and |Diθ(z)| > 0 on C− {0} , i = 1, 2.
From the spiral nature of the characteristics, it follows that for any a in the

punctured plane there are i-arcs Ci(a) , i = 1, 2, which both join a to a point
b = b(a) closer to 0, and whose only points in common are a and b . These arcs
are, moreover, uniquely determined by these conditions. Let τi(a) denote ∆θ(ab)
along Ci(a) , so that τ1(a) > 0 and τ2(a) < 0. Simple geometry implies that

(3.2) τ1(a) − τ2(a) = 2π.

If we replace a by a point a′ near it on the 2-characteristic through it, then b
will be replaced by b′ = b(a′) . Consideration of the characteristic quadrilateral
with vertices a , a′ , b , b′ shows that τ1(a′) = τ1(a) , which in light of (3.2)
implies that τ2(a) = τ2(a′) , also. Similarly, these functions are unchanged by small
movements along 1-characteristics. This means that τ1 and τ2 are constants. In
other words if, starting from any point a in the punctured plane, we move along
the i-characteristic towards 0 in such a way that θ changes by τi we come to the
same point independently of whether i is 1 or 2.

For a given characteristic C and two points a, b ∈ C we let ∆Cθ(a, b) denote
the change in θ as one moves along C from a to b , i.e., ∆Cθ(a, b) = θ̄(b)− θ̄(a) ,
where θ̄ denotes any branch of θ which is continuous on C . (This is the same
“∆θ” notation we have been using up to now, with the subscript indicating the
characteristic added to avoid possible confusion.) Let Fi be the i-characteristic
through 1 ∈ C . For i = 1, 2 we define a mapping of R2 onto C\{0} as follows.
For (t1, t2) ∈ R2 , let q be the point on Fi for which ∆Fiθ(1q) = τiti/π and
let z = ζi(t1, t2) be the point on the j -characteristic C through q for which
∆Cθ(qz) = τjtj/π . It follows immediately from the defining property of HP-nets
that if ζ1(t1, t2) = ζ2(t1, t2) , then there is a δ > 0 such that ζ1(t′1, t2) = ζ2(t′1, t2)
and ζ1(t1, t

′
2) = ζ2(t1, t

′
2) for all t′1 , t′2 such that |t′1 − t1| < δ and |t′2 − t2| <

δ . Since ζ1(0, 0) = 1 = ζ2(0, 0), the continuity of ζ1 and ζ2 then implies that



Hencky–Prandtl nets and constant principal strain mappings 217

ζ1(t1, t2) = ζ2(t1, t2) for all t1, t2 ∈ R ; their common value will be denoted by
ζ(t1, t2) . Let (t1, t2) ∈ R2 and let q, r ∈ F1 be such that

∆F1θ(1q) =
τ1t1
π

and ∆F1θ(1r) =
τ1(t1 + π)

π
=
τ1t1
π

+ τ1.

Then by what was said in the preceding paragraph ∆Cθ(qr) = τ2 , where C is the
2-characteristic through q . From this it follows immediately that ζ1(t1 + π, t2) =
ζ1(t1, t2 + π) , that is, that

(3.3) ζ(t1 + π, t2) = ζ(t1, t2 + π) for all t1, t2 ∈ R.

One easily calculates that

∂ζ

∂tk
= ik−1 τk

π

eiθ(ζ)

Dkθ(ζ)
, k = 1, 2,

(using the fact that ζ(t1, t2) = ζl(t1, t2) , where {k, l} = {1, 2}), so that since
continuous branches of θ are C1 functions, ζ is also of class C1 . If we define

(3.4) ω(t1, t2) =
τ1t1 + τ2t2

π
+ θ(1),

then it is clear that

(3.5) arg

{
∂ζ

∂t1

}
= ω(t1,t2) and arg

{
∂ζ

∂t2

}
= ω(t1,t2) +

π

2
.

We also point out that for n ∈ Z , T ∈ R , i = 1, 2,

(3.6) ζ
(
{(t1, t2) : nπ ≤ ti < (n+ 1)π, tj ≥ T}

)
⊃ N ′(0, δ),

for some δ > 0.
For each z ∈ U let pi(z) be the point on the i-characteristic through z for

which ∆θ
(
zpi(z)

)
= (−1)i+12π , that is, the point on this characteristic which we

arrive at by moving along it towards 0 from z in such a way that θ changes by
2π in the case i = 1 and by −2π in the case i = 2. We claim that |pi(z)/z| ,
which is clearly less than 1 for all z in U , is actually bounded away from 1 there.
If it were not, then there would be a sequence {zk} of points in U tending to 0
and such that |pi(zk)/zk| approaches 1. Application of the compactness principle
(Proposition 1.9) to the family of nets corresponding to the HP-functions θ(|zk |z)
would then yield a subsequence converging to a net H in the entire punctured
plane for which ∂U is an i-arc. But then it is clear that H is the degenerate
spiral net S0,π/2 . This in turn means that the original net would have to have
i-arcs arbitrarily close to a full circle centered at 0, which contradicts the fact that
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|τi| < 2π . Thus indeed, the |pi(z)/z| are bounded away from 1 in U . In terms of
our characteristic coordinates this means that |ζ(t1, t2)| decreases exponentially
as either of the ti tends to ∞ ; more precisely it means that there exist A,K > 0,
such that

(3.7) |ζ(t1, t2)| < Ae−K(t1+t2), for t1, t2 ≥ 0.

In light of (3.5) and (3.6) we must show that if u(t1, t2) = ζ(t1, t2) · eiω ,
v(t1, t2) = ζ(t1, t2) · ieiω , then u/|ζ| , v/|ζ| are constant in some half-strip nπ ≤
ti < (n+ 1)π , tj ≥ T . (Here again we are using the dot to denote inner product.)
In terms of the real and imaginary parts x and y of ζ , the equations (3.5) may
be written as (see equations (1.8))

cosωyt1 − sinωxt1 = 0 and sinωyt2 + cosωxt2 = 0,

which in turn imply

(3.8) vt1 = −τ1
π
u and ut2 =

τ2
π
v.

For w = u or v we let w̄(s, t) stand for w
(

1
2 (t + s), 1

2 (t − s)
)

, so that by (3.2),
(3.3) and (3.4), ū(s, t) and v̄(s, t) are periodic with period 2π in s .

Let γ2 = −τ1τ2/π
2 , γ > 0. Since 0 < τ1,−τ2 < 2π and τ1 − τ2 = 2π , it

follows that 0 < γ ≤ 1. If we write equations (3.8) in integral form and take the
bound (3.7) into account, we see that both u and v satisfy the equation

w(t1, t2) = γ2

∫ ∞

t1

∫ ∞

t2

w(s1, s2) ds2 ds1.

A standard argument based on this equation, the bound (3.7), and the continuity
of u and v shows that they are both C∞ -functions on R2 . The integral equation
written in differential form is simply the well-known telegraph equation

wt1t2 − γ2w = 0,

so that in terms of the variables s and t , ū and v̄ satisfy

wtt −wss = γ2w,

are periodic with period 2π in s and tend uniformly to 0 as t →∞ . It is easily
established by separation of variables that the solutions of the telegraph equation
for which w̄(s + 2π, t) = w̄(s, t) , with smooth periodic Cauchy data on t = 0 are
given in the upper half-plane t ≥ 0 by

w̄(s, t) =

∞∑

k=0

Fk(s, t),
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where
F0(s, t) = A0e

γt +B0e
−γt

and for k ≥ 1

Fk(s, t) = (Ak cos ks+Bk sin ks) cos
(
(k2 − γ2)1/2t

)

+ (Ck cos ks+Dk sin ks) sin
(
(k2 − γ2)1/2t

)
,

with the exception that when γ = 1

F1(s, t) = A1 cos s +B1 sin s + (C1 cos s +D1 sin s)t.

When γ < 1 the uniform exponential decay of w̄(s, t) to 0 as t→∞ implies that
there is a K > 0 such that for t ≥ K , k ≥ 1,

∣∣Ak cos
(
(k2 − γ2)1/2t

)
+ Ck sin

(
(k2 − γ2)1/2t

)∣∣ =

∣∣∣∣
1

π

∫ 2π

0

w̄(s, t) cos ks ds

∣∣∣∣ ≤ ε.

This clearly implies that Ak and Ck are 0 for k ≥ 1. Similarly, Bk and Dk

are 0 for k ≥ 1. The case γ = 1 is handled in a similar way. Thus ū and v̄
are of the form A0e

γt + B0e
−γt . But since ū(s, t) → 0 as t → ∞ , we must have

A0 = 0, so that ū(s, t) = B0e
−γt . Similarly, v̄(s, t) = B′0e

−γt , for some other

constant B′0 . But then |ζ| = (B2
0 +B′20)1/2e−γt , so that ū/|ζ| = B0/(B

2
0 +B′20)1/2

and v̄/|ζ| = B′0/(B
2
0 +B′20)1/2 are constants in the upper half-plane, and therefore

u/|ζ| and v/|ζ| are indeed constant in some half-strip nπ ≤ ti < (n + 1)π ,
tj ≥ T .

Theorem 3.2. If H ∈ HP∗(C) has a spiral or degenerate spiral singularity,
then H is one of the Sp,α .

Proof. Let H as in the hypothesis have a spiral singularity at p and let
q be another singularity of H at minimum distance from p . The convexity of
the characteristics emanating from p shows that q is a Riemann singularity. But
then Theorem 2.4 shows that there is, in fact, no singularity at q . Thus p is
the only singularity of H . The conclusion follows from Theorem 3.3 together
with the uniqueness of the nets resulting from the construction process described
just before the discussion of double Riemann nets in Section 1.4. The case of a
degenerate spiral singularity is handled similarly.

Theorem 3.2 together with Theorem 2.5 gives us the following complete de-
scription of HP-nets with a single singularity.

Theorem 3.3. If H is an HP -net regular in C except for a single singularity
at p , then H is an Rp,α,β or an Sp,α .
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4. More than one singularity

We begin with the following

Lemma 4.1. Let D be a Jordan domain with C1 boundary. Let θ be an
HP∗ -function on D with singularity set A . Let R denote the set of nondegenerate
Riemann singularities of θ . Then

(4.1)
∑

a∈R
dist(a, ∂D) ≤ 2λ(∂D)

π
,

and

(4.2)
∑

a∈A\R
dist(a, ∂D) ≤ λ(∂D)

π
.

Proof. We begin with the following observation. Let Q be a characteristic
quadrilateral of θ in D\A one of whose j -sides is C = ab , and let E ⊂ Q be a
simple arc joining the i-sides of Q . Assume, furthermore, that C is everywhere
convex toward the inside of Q . Then

(4.3) λ(E) ≥ |∆θ(ab)|min{|p− e| : p ∈ C, e ∈ E}.

To see this we recall that if p ∈ C is a point at which Diθ exists and z = z(s) ,
0 ≤ s ≤ σ , is the arc length parametrization of the j -arc FC joining p to the
other j -side of Q , then the (unsigned) radius of curvature R(s) = 1/|Djθ

(
z(s)

)
|

is differentiable and satisfies R′(s) = 1. Since Djθ(p) exists for almost all p ∈ C
and the length of the i-arc joining p to a point e ∈ E in Q\E is at least |p− e| ,
a simple calculus argument shows that (4.3) indeed holds.

It is clearly sufficient to show that if D′ is any smoothly bounded subdomain
of D for which A ∩ ∂D′ = ∅ , then

(4.4)
∑

a∈R∩D′
dist(a, ∂D′) ≤ 2λ(∂D′)

π
and

∑

a∈(A\R)∩D′
dist(a, ∂D′) ≤ λ(∂D′)

π
.

It follows from Theorems 2.3 and 2.4 that each nonbounding characteristic of the
i-fan Fa,i of a ∈ R has a unique subarc which joins a to some point ∂D′ . Denote
the set of all such points of ∂D′ by Ea,i . It is clear that for each i all of the sets
Ea,i are disjoint. Let ε > 0 and let G be an open j -arc in N(a, ε) which joins
the bounding characteristics of Fa,i . Then each point p ∈ G is contained in an
open subarc C of G which is the side of a characteristic quadrilateral in D\A for
which the other j -side lies outside of D′ . By the initial observation the length of
the part of Ea,i in this quadrilateral is at least δ

(
dist(a, ∂D′)− ε

)
, where δ is the

change in θ on C . From this it follows that

λ(Ea,i) ≥ γa,i dist(a, ∂D′),
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γa,i being the i-fan angle at a . Thus

2∑

i=1

∑

a∈R∩D′
γa,i dist(a, ∂D′) ≤ 2λ(∂D′),

so that the first bound of (4.4) follows upon taking into account that γa,1 +γa,2 =
π .

The second inequality of (4.4) follows in essentially the same way. For a
true spiral singularity a , by Theorem 3.1, θ coincides with σa,α for some α .
As explained at the end of the discussion of spiral nets in Section 1.4, there are
k -arcs Ck , k = 1, 2, contained in N(a, ε) along which θ has change βα,k > 0
with βa,1 + βa,2 = 2π . If we replace the i-fan used above in the case of Riemann
singularities with the set of j -arcs issuing from Ci and moving away from a , the
argument proceeds just as in that case and we obtain that

λ(Ea,i) ≥ βa,i dist(a, ∂D′).

The same holds in the case of degenerate spiral singularities, with the difference
that one of the βa,k vanishes. In any event, the second bound of (4.4) now follows
immediately.

Corollary 4.1. Let D be a Jordan domain with C1 boundary. Let θ be an
HP∗ -function on D with singularity set S . Then

∑

a∈S
dist(a, ∂D) ≤ 3λ(∂D)

π
.

Corollary 4.2. An HP∗ -function θ on C can have at most four singularities.

Proof. Let p1, . . . , pn be distinct singularities of θ . If any of them is a
spiral or degenerate spiral singularity then, by Theorem 3.2, n = 1. Thus we
assume that they are all nondegenerate Riemann singularities. If N(0, R) is a
disk containing all of these singularities and such that θ is regular on ∂N(0, R) ,
then by Lemma 4.1

n∑

k=1

(R − |pk|) ≤ 4R,

from which the desired conclusion follows upon letting R→∞ .

For each p ∈ D , a very similar argument shows that there is a neighborhood
U = U(D, p) of p such that any θ ∈ HP∗(D) can have at most four singularities
in U . This, together with the compactness principle for HP(D) (Proposition 1.9)
and a straightforward diagonal argument, gives the following
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Corollary 4.3 (Compactness principle for HP∗(D)). For any sequence {θn}
of functions in HP∗(D) there exists a subsequence {θn′} and a θ ∈ HP∗(D) such
that e2iθn′ converges to e2iθ in the topology of uniform convergence on compact
subsets of D\A , where A is the singularity set of θ .

The remainder of this section is devoted to proving the following

Theorem 4.1. An HP∗ -net in all of C can have at most two singularities.
If it has no singularities, then the corresponding θ is a constant. If it has one
singularity then it is either one of the Riemann nets Rp,α,β or one of the spiral
nets Sp,α . If it has two singularities then it is either one of the double Riemann
nets Dp,q,α,β,γ or one of the degenerate double Riemann nets Fp,q,σ,β,γ .

The case of zero or one singularity is covered by Proposition 1.8 and The-
orem 3.3. In light of Theorem 3.2 any HP*-net in C which has a spiral or a
degenerate spiral singularity is an Sp,α . Thus, for the remainder of this section
we shall assume that H is an HP-net which is regular in all of C except for
distinct nondegenerate Riemann singularities p1, p2, . . . , pn , 2 ≤ n ≤ 4. We shall
show that the corresponding net is one of the double Riemann nets Dp,q,α,β,γ or
one of the degenerate double Riemann nets Fp,q,σ,β,γ described in Section 1.4.
We begin with a number of preliminary observations and the introduction of some
further notation and terminology that will facilitate the discussion.

It is easy to see that no singularity can be joined to itself by a characteristic.
Indeed, if C is an i-characteristic which both begins and ends at one of the
singularities p , then what we know about the i-fan of p implies that there is
a subarc E of C whose endpoints are also joined by a j -arc E ′ and such that
the domain between E and E ′ contains no singularities, an obvious impossibility.
Thus, each characteristic either emanates from some singularity and has infinite
length, extends from one singularity to another in finite length or extends infinitely
in both directions. If p is a singularity, the fan of i-characteristics emanating from
p will be denoted by Fi(p) . In addition, Ri(p) and Li(p) will denote the bounding
characteristics of Fi(p) on the right and left sides of this fan (with respect to
movement away from p). For each pair (p, i) , where p is a singularity and the
angle of Fi(p) is positive, we choose a fixed nonbounding characteristic Mi(p) of
Fi(p) and let z(s) , 0 < s < L , be the arc length parametrization of Mi(p) . For
all sufficiently small s there is an open j -arc Cj(p, s) containing z(s) and joining
a point of Ri(p) to a point of Li(p) . This arc is everywhere concave towards p .
Because of this, in light of Theorems 2.3 and 2.4, all characteristics of Fi(p) ,
with the possible exception of Ri(p) and Li(p) , can be extended indefinitely away
from p (without terminating at any other singularity), so that L =∞ and Cj(p, s)
is well defined for all s > 0. (The arbitrariness of the choice of Mi(p) will be of
no consequence.)

Lemma 4.2. Let p be a singularity of an HP-function θ on C which has
only nondegenerate Riemann singularities. Let C be an i-arc of θ with arc length
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parametrization z(s) , 0 < s < L < ∞ . Then there exist 0 = s0 < s1 < · · · <
sm = L such that for 1 ≤ i ≤ m− 2 , z

(
(si,si+1)

)
is either a straight line segment

or Cj(a, s) for some singularity a and some s > 0 . For i = 0 or m−1 , z
(
(si,si+1)

)

is either a straight line segment or a subarc of some such Cj(a, s) .

Proof. The only way this could fail to be so would be for there to be infinitely
many disjoint arcs of the form Cj(a, s) on C . But, since the associated fan angles
have at most four different positive values, this is inconsistent with the fact that
θ(z) is continuous on C and possesses limits as z approaches the endpoints of C .

The proof that the only possible nets are the (nondegenerate and degenerate)
double Riemann nets is broken down into two main cases according to whether or
not some pair of (distinct) singularities are joined by a characteristic; each of these
cases is further broken down into subcases. In each instance the proof reduces to
showing that there are only two singularities and that a certain characteristic arc
is a straight line segment.

Case I. There are singularities p , q joined by a characteristic i-arc C . We
begin by noting the following simple consequences of this hypothesis.

(1) There is a neighborhood N of C such that θ is regular in N − {p, q} .
This is obvious from the definition of isolated singularity and the regularity

of θ along C .
(2) C is the only i-arc joining p to q .
Assume, to the contrary, that there is another one C ′ . Then from what we

know about the structure of Riemann singularities, C and C ′ both belong to both
Fi(p) and Fi(q) . But then the orthogonal characteristics connecting C and C ′

inside these fans must have nonvanishing curvature, and have their concave side
towards both p and q , which is impossible.

(3) C ∈ {Ri(p), Li(p)} ∩ {Ri(q), Li(q)} .
If C were neither Ri(p) nor Li(p) , then from the structure of Riemann sin-

gularities it follows that there are j -characteristic arcs forming an angle of π at
q and which are strictly concave towards p . But this contradicts Theorem 2.4.

(4) C is Ri(p) and Ri(q) or Li(p) and Li(q) .
If either of the fans Fi(p) or Fi(q) is made up of a single characteristic then

there is nothing to prove, so we assume that this is not the case. Say that C
is Ri(p) . If it were Li(q) , then it is easy to see that there would be two distinct
i-characteristics joining p and q , which contradicts point (1) above.

We now begin the analysis of Case I. For the sake of definiteness we assume
C is Ri(p) and Ri(q) . We also assume for the time being that angles β , γ of
the fans Fi(p) and Fi(q) satisfy 0 < β, γ < π ; we will discuss the degenerate
cases separately. The accompanying Figure 3 has been included to facilitate un-
derstanding the following discussion. We shall show that the net is Fp,q,+,β,γ , so
that this figure is to be compared to Figure 2. Let e ∈ {p, q} . We consider that
Cj(e, s) is oriented so that movement in the positive direction along it coincides
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Figure 3.

with increasing θ ; the initial and terminal points of its closure will be denoted by
ae(s) and be(s) ; for completeness we set ae(0) = be(0) = e . For small s , ae(s)
lies on the curve C . Let {e, f} = {p, q} . We follow the movement of Cj(e, s) as
s varies from 0 to ∞ . On an initial interval [s0,e, s1,e] , s0,e = 0, ae(s) traces
out C from e to f , while be(s) traces out an arc of Li(e) . Next, on an interval
[s1,e, s2,e] , ae(s) is stable at f while be(s) traces out a j -arc which is concave to-
wards f . Then, on an interval [s2,e, s3,e] , ae(s) runs along the arc bf ([s0,f , s1,f ]) .
Continuing in this manner we see that there are two increasing sequences {sk,e} ,
e = p, q , such that on [sk+2,e, sk+3,e] , ae(s) runs along the arc bf ([sk,f , sk+1,f ])
of Li(f) . The arcs Cj(e, s) , s ∈ [sk+2,e, sk+3,e] and Cj(f, s) , s ∈ [sk,f , sk+1,f ] lie
on opposite sides of Li(f) . In addition, they are both concave towards f . From
this, together with Theorem 2.3 it follows that Li(p) and Li(q) are both infinite
(that is, as we move out from p and q along them we never encounter singularities.

For k ≥ 1, let Qk(e) denote the (closed) characteristic quadrilateral with
vertices be(sk−1,e) , ae(sk−1,e) , ae(sk,e) and be(sk,e) . These are all bona fide
characteristic quadrilaterals with the exception of Q1(e) , Q2(e) which have de-
generate sides at ee and ff , respectively. The fact that there are no singu-
larities on any of the Cj(e, s) , s > 0, nor on the Li(e) means that the only
singularities in any of the Qk(e) are the points p and q . It is easy to see that
|be(s) − ae(s)| ≥ Kλ

(
Cj(p, s)

)
→ ∞ so that the union of the Qk is the entire

plane. Thus indeed the only singularities are p and q . Finally, since none of the
points of C is joined to a singularity by a j -characteristic, C is a straight line
segment. Comparison with the construction of the degenerate double Riemann
nets now shows that this net is indeed Fp,q,+,β,γ .

We still have to discuss those degenerate situations in which the angles of
one or both of the fans Fi(p) and Fi(q) is 0 or π . By interchanging p and q , if



Hencky–Prandtl nets and constant principal strain mappings 225

necessary, it is sufficient to consider the following possibilities:

(A) 0 < β < π , γ = 0.

(B) 0 < β < π , γ = π .

(C) β = γ = π .

(D) β = 0, γ = π .

(E) β = γ = 0.

Cases A–D. Cases A–D are very similar to the case in which 0 < β, γ < π ,
which we have just treated, the only difference being that some of the quadrilat-
erals Qk(p) , Qk(q) degenerate into characteristic arcs or do not even appear, and
the proof proceeds with minor alterations, the details of which we leave to the
reader. In Case A none of the Qk(q) appear, because the fact that γ = 0 causes
the Cj(q, s) , in effect, to degenerate to a point. Nonetheless, the Qk(p) cover the
plane, and allow us to reach the desired conclusion as before. In Case B the degen-
eracy of Ci(q, s) makes Q2(p) , Q4(q) , Q6(p) , Q8(p), . . . degenerate into j -arcs,
but again the remaining quadrilaterals cover the plane in the necessary fashion.
In Case C it is all the even numbered quadrilaterals that degenerate into j -arcs
because of the degeneracy of both Ci(p, s) and Ci(q, s) , but once again the re-
maining quadrilaterals cover the plane in the necessary manner. Finally, in Case D
(see Figure 4) all of the Qk(p) degenerate (more precisely, Q2(p) degenerates to
the point q and all the other Qk(p) degenerate to arcs) because the Cj(p, s) and
the Ci(q, s) degenerate to points; again the Qk(q) cover the plane. In all four of
these cases the only singularities are p and q and the i-arc C is a straight line,
so that the net is seen to be Fp,q,+,β,γ .

Case E. The treatment of this case differs substantially from that of the other
four, since none of the quadrilaterals actually appears because of the degeneracy
of both Cj(p, s) and Cj(q, s) . Let Me be any fixed nonbounding characteristic of
Fj(e) , and let ze(s) , 0 < s < ∞ be an arc length parametrization of Me . (The
characteristics Me are infinite by Theorems 2.3 and 2.4 as pointed out above.)
We apply the decomposition of Lemma 4.2 to Me . The first subarc must be a
straight line segment, since otherwise it would have to be a subarc of a Cj(f, s)
or Cj(e, s) , which is inconsistent with the hypothesis that the angle of the j -fan
at both e and f is 0. Let s1 > 0 be such that G = ze

(
(0, s1)

)
is a straight

line segment. It follows that for small positive s , there is a single i-characteristic
Ns , which is a simple closed curve consisting of semicircles of radius s (which are
Cj(p, s

′) , Cj(q, s
′) for appropriate values of s′ ) joined by translates of C . Let

σ be a fixed such s . Let w(t) , 0 ≤ t ≤ L , be an arc length parametrization of
Nσ traversed once starting at and ending on G . Let Gt denote the associated
translates of G along Nσ . We claim that θ is regular on all of these Gt . If not,
let σ′ , where σ < σ′ < s1 , be the smallest number for which a singularity is
encountered on a translate of ze((0, σ

′]) . In the event that there is more than one
such singularity we consider the one lying on the Gt with the smallest possible
value of t ∈ (0, L) . It is clear that for all s < σ′ , there is an Ns as described above.
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It is also clear that for this singularity the angle of the j -fan is π , since it lies in
the interior of one of the straight j -arcs Gt . But this means that points ze(s) , for
s < σ′ near σ′ are joined by i-characteristics to points ze(s) , for s > σ′ near σ′ ,
which is inconsistent with the existence of the simple closed i-characteristics Ns ,
of the kind described above, for s < σ′ . Now assume that in the decomposition
of Me according to Lemma 4.2 we have a second interval, that is, ze

(
(0, s1)

)
is

a straight line segment, but ze
(
(s1, s2)

)
= Cj(c, τ ) , for some singularity c , and

some τ > 0. But then the argument we used before will again show that there
can be no singularities on the translates of ze

(
(0, s2)

)
around Nσ away from c ,

that is, in the direction of the side towards which ze
(
(s1, s2)

)
is convex. But this

contradicts the existence of the singularity c . Thus no such s1 exists, and the
Me are both straight lines on all of whose translates θ is regular. From this it
follows the j -characteristic through each point of C is a straight line (infinite in
both directions) so that C is itself straight. From the straightness of the Me it
follows that the net in question is Fp,q,+,0,0 = Fp,q,−,0,0 .

Case II. No two singularities are joined by a characteristic arc.

We assume that there are at least two singularities and that no two of them
are joined by a characteristic. Let p be a singularity. It follows that the bounding
characteristics of the fans Fi(p) , i = 1, 2, are all free of singularities, so that when
we apply the decomposition of Lemma 4.2 to each of them the initial piece is
always a line segment. It is easy to see that all of these initial segments must be
finite. Assume, to the contrary, that all the characteristics making up Fi(p) are
rays. It is enough to show that all translates of Ri(p) along Lj(p) (and of Li(p)
along Rj(p)) are free of singularities, since then Lj(p) and Rj(p) will be rays
also, from which the desired conclusion follows immediately. Say, to the contrary,
that as we translate Ri(p) along Lj(p) we encounter a first singularity at q . It
is clear that the angle of the j -fan at q must be 0. Then Li(q) is a ray. But
this cannot be because Li(q) contains Ci(p, τ ) for some τ , and these curves are
nowhere straight. Thus, indeed, all of the initial segments are finite.

We examine translates of these initial segments; to be specific we consider the
initial line segment SR of Ri(p) . It is clear that the initial straight line segment
SL of Li(p) has the same length σ as SR . Let {T,U} = {R,L} . Let zU (s) ,
0 < s < ∞ , be the arc length parametrization of Uj(p) . Let sT be the smallest
s > 0 for which the translate ST (s) of ST along Uj(p) to zU (s) has a singularity,
where sT = ∞ if no such s exists. If sT is finite it is clear that the singularity
encountered must be at distance 1

2σ from Uj(p) , and that the angle of its j -fan
must be 0 with this j -fan consisting of a single characteristic extending back
towards Fi(p) at distance 1

2σ from Uj(p) . From this it follows that we cannot
have both sR and sL finite, since we would then have two singularities joined by
a characteristic. We bear these preliminary comments in mind as we deal with the
various subcases into which Case II is divided.
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Figure 4.

Case II-1. There are no singularities with fan angles 0 and π .

It follows from the preceding comments that all four initial segments are of
finite length and that all their translates are free of singularities. Consider the
initial segments SR and SL on Ri(p) and Li(p) , respectively. In reference to
the decomposition of Lemma 4.2, the piece of Ri(p) which follows the straight
line segment SR is of the form Ci(q, σ) for some singularity q . In light of the
underlying assumption the angles of both fans at q are strictly between 0 and π ,
we can assume this arc curves away from the fan Fi(p) (that is, that as we move
away from p along this piece of Ri(p) , the argument of the tangent decreases),
since if it had the opposite sign we could work with SL and Li(p) instead of SR
and Ri(p) and have it curve away from the fan. The remainder of the discussion
of this case is very similar to that of the nondegenerate Case I. Indeed, let e be p
or q . For 0 < s <∞ , we let E(e, s) be the open i-arc made up of the Ci(e, s) , its
endpoint c(s) on Lj(e) and the translate of SR one of whose endpoints is c(s) .
Furthermore, we let E(e, 0) be the translate of SR one of whose endpoints is e and
which lies to the left of Lj(e) (when movement along this characteristic is away
from e), so that E(e, s) is continuous for s ≥ 0. (Note that E(p, 0) = SR .) The
desired conclusion is obtained by following the movement of E(p, s) and E(q, s)
as s varies from 0 to ∞ . Let {e, f} = {p, q} . We consider that E(e, s) is oriented
so that the positive direction along it coincides with that of nondecreasing θ and
we denote the initial and terminal points of its closure by ae(s) and be(s) . We let
s0,e = 0. Then on an interval [s0,e, s1,e] , be(s) traces out an arc of Lj(f) , which
ends at f . Then we define sk,e , k ≥ 2, inductively by be(se,k) = ae(sk−2,f ) . Note
that be(s) = f , for s ∈ [s1,e, s2,e] ; on this interval the arcs E(e, s) are initial arcs
of the characteristics of the i-fan at f .

For k ≥ 1, let Qk(e) denote the (closed) characteristic quadrilateral with
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vertices b(sk−1,e) , a(sk−1,e) , a(sk,e) and b(sk,e) . These are all bona fide charac-
teristic quadrilaterals, except for Q2(e) which has the degenerate side ff . The
fact that there are no singularities on any of the E(e, s) , s > 0, nor on the Rj(e) ,
Lj(e) means that the only singularities in any of the Qk(e) are the points p and q .
It is easy to see that |be(s) − ae(s)| ≥ Kλ

(
E(p, s)

)
→∞ so that the union of the

Qk is the entire plane. Thus indeed the only singularities are p and q . Finally,
it is clear that none of the points of c([s0,e, s1,e]) is joined to a singularity by an
i-characteristic, so that this arc is a straight line segment. Comparison with the
construction of the double Riemann nets in Section 1.4 now shows that in this case
the net is Dp,q,β,γ,α , where β is the angle of Fi(q) , γ is the angle of Fi(p) and
α is the inclination of the initial segment of Lj(p) . This finishes the discussion of
Case II-1.

Case II-2. There is a singularity with fan angles 0 and π at p . This case is
further divided into the following subcases, where the angles of Fi(p) and Fj(p)
are 0 and π , respectively.

(A) All translates of the initial segments at p are free of singularities.
(B) The midpoint of some translate of an initial segment of Li(p) = Ri(p) is

a singularity of θ .
(C) The midpoint of some translate of the initial segments of Lj(p) and Rj(p)

is a singularity of θ .

Case A. The following discussion is illustrated in Figure 5. As in Case II-1, all
initial segments are of finite length and all their translates are free of singularities.
The piece of Rj(p) which follows its initial line segment SR is of the form Cj(q, σ) ,
σ > 0, for some singularity q . We may assume that as one moves along Rj(p) away
from p , θ decreases; if this is not the case, one works with Lj(p) instead of Rj(p) .
We assume that the angles of the fans at q are strictly between 0 and π ; the minor
modifications required if this is not so (i.e., the angle of Fi(q) is π ) are left to the
reader. By assumption Ri(p) = Li(p) is free of singularities. Let l > 0 be the
length of SR . There are translates of SR (which are all free of singularities) with
endpoints on Ri(p) extending outward on both sides of Ri(p) . Let z(s) , s ≥ 0, be
the arc length parametrization of Ri(p) , and let E(s) denote the open line segment
j -arc of length 2l and with midpoint z(s) . We see that starting with E(0), E(s)
moves towards q with one endpoint on Li(q) , and then on some interval [τ, τ ′]
has an endpoint at q while it rotates around q in the counterclockwise direction
forming initial segments of the characteristics in Fj(q) , until E(τ ′) forms the
initial segment of Lj(q) . Thereafter it has one of its endpoints on Ri(q) . We now
define E′(s) , s > τ ′ , to be the j -arc consisting of E(s) , its endpoint on Ri(q)
together with the Cj(q, t) which shares this endpoint. For s = τ ′ we let E′(s)
consist of E(τ ′) alone (since the corresponding Cj(q, t) tends to the single point
q as t tends to 0). It is clear that there are no singularities on any of the E ′(s)
since there are none on the Cj(q, t) , on Ri(q) or on the E(s) . It follows from the
definition of the E′(s) that both of their endpoints are on Li(q) . This, together
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with the fact that Li(q) is free of singularities, implies that

Li(q) ∪
( ⋃
s>τ ′

E′(s)

)
∪
( ⋃

0≤s≤τ ′
E(s)

)
∪ A = C,

where A denotes the semidisk consisting of those translates of SR which are the
initial segments of the characteristics of Fj(p) . But then the only singularities of θ
are p and q , so that in particular there are no singularities on any of the translates
of z

(
(0, τ )

)
, which means that this arc is a straight line segment. Hence, this net

is Dp,q,π,β,α , where β is the angle of Fj(q) , and α is the inclination of the initial
segment of Li(q) .

Case B. It is easy to see that this case is identical to the situation which arises
in the foregoing Case A when the angle of Fi(q) is π if we interchange the roles
of p and q , and i and j .

Case C. To be specific, assume that the midpoint m of the translate of the
initial segment SR of Rj(p) along Li(q) = Ri(q) is the singularity q . The line
joining m to q is the initial arc of Li(q) = Ri(q) ; by the defining assumption of
Case II one encounters no singularities as one moves along Ri(q) away from q .
Let z(s) , s ≥ 0, be the arc length parametrization Ri(q) , and let E(s) denote
that translate of SR whose midpoint is z(s) . Let τ > 0 be such that E(τ ) = SR .
We assign the (continuously varying) initial point a(s) of E(s) so that a(τ ) = p .
Then a(s) moves back along Ri(p) from a(0) to p , remains at p while E(s)
rotates through an angle of π about p in the counterclockwise direction then
moves along Ri(p) for s > τ ′ = τ + |p−m|π . As s > τ ′ increases a(s) traverses
a translate of z

(
(0, τ )

)
, a semicircle Cj(q, t) , another translate of z

(
(0, τ )

)
, a

semicircle Cj(p, t
′) , and so on. From this it is easy to see that the E(s) , s ≥ 0,

together with Rj(p) (including p itself) make up all of C . But then once again
the only singularities of θ are p and q , so that in particular none of the points of
z
(
(0, τ )

)
is joined to a singularity by a j -characteristic, and therefore this arc is a

line segment. Hence, the net is Dp,q,π,π,α , where α is the inclination of the initial
segment of Ri(q) .

5. Boundary limits and constant principal strain mappings

We begin with the following

Lemma 5.1. Let θ be a nonconstant HP -function on a simply connected
domain D . Then there is an open interval I such that for all M ∈ I the (M, 1)-
mappings corresponding to θ are not one-to-one in D .

Proof. It follows from the hypothesis that there is a point z0 at which θ is
differentiable and at which its gradient does not vanish. Assume for the moment
that κ0 = D1θ(z0) 6= 0. Without loss of generality we may also assume that
θ(z0) = 0. Let z(s) , |s| < s0 , z(0) = z0 , be an arc length parametrization of
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an open arc of the 1-characteristic of θ through z0 , so that z′(s) = eτ(s)i with
τ (s) = θ

(
z(s)

)
. Then τ (s) = κ0s+ o(s) , as s→ 0. Let f be an (M, 1)-mapping

corresponding to the HP-function θ , and let w(s) = f
(
z(s)

)
. Again without loss

of generality we can assume that w′(0) > 0. It then follows from the compatibility
equations (1.1) and the fact that f is an (M, 1)-mapping that

w′(s) = MeMτ(s)i = MeMκ0si+Mo(s) = MeMκ0si
(
1 +Mo(s)

)
,

so that for |t| ≤ 4π/M |κ0|

w(t) −w(0) =

∫ t

0

MeMκ0si
(
1 +Mo(s)

)
ds =

(eMκ0ti − 1)

κ0i
+M2o

((
4π

Mκ0

)2)

=
(eMκ0ti − 1)

κ0i
+ o(1), as M →∞.

From this together with the fact that on 2-arcs f does not alter arc length
and changes curvature by a factor of 1/M (as follows from the second equation
in (1.1)) it is clear that for sufficiently large M , f is not one-to-one in D . If we
had D2θ(z0) 6= 0, the analogous procedure would give us noninvertible (1,M)-
mappings f for all sufficiently large M ; the desired mappings are then given
by (1/M)f .

Definition 5.2. We say that θ0 is the nontangential limit of θ ∈ HP∗(D) at
p ∈ ∂D if there exists a ξ ∈ R such that given any ε > 0 there is a δ > 0 with
the property that the set

U =
{
p+ z : | arg{z/eiξ}| < 1

2π − ε
}
∩N ′(p, δ)

consists entirely of regular points of θ in D and the limit as z tends to p of some
single-valued branch of θ(z) in U is θ0 .

Theorem 5.1. Let D be a domain bounded by a C1 Jordan curve. If θ
is an HP∗ -function on D , then θ has nontangential limits at almost all points
of ∂D .

Proof. Let θ be as in the hypothesis and let S denote the set of singularities
of θ . We shall use (M, 1)-mappings f for which θf = θ . To do so, however,
we must work with a simply connected subdomain of D , which we obtain by
removing from D small pieces which join the points of S to ∂D . Every point
of ∂D is contained in an almost straight closed subarc C such that there is a
circular arc C ′ lying in D which joins the end points of C and contains no point
of S . Obviously, it is enough to prove the theorem for the domain bounded by
C ∪ C ′ , so that we shall assume that D has this form. Clearly, there is a bi-
Lipschitz homeomorphism Λ of D onto the rectangle R with vertices −2, 2,
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2 + 2i , −2 + 2i such that Λ(S) is contained in the rectangle 1
2
R and such that

the sum of the imaginary parts of all of the points in Λ(S) is at most 1. That the
latter is possible follows immediately from Corollary 4.1. Let zk = xk + yki be an
enumeration of the points of Λ(S) with k starting at 1. Let ε > 0 and let qk,ε be
the real function on [−2, 2] whose graph consists of the segments [−2, xk − ε/2k] ,
[xk−ε/2k, zk] , [zk, x+ε/2k] , [x+ε/2k, 2], and let qε be the sum of all of the qk,ε .
We have 0 ≤ qε(x) ≤ 1, x ∈ [−2, 2]. The domain Rε bounded by the graph
of qε and ∂R\[−2, 2] is a Jordan domain contained in R\Λ(S) whose boundary
contains all of ∂R except for a set of 1-dimensional measure at most ε . Let δ > 0.
Since Λ is bi-Lipschitz, for sufficiently small ε , D∗ = Λ−1(Rε) ⊂ D\S is a Jordan
domain whose boundary is rectifiable and contains all of ∂D except for a set of
1-dimensional measure less than δ . Since δ > 0 is arbitrary it is sufficient to show
that (any continuous branch of) θ on D∗ has nontangential boundary limits a.e.
on ∂D∗ . (Implicit in this construction of D∗ was the assumption that S 6= ∅ ; if
S = ∅ we let D∗ = D .)

        

Figure 5.

For each positive M 6= 1, let fM be an (M, 1)-mapping of D∗ corresponding
to θ . Let v(s) , 0 ≤ s ≤ L , v(0) = v(L) be a positively oriented arc length
parametrization of the simple closed curve ∂D∗ . Obviously, v is differentiable
on a subset B of (0, L) of measure L . It follows from the manner in which
D∗ was constructed that there is a K such that given any η > 0, for any two
ξ1, ξ2 ∈ (0, L) , v(ξ1) and v(ξ2) can be joined in D∗ by an arc of length at most
K|ξ2 − ξ1|+ η . (Note that the domain Rε used to construct D∗ in the preceding
paragraph has this property with K = 1.) Because of this and the fact that fM
is Lipschitz, fM has a unique continuous extension to D∗ . Clearly, ψM (s) =
fM
(
v(s)

)
is Lipschitz continuous with constant K max{M, 1/M} , so that it is

differentiable on a set AM ⊂ (0, L) of measure L . Let P denote the set of positive
rationals different from 1, and let A =

⋂
M∈P AM . Let ξ ∈ B∩A . It is enough to

show that the nontangential limit of θ exists at v(ξ) since λ
(
∂D\v(B ∩A)

)
= 0.

Without loss of generality we may make the normalizing assumption that v(ξ) = 0
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and arg v′(ξ) = 0. By appropriately choosing the constants of integration we may
also stipulate that ψM (ξ) = 0.

Let H denote the open upper half-plane. All (M, 1)-mappings in H have
a unique continuous extension to H which is Lipschitz continuous with constant
max{M, 1/M} , and in dealing with such mappings we implicitly consider that
they have been so extended. Although θt(z) = θ(tz) is not defined in all of H , for
any compact X ⊂ H , θt is defined in X for all sufficiently small t , so that it is
meaningful to talk about local uniform convergence in H of θt as t→ 0. Indeed,
we will have established the desired conclusion if we can show that θt converges
in H to a constant in this sense. To do so we show first that if for some {tk}
approaching 0, θtk tends locally uniformly to χ , then χ must be a constant χ0

which satisfies

(5.2) 4 cos2 χ0 + sin2 χ0 =
(
ψ′2(ξ)

)2
.

Let {tk} be such a sequence. By replacing it with a subsequence, if necessary,
we may assume that for each M ∈ P the (M, 1)-mappings fM (tkz)/tk converge
locally uniformly to an (M, 1)-mapping gM corresponding to χ . Since ξ ∈ B∩A ,
it follows that the gM are linear on ∂H = R . Assume that χ were not a constant.
By Lemma 5.1 there is a µ ∈ P such that gµ is not one-to-one on H . For
convenience we assume that µ > 1; the opposite case is dealt with in the same
way apart from minor notational differences. By general injectivity criteria for
quasi-isometries developed by John [J3],

τ = inf{M ∈ P ∩ (1,∞) : gM is noninjective on H} > 1.

Let {Mk} be a sequence in P ∩ (τ, τ + 1) approaching τ and such that gMk is
noninjective in H . That is, for each k there are distinct points ak, bk ∈ H for
which gMk(ak) = gMk(bk) .

It also follows from results of John [J3] that if g is an (M, 1)-mapping in
N(a, r) , then g is one-to-one in N(a, r/M) . Thus Im ak , Im bk ≤ (2+τ )|bk−ak| ,
since if, for example, Im bk > (2 + τ )|bk − ak| , then gMk would be one-to-one
in N

(
bk, (2 + τ )|bk − ak|/(1 + τ)

)
, which contains both ak and bk . Let a′k =

(ak −Re ak)/|bk − ak| and b′k = (bk −Re ak)/|bk − ak| . Then {a′k} and {b′k} are
bounded. By replacing {Mk} by an appropriate subsequence we may assume that
a′k and b′k converge to a and b , respectively. Clearly, |b − a| = 1. Let

hk(z) =
(
gMk(|bk − ak|z + Re ak)− gMk(Re ak)

)
/|bk − ak|.

Then hk is an (Mk, 1)-mapping of H associated with the HP-function χk(z) =
χ(|bk − ak|z + Re ak) for which hk(a′k) = hk(b′k) and hk(0) = 0. Again, by
replacing {Mk} with an appropriate subsequence we may assume that there is
an HP-function χ′ on H such that e2iχk converges to e2iχ′ locally uniformly on
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H and that the hk converge to a (τ, 1)-mapping h of H associated with χ′ ;
the convergence of the hk is locally uniform on H . But since for M ∈ (1, τ ) ,
(M, 1)-mappings associated with χ are injective, so are those associated with χk
and therefore also those associated with χ′ . If lM denotes the (M, 1)-mapping
associated with χ′ for which lM (i) = h(i) and for which θlM (i) = θh(i) and
φlM (i) = φh(i) , then lM → h as M → τ uniformly on compact subsets of H .
Since the lM are injective on H for M ∈ (1, τ ) , so is h . On the other hand,
h(a) = h(b) , since hk(a′k) = hk(b′k) . Thus, a, b ∈ ∂H . However, since each hk
is linear on ∂H , so is h . Since a 6= b , this means that h is a constant on ∂H .
But this cannot be since it would imply that the image under h of the strip
0 < Im z < 1, which obviously has infinite area, is contained in a disk of radius τ .
Our assumption that χ is not a constant has therefore led to a contradiction, so
that χ is indeed a constant χ0 . That χ0 satisfies equation (6.2), follows from the
fact that g2 is a linear (2, 1)-mapping of H .

Finally, we show that the θt do in fact converge as t tends to 0. If they
did not, the compactness principle (Proposition 1.9) together with the preceding
paragraphs, would imply that there are two sequences {tk} and {t′k} for which
the corresponding sequences {θtk} and {θt′

k
} converge to constants χ1 < χ2 , both

of which satisfy equation (5.2) above. Let χ3 ∈ (χ1, χ2) be a number which does
not satisfy that equation. Let z0 ∈ H . Since θ(tkz0) and θ(t′kz0) tend to χ1

and χ2 , respectively, it follows from the intermediate value theorem that for all
sufficiently large k there is an sk between tk and t′k for which θ(skz0) = χ3 . But
then by the compactness principle {θsk} has a subsequence which converges to an
HP-function χ for which χ(z0) = χ3 . This contradicts what was established in
the preceding paragraph.

We now relate the class cps*(D,m1,m2) to HP∗(D) . We define the dilata-
tion µ(p) = µH(p) of an HP-net H (for which the two families of characteristics
have been numbered) as follows. If p is a Riemann singularity with k -fan an-
gles αk , k = 1, 2, then µ(p) = α2/α1 , when α1, α2 6= 0, 1

2
π, π , and is undefined

otherwise. If p is a spiral singularity and α1 is the positive acute angle between
the 1-characteristics and the rays emanating from p , then µ(p) = cot2 α1 , when
α1 6= 0, 1

2π, π , and is undefined otherwise. There is an (m1,m2)-mapping f in a
neighborhood of an isolated singularity if and only if µ(p) = m1/m2 . Indeed, the
relevant calculations for the spiral nets Sp,α were made in (i) of Section 1.4. The
case of Riemann singularities follows immediately from the observation that if θ
has a Riemann singularity at p with fan angles α1 and α2 , then a necessary and
sufficient condition that there be a one-to-one single-valued (m1,m2)-mapping f
in a neighborhood of p is that the images of these fans have angles which sum
to π . Since these angles are given by (mj/mi)αi the desired conclusion follows
immediately. A standard argument then shows that in order for an HP∗ -net in a
simply connected domain D to correspond to some (m1,m2)-mapping with the
same set of singularities, it is necessary and sufficient that for all singularities p
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of H , µH (p) = m1/m2 . Note also that from this we have the obvious corollary
to Theorem 4.1: any f ∈cps*(C) can have at most 2 singularities; those with
no singularities are linear, those with a single singularity correspond to Sp,α ,
0 < |α| < 1

4π and Rp,α,β , 0 < |β − 1
2π| < 1

2π , and those with two singularities
correspond to the double Riemann and degenerate double Riemann nets Dp,q,α,β,β

and Fp,q,σ,β,β with 0 < |β − 1
2π| < 1

2π . All questions about the distribution of
singularities of HP∗ -functions therefore have a direct but more restrictive coun-
terpart for cps*-functions.

We next present a construction which shows that for any smoothly bounded
Jordan domain D there are mappings in cps*(D) which have infinitely many
singularities, but before going into the details, we make a few relevant comments.
If D is a simply connected domain and if H ∈ HP∗(D) is known to have a
singularity at some point p ∈ D then there can be no singularity at any point
which is joined to p by a nonbounding characteristic of either of the fans associated
with p in the case of a Riemann singularity or by any characteristic in the case of
a spiral singularity. For this reason it is much easier for an HP-net to have many
singularities if ∂D is highly contorted, since pockets formed by ∂D will allow
characteristics emanating from p to hit the boundary before covering too much
of D . For this reason it is easy to construct HP∗ -nets and cps*-mappings with
infinitely many singularities (even with infinitely many spiral singularities), but
such constructions will result in domains for which the boundary is not smooth. It
is therefore of interest to see that the appearance of infinitely many singularities
is possible even when the boundary is smooth; this follows immediately from the
following

Theorem 5.2. There is a number M0 such that for all M > M0 there is an
f ∈ cps∗(H, 1,M) , with Riemann singularities at 2kz0 , −∞ < k < ∞ , for some
z0 ∈ H = {z : Im z > 0} .

Proof. For (small) ε > 0 let T = T (ε) denote the circular sector

{
1 + i tan−1( 1

2ε) + ρeiτ : 0 < ρ ≤ 1, π + 1
2ε ≤ τ ≤ 2π − 1

2ε
}
.

We begin by applying the characteristic coordinate constructions of Section 1.2
to obtain an HP∗ -net with an isolated singularity at p = 1 + i tan−1( 1

2ε) with
C1 = {|p|eit : 1

2
ε ≤ t ≤ π + ε} and C2 = [0, p] and fan angles ε and π − ε ,

respectively. For the resulting net the bounding characteristics of the 2-fan are
the sides [p, 0] and [p, 2] of the sector T + 1 = {z + 1 : z ∈ T} and the bounding
characteristics of the 1-fan are C1 and a convex arc C ′ which joins p to a point
b in the third quadrant (whose distance from ei(π+ε) is O(ε)). Let F0 be the
translate of C ′ along the 2-arc formed by the segment [p, 2]; F0 is also a convex
curve and joins 2 to some point c0 in the third quadrant. Note that the line
segment 2-arc [b, c0] is horizontal. The HP∗ -net so constructed is defined in the
domain bounded by the 1-arc {p+ eiτ : π+ 1

2ε ≤ τ ≤ 2π− 1
2ε}∪F0 and the 2-arc
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[c0, b]∪ bq ∪ [q, 0], where q = −eiε . We now extend this net outward to larger and
larger parts of H .

Assume inductively that we have a convex curve Fk , k ≥ 0, with the following
properties:

(i) Fk starts at ak = 6 · 2k − 4 on the positive real axis and joins this point
to a point ck in the third quadrant.

(ii) The tangents to Fk at ak and ck have argument 1
2 (π − ε) and 3

2π ,
respectively.

(iii) There is an HP∗ -net in a domain Dk which contains the region bounded
by the part of Fk lying in the upper half-plane and a segment of the real line and in
which the only singularities of the net are at the points 5 ·2m−4+ i2m tan−1( 1

2ε) ,
0 ≤m ≤ k .

(iv) Fk is a 1-characteristic of this net.
(v) Each point of Fk other than ak is joined to 0 by a 2-characteristic of the

net of (iii) which consists of a line segment [0, eiτ ] , 1
2ε < τ < π+ ε , followed by a

curve along which the argument of the tangent lies in the interval [τ − 1
2ε, τ + 1

2ε] .

The arc F0 satisfies (i)–(v). A simple compactness argument shows that
(v) implies that there is an ε0 , 0 < ε0 < 1/100, such that if ε < ε0 , then
λ(Fk) < 2πak . (The number ε0 is an absolute constant which does not depend
on k .) Henceforth we assume that ε < ε0 .

Let Ek be the circle of radius 2k csc( 1
2ε) centered at the point 7 · 2k − 4 +

i2k cot( 1
2ε) which joins the point ak to 8 · 2k − 4 in the lower half-plane. Note

that the tangent to this arc at 8 · 2k − 4 has argument 1
2ε . We apply the usual

characteristic quadrilateral HP-construction (Proposition 1.3) with Fk as the 1-
arc and

Gk = Ek ∪ [8 · 2k − 4, 10 · 2k − 4 + i2k+1 tan−1( 1
2ε)]

as the 2-arc. It is clear from the definition of ε0 that we have an a priori bound of
2π ·10 ·2k = 5π ·2k+2 on the length of the translates of Fk along the 2-arc Ek , so
that the concavity of Ek causes no singularity formation (that is, the mapping ζ
of Proposition 1.3 is one-to-one in the whole rectangle I1× I2 ) since the curvature
of the curved part of this arc is 2−k sin( 1

2ε) , and

2−k sin( 1
2
ε) · 5π · 2k+2 < 10πε < 10πε0 <

1
10
π < 1.

Denote by F ′k the translate of Fk along Gk . We then put a singularity with
1- and 2-fan angles ε and π − ε , respectively, at 10 · 2k − 4 + i2k+1 tan−1( 1

2ε) ,
constructed in accordance with the procedures of Section 1.2, with 1-arc F ′k and
2-arc Gk . The 2-fan contains the entire sector Tk+1 = 2k+1T + 5 · 2k+1 − 4.
Let F ′′k be the other bounding arc of the 1-fan, and let Fk+1 be the translate
of F ′′k along the right-hand segment of ∂Tk+1 . One sees that Fk+1 starts at
6 · 2k+1− 4 and has the correct tangent angle there. For Dk+1 we take Dk ∪Tk+1

together with the region covered by the translates of Fk along Gk , the 1-fan
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with bounding characteristics F ′k and F ′′k and the translates of F ′′k along the
right-hand segment of ∂Tk+1 . The 2-arcs lying in this new region and joining
points of Fk and Fk+1 consist of two line segments and two curved arcs which
have total curvature (when reckoned as one moves away from the origin) ε and
−ε , respectively. From this it follows that the terminal point of Fk+1 indeed lies
in the third quadrant and that its tangent there has argument 3

2π . It is also
clear that (v) holds for k + 1. The result of the entire inductive process is an
HP∗ -net in all of H having singularities with dilatation (π − ε)/ε at the points
2k
(
5 + i tan−1( 1

2ε)
)
− 4, k ≥ 0. Consideration of a convergent subsequence of

{θ(2nz) : n ≥ 0} , where θ is a corresponding HP-function, yields a HP∗ -net with
singularities of this kind at the points 2k

(
5 + i tan−1( 1

2ε)
)

, −∞ < k <∞ , which,
in turn gives the desired cps*-mapping.

The discussions of this and the preceding sections allow us to give some jus-
tification for identifying microscopic flaws in cryptocrystalline laminae with iso-
lated singularities of the corresponding cps-mappings, or to be more precise, with
isolated singularities of the HP-function θ corresponding to the inverse of the cps-
mapping giving the deformation. Assume that the original uncrystallized lamina
is represented by D ⊂ C and that the deformation produced by the crystalliza-
tion is given by a homeomorphism f : D → C which is a cps-mapping on D\S .
Here S is a closed set with components Sk , k ∈ I ⊂ N . The flaws will be
the f(Sk) . In the first place, because small flaws in close proximity to one an-
other are apt to be perceived as a single larger flaw, it is reasonable to consider that
a truly tiny flaw should be isolated as well as minute, that is, that for some T > 0,
dist

(
f(Sk), f(Sl)

)
≥ T for all distinct k, l ∈ I and diam

(
f(Sk)

)
< ε , k ∈ I , where

ε > 0 is some suitably small number. A simple compactness argument shows that
for given T, δ1, δ2 > 0, there is an ε > 0 such that if θ ∈ HP

(
N(p, T )\F

)
with

F ⊂ N(p, ε) , then there is a θ0 ∈ HP
(
N ′(p, T )

)
such that

sup{|θ(z) − θ0(z)| : δ1 < |z − p| < T} < δ2.

In a neighborhood of f(Sk) , θf−1 is therefore either close to an HP-function θ0

with an isolated singularity at some p ∈ f(Sk) or to one which is regular in
that neighborhood, these two possibilities being mutually exclusive since, as our
analysis shows, the θ0 with a true singularity at p are not approximable in any
reasonable sense by functions in HP

(
N(p, T )

)
. In the case that θ0 is regular we

discard the flaw f(Sk) from consideration as such since its presence would produce
no macroscopic effects. It would therefore appear that cps*-mappings provide a
reasonable mathematical description of deformations induced by the solidification
of planar liquid films which result in laminae known only to have microscopic flaws.

6. Further questions

In line with the geometric function theory focus outlined in the fourth para-
graph of the introduction, the most immediate issues raised by the foregoing in-
volve extremal questions about the possible distribution of the singularities of
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θ ∈ HP∗(D) and f ∈cps*(D) , and more specifically f ∈cps*(D,m1,m2) . The
cps-cases of this question have clear-cut significance in physical situations involving
deformations with constant principal strains.

Since Corollary 4.1 says that for any Jordan domain D with smooth boundary
the sum of the distances to the boundary of the singularities of any θ ∈ HP∗(D) is
bounded by 3λ(∂D)/π , it is most reasonable to ask about the smallest possible up-
per bounds for this sum, and for its analogues for cps*(D) and cps*(D,m1,m2) .
Although in general it is probably not possible to give an explicit answer to this
question in terms of transparent geometric parameters of the domain D , it may
well be in the case of disks; it is not clear, however, whether these problems
have corresponding extremal functions. Somewhat more accessible, perhaps, is
the determination of the greatest number of singularities that can appear in a
given compact subset K of D ; again the disk case, with K a concentric disk,
is the most interesting instance. Theorem 5.2 tells us that given m1 , m2 with
m1/m2 > 1 sufficiently large, cps*(D,m1,m2) contains mappings with infinitely
many singularities. One wonders if the condition that m1/m2 be sufficiently large
can be removed. Moreover, given the interpretation of cps-mappings in the context
of cryptocrystalline laminae, it would be of considerable interest to determine if
there always exist injective f ∈cps*(D,m1,m2) with infinitely many singularities,
since noninjective f correspond to laminae which overlap themselves upon solid-
ification. We believe that it should not be too difficult to resolve this issue. In a
less quantitative direction we mention the possibility that if θ ∈ HP(D\S) , where
S is a “sufficiently small set” (linear measure 0 is perhaps small enough), then,
in fact, θ can be extended to an HP-function in D\S ′ , where S′ ⊂ D consists
entirely of isolated points of D .

The distribution of isolated singularities is only one of the numerous issues
regarding HP-nets and cps-mappings which invite investigation. In addition to
the distortion questions touched on in [G1], specific mapping problems offer an-
other possibility. Here the analogy with conformal mappings becomes somewhat
thin, since as will be shown in the sequel [G4] to this paper (see also [G3]), given
any smoothly bounded Jordan domain D there is another such domain E such
that for no f ∈cps(D) is f(D) = E . This raises the problem of finding general
(but not necessarily exhaustive) intrinsic conditions on domains D and E which
imply the existence of cps-homeomorphisms of one onto the other; particularly
interesting is the question of when a domain has cps-self-homeomorphisms. An
important tool for studying such mapping questions is the fact that if D and E
are smoothly bounded domains and if f is a cps-homeomorphism of D onto E ,
then characteristics of the associated HP-function θ which meet ∂D do so at a
well defined angle. This by no means trivial fact, to be proved in [G4], implies
that the boundary values of θ are well defined (in an appropriate sense) and as a
result allows one to relate such mapping questions to Cauchy problems. This, in
turn, makes it possible to give simple descriptions of all cps-self-homeomorphisms
of the half-plane and the exterior of a disk. All of these mapping questions have
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corresponding cps*-versions and obvious interpretations in the context of cryp-
tocrystalline laminae.

Constant principal strain mappings between 2-manifolds are treated in [ChG]
and one can ask if it is possible to say something about the distribution of sin-
gularities in that context. In that paper a complete description of the infinite di-
mensional family of cps-self-homeomorphisms of the hyperbolic plane H2 is given,
so that it would be interesting to find the H2 -analogue of Theorem 4.1. One
might also ask if it is possible to derive some global results for higher dimensional
mappings with constant principal strains, which are governed by a much more
complex nonlinear hyperbolic system (see [G2]) or whether the results on HP-nets
contained in this paper can be generalized to families of nets associated with other
2× 2 genuinely nonlinear hyperbolic systems.
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