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Abstract. Let L be a second order linear parabolic partial differential operator, with smooth
and bounded coefficients defined on X = R"x]0,a[. Let E be an open subset of X, and let K
be a compact subset of E. If u is a solution of Lu = 0 on E\K , we prove that there is a unique
decomposition © = v+ w, where Lv =0 on E, Lw =0 on X\K, and w is zero both at infinity
and on R™x]0, k[, where k = inf{t : K N(R"™ x {t}) # 0}. A more detailed decomposition is given
for the case where K C R™ x {d}.

1. Introduction

Let L be a second order linear uniformly parabolic partial differential op-
erator, in divergence form and with bounded smooth coefficients, defined on the
closure of X = R"x]0,a[. The central theorem of this paper states that, if F is
an open subset of X, K is a compact subset of £, and u is a solution of Lu =0
on F\K, then u can be written uniquely in the form v = v 4+ w, where v is a
solution of Lv = 0 on the whole of E, w is a solution on X\ K, and w vanishes
at infinity and on R"x]0, k[, where k = inf{¢t : K N (R™ x {t}) # 0}. This is
analogous to a classical result for harmonic functions [3, p. 172], and is new even
for the heat equation.

To prove the decomposition theorem, we require a representation theorem for
an arbitrary C%! function, in terms of the fundamental solution of Lu = 0. Such
a formula in terms of the fundamental solution of Laplace’s equation is classical
[7, p. 11]. The result below was proved for the heat equation by Smyrnélis [11];
furthermore Doob gave a less natural version for that case [7, p. 271].

Once the decomposition theorem is established, it permits an easy deduction
of a general analogue of Bocher’s theorem from the particular case where F is an
infinite strip.

Finally, we consider in detail the case of the decomposition where K is a
subset of a characteristic hyperplane. Under minimal conditions on w, we establish
that w is the integral of a signed measure against the fundamental solution of
Lu=0.

A typical element of X is written p = (z,t) or ¢ = (y,s). Therefore the
element of Lebesgue measure in n + 1 dimensions is written as dg, that in n
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dimensions as dx or dy, and that in 1 dimension as dt or ds. Where an integral
is taken over the boundary of a piecewise smooth domain, the element of surface
area is written as do, and the outward unit normal as (v,,1;). The gradient in
the spatial variables is written V,, and the inner product in R™ as (-,-). All
measures appearing below are Radon measures.

Let A = (a;j) be a C°°, symmetric, n x n matrix-valued function on X such
that, for some A €]0, 1],

AlEN? < (A=, )€, &) < A™Hi€))?

whenever (z,t) € X and £ € R". Let

(1) Lu = ZDi(aiiju) — Dtu =0

=1

be the corresponding parabolic partial differential equation with divergence form,
and let

L'y = ZDi(aiiju) +Diu=0
=1

be its adjoint.
Under these hypotheses on A, the fundamental solution I' exists and satisfies

2
(ot < Bt _ g)—(n+1)/2 = =yl”
IVT(z, 159, 8)|| < B(t—s) P\ 7200 — 5)

for all (x,t),(y,s) € X such that s < t, where o and 3 are positive constants.
Furthermore, for each fixed (z,t),

L*T(z,t;-,-) =0

on R"x]0,t[. Details are given in [9]. We adopt the convention that I'(z,¢;y,s) =
0 whenever t < s.
Given (xg,tp) € X and ¢ > 0, the identity

(ﬁ)m o (_%) = (4me) ™

holds if and only if

| zo —y||2 = na(ty — s) log(t o8 )

0o— S
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Therefore, if ¢ < to/f3, the sets
Uz, to; ) = {(y,5) : T(w0,t03 9, 8) > (4me)™"/%}
and

U (0, to; ¢) = {(y, ) : D0, to;y, ) = (4mc) ™2}

have their closures in X . Since I'(xg,to;-, ) € C°(R"x]0,to[ ), for almost every
such ¢ the set W(xg,tp;c) is a smooth regular n-dimensional manifold, by Sard’s
theorem [12, p. 45]. Fabes and Garofalo [8] have studied mean values of solutions
of (1) over the sets Q and W. In particular, they have shown that, if

M (u; xo,to; C) :/ u(AV  I'(zo, to; -, - ), ve) do,

W (z0,to;C)

then w(xg,to) = A (u;xo,to;c) whenever u is a solution of (1). In the sequel, we
shall use only the form of .# and the fact that .#(1;x,t0;c) = 1.
2. The decomposition theorem

To prove the decomposition theorem, we require the following representation
theorem, for an arbitrary sufficiently smooth function, in terms of the fundamental
solution I'.

Theorem 1. Let E be a bounded open subset of X with a piecewise smooth
boundary, and let uw € C*(E). Then

u(xo,to) = —/EFO(LU) dqg — /BE((A(UVIFO —ToV,u),v,) +UF0Vt) do

for each (xo,t9) € E, where I'g = I'(xo,t0;-, ).

Proof. Given (zo,t9) € E, and any c €]0,to/0] such that ¥U(zg,to;c) is a
smooth surface, for all v €0, ¢3/e] we put

S(y) = 1{(y,5) : |lzo — ylI* < anvylog(cB/v), to — v < s <to}

and
Qy = Q(xo,t0;¢) US(7).

We choose ¢ and v such that Q, C E. Then, by Green’s formula for L,

(2) / Co(Lu)dg = / ((A(F()VIU —uV,Io),ve) — UF()Vt) do
E\Q, A(E\Q,)

since L*Tg =0 on E\Q,.
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We consider the integral on the right-hand side of (2), splitting the range of
integration into five pieces. First, on 092, N (R"™ x {tx}) we have 'y = 0 and
V.I'o = 0, so that this piece contributes nothing. Second, if

A(y) = {(y,5) : w0 — yl* = anylog(cB/v), to — v < s <to}

denotes the lateral boundary of S(y), then v, =0 on A(y), and
/ (AT'oVau, vg)do -0 as 7 —0
A7)

because AV u and I'g are bounded on S(cfG/e)\Q(xo, to;¢). Furthermore, if o,
denotes the surface area of the unit sphere in R", then for any r > 0 we have

2 (o)
/ 4—(n+1)/2 eXp(_HDSH )da _ an(2a)(”_1)/2/ 5(n=3)/2,~s ds,
aB(O,T‘)X}O,’}/[ 2at T‘2/2a’y

so that

V2o do < /ﬁ/ s(n3/2e75 45 — 0
A(Y) (n/2)log(cB/7)

as v — 0, where k = S0, (20)»~D/2_ Tt follows that

/ (uAV Ty, vg)do — 0 as v —0,
A7)

so that the entire integral over A(7) tends to zero. Third, if
F(y) = 09, 0 (R" x {to —7}),

then the measure of F(v) tends to zero as v — 0, and ul'y is bounded on the
union over all v €]0,¢f3/e] of the sets F(v), so that

/ ul'ovydo — 0 as v — 0.
F(v)

Fourth, let B(y) = (R"x] — o0, tg—~[) NS, , so that Ty = (47c)~™/2 on B(7y).
Therefore, as v — 0,

—/ ((AVzu, vg) —uvy)lodo — (47rc)_”/2/ ((AVzu, vgy) —uvy)do
B(7)

OQ(xo,to;c)

= (47Tc)_”/2/ Ludg
Q(z0,t05¢)
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by Green’s formula. Furthermore, as v — 0,
/ uw(AV Lo, vy) do — A (u; x0,to; ).
B(v)

Fifth, the integral over OF is left unchanged. It now follows from (2) that

/ Lo(Lu)dg = / ((A(CoVau — uVaTy), ve) — ulory) do
E\Q(z0,t0;c) OFE

- (47Tc)_”/2/ Ludq — A (u; o, to; c).
Q(zo,tosc)

We now make ¢ — 0, so that .# (u;xo,to;c) — u(zo,to) because u is continuous
and . (1;x9,to;c) =1, and

(4c) /2 / Ludg — 0
Q(zo0,to;c)

because the integrand is bounded and the measure of Q(z,to;c) is dominated by
c("*t2)/2  This proves the theorem.

For our present purpose, we do not need the full generality of Theorem 1, just
the following consequence.

Corollary. If u € C*1(X) and has compact support in X , then
u(xo,to) = —/ [(zo,to; -, ) Ludg
X

for each (zg,ty) € X.
Proof. In Theorem 1, choose E to contain both (z¢, %) and the support of u.

We can now prove the decomposition theorem, using the method employed in
[3, p. 172] to prove the corresponding result for Laplace’s equation.

Theorem 2. Let K be a compact subset of an open subset E of X, and let
u satisfy Lu =0 on E\K. Then u can be written uniquely as u = v + w, where
Lv=0on E, Lw=0 on X\K, and w is zero both at infinity and on R" x]0, k[
for k =inf{t : KN (R" x {t}) #0}.

Proof. Suppose first that E is bounded. For any set S and r > 0, we denote
by S, the set of all points with distance less than r from S. We choose r such
that K. N (OF), =, and put

E(p) = E\<Kp U (6E)p)
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for each p < r. Let ¢, € C>°(X), have compact support in F\K, and be equal
to 1 throughout E(r). Given (x,tg) € E(r), we can apply the above corollary
to u¢, and obtain

—U(QZ(), to) = UT(IE(), to) + U}r({lf(), to),

where v, and w, are defined on X by
v (z, 1) :/ [(z,t;-,- ) L(udy,)dgq
(OE),

and

wr(x,t)z/K C(xz,t;-,- ) L(ug,)dq.

Differentiation under the integral sign shows that Lv, = 0 and Lw, = 0 outside
their respective ranges of integration. Furthermore, w, is zero at infinity and on
R"x]0, k[.

If 0 < s <r, then on E(r) we have v, +w, = u = vs + ws, so that w, — ws
is a solution of (1) on X\K, that equals vs — v, on E(r), and can therefore
be extended to a solution of (1) on X. Since w, — ws is zero at infinity and
on R"x]|0,k[, it is zero everywhere. Hence w, = ws and v, = vs on E(r).
Therefore, given (£,7) € E we can choose r such that ({,7) € E\(OF),, and
define v(&,7) = v-(£,7) unambiguously. Similarly, if (¢/,7) € X\K we can
define w(¢',7") = w, (&', 7") for small r. Then u = v+ w as asserted, and the
uniqueness follows by similar reasoning to that used to show that w, = ws and
v, = Vg above.

Now suppose that E is unbounded. For any bounded open set D such that
K C D C FE, we have the unique decomposition u = v +w on D\ K, as above.
Then u —w is a solution of (1) on E\K that can be extended by v to a solution
h on E. Hence u = h + w as required, and the uniqueness follows as before.

3. Some consequences of the decomposition theorem

Theorem 2 enables us to easily deduce a general analogue of Bocher’s theorem
from the particular case first considered by Krzyzanski [10]. Subtler analogues
were given by Aronson [1]. Isolated singularities of nonnegative solutions of the
heat equation were characterized by Widder [16, p. 119], and those of arbitrary
solutions by Chung and Kim [5].

Theorem 3. Let E be an open subset of X, let (yo,s0) € F, and let u be
a solution of (1) on E\{(yo,s0)} such that u is bounded below on some cylinder
B(yo,r)x]so,to[. Then u can be written uniquely in the form

u=v+kl(-,-;y0,50),

where v is a solution of (1) on E, and k € [0, 00].



A decomposition theorem for solutions of parabolic equations 157

Proof. By Theorem 2, there is a unique decomposition v = v + w on
E\{(yo,50)}, where Lv =0 on E, Lw =0 on X\{(yo,5s0)}, and w is zero both
at infinity and on R"x]0, so[. If B(yo,)X]so,to[ is chosen to have its closure in
E | then w = u — v is bounded below on that set. Hence, if ¢ > 0 and

W, t) = wla,t) + / D, £y, 50)ly — ol =/ dy,
B(yo,Tr)

then
liminf h(z,t) >0
(z,t)—(z,s0+)
for all z € R™. Since h is a solution of (1) that vanishes at infinity, it follows
from the minimum principle that A > 0. Making ¢ — 0, we deduce that w > 0.
It now follows that w = xI'(-,-;yo0, S0), by [4, Theorem 3].

Using more sophisticated techniques, we can improve Theorem 3 in several
directions. This requires the following result on the uniqueness of parts of a rep-
resenting measure. The result holds in the more general context of [14], but here
we keep to the present one.

We shall use the following terminology. A family .%# of closed balls in R" is
called an abundant Vitali covering of R™ if, given any x € R” and ¢ > 0, %
contains uncountably many balls centred at x with radius less than ¢.

We also use the following notation. Given any open subset D of R"*! such
that DN(R™ x {0}) # 0, we put D(0) ={x € R": (x,0) € D} and D, = DNX.

Theorem 4. Let u be a solution of (1) such that

u(z,t) = / ) C(x,t;y,0)du(y) + v(x,t)

for all (x,t) € D, , where p is a signed measure concentrated on D(0) and v is a
solution of (1) on D, with a continuous extension to 0 on D(0) x {0}. Let .% be
an abundant Vitali covering of R"™. If there is a signed measure v concentrated
on D(0) such that

(3) t£r61+ . u(z,t)de =v(ANV)

whenever A,V € F,V C D(0), and ANV # 0, then p=v.

Proof. By [14, Theorem 3(i)], there is an abundant Vitali covering .#, C .%
such that |u|(0A) =0 for all A € Fy. Given V € % such that V' C D(0), put

wy (@, 1) = /V P(a, t:,0) dy(y)
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and
D(0)\V
for all (z,t) € X. Then wy =u—v —wp\y on D,.
If Ae %y and ANV #£(, then ANV is a compact subset of D(0), so that

4 li t)dz = 0.
(4) Jm Amvv(x, ) da

Furthermore, because the boundaries of ANV and A\V are both p-null, it follows
from [14, Theorem 1(i)] that

(5) t£r51+ . wp\v(z,t)dr =0 = tl—lgl—l— e wy (x,t) d.

Combining (3), (4) and (5), we obtain
tEr51+ | wy (z,t)dr = t£r51+ . wy (z,t)de =v(ANV).
On the other hand, if A € %, and ANV = 0, then it follows from [14,

Theorem 1(i)] that

tl_l)%l_'_ va(x,t) dr =0=v(ANV).

Therefore the restrictions of p and v to V are identical, by [14, Theorem 3(ii)].
Given any open subset U of D(0), choose a sequence {Vj} in Fy with union
U, and put Wy = Vi, W; =V;\ Uf;ll Vi for all 7 > 2. Then, by the above,
p(U) =D p(Wy) = w(Wy) = v(U).
j=1 j=1
The result now follows from the regularity of Radon measures.

Theorem 4 enables us to consider the uniqueness of just a part of the repre-
senting measure, because we can vary D(0) without altering D, . For example, if
D, = X, G is any relatively open subset of R™, and u has the representation

u(x,t) = /n [(z,t;y,0) dA(y)

for all (z,t) € X, we can take D = X U (G x {0}) U (R"X] — 00,0[), u the
restriction of A\ to G, and

v(z,t) = /Rn\G [(z,t;y,0) dA(y).

This technique is used in the proof of our next theorem, which generalizes [15,
Theorem 5], where only the heat equation was considered and the method of proof
was very different. The case of lower bounded solutions of the heat equation was
discovered independently by Chung [6], who used yet another approach.
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Theorem 5. Let E be an open subset of X, and let K be a nonempty
compact subset of EN (R™ x {b}). If u is a solution of (1) on F\K such that

liminf/ ut(z,t)de < oo

for some relatively open subset U of R™ such that K C U x {b}, then there exist
a unique solution v of (1) on E, and a unique signed measure yp supported in
K() ={z € R": (x,b) € K}, such that

u(x,t) = v(x,t) + /K(b) C(x, t;y,b) du(y)

for all (z,t) € E\K.

Proof. We may assume that U x [b,d] is a compact subset of E, for some
d > b. By Theorem 2, u can be written uniquely as the sum of a solution v
of (1) on F, and a solution w of (1) on X\K that is zero both at infinity and
on R"x]0,b[. If M = max{|v(z,t)] : 2 € U, b < t < d}, and m, denotes
n-dimensional Lebesgue measure, then

liminf/ wt(z,t)dx < liminf/ ut(z,t)de + Mm,(U) < co.
t—bt+ Ju t—b+ Jir

By the maximum principle, w is bounded outside U X [b,e]| for any e €]b,d].
Therefore, for any « > 0, the function

| ew(-aljel)u (e, ) da
is bounded on e, a[, and there is a number N such that
limigf/ exp(—allz||*)w* (z,t)dx < N exp(—aljz||?) dz
Rn

t—b R»\U

—Himinf/ wh(x,t)dr < oo.

It now follows from [13, Theorem 13, Corollary| that there is a signed measure p
on R" such that

w(et) = [ T(otiyb)duly)

for all (z,t) € X\K. The uniqueness of such a representation is proved in [2,
p. 688]. Finally, since w is continuous and zero on (R™ x {b})\ K, it follows from
Theorem 4 (with D(0) corresponding to R™\K (b)) that R™\ K (b) is p-null.
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