
Annales Academiæ Scientiarum Fennicæ
Mathematica
Volumen 25, 2000, 151–160

A DECOMPOSITION THEOREM FOR SOLUTIONS
OF PARABOLIC EQUATIONS

N.A. Watson

University of Canterbury, Department of Mathematics

Private Bag 4800, Christchurch, New Zealand; N.Watson@math.canterbury.ac.nz

Abstract. Let L be a second order linear parabolic partial differential operator, with smooth
and bounded coefficients defined on X = Rn×]0, a[ . Let E be an open subset of X , and let K
be a compact subset of E . If u is a solution of Lu = 0 on E\K , we prove that there is a unique
decomposition u = v + w , where Lv = 0 on E , Lw = 0 on X\K , and w is zero both at infinity
and on Rn×]0, k[ , where k = inf{t : K ∩ (Rn×{t}) 6= ∅} . A more detailed decomposition is given
for the case where K ⊆ Rn × {d} .

1. Introduction

Let L be a second order linear uniformly parabolic partial differential op-
erator, in divergence form and with bounded smooth coefficients, defined on the
closure of X = Rn×]0, a[ . The central theorem of this paper states that, if E is
an open subset of X , K is a compact subset of E , and u is a solution of Lu = 0
on E\K , then u can be written uniquely in the form u = v + w , where v is a
solution of Lv = 0 on the whole of E , w is a solution on X\K , and w vanishes
at infinity and on Rn×]0, k[ , where k = inf

{
t : K ∩ (Rn × {t}) 6= ∅

}
. This is

analogous to a classical result for harmonic functions [3, p. 172], and is new even
for the heat equation.

To prove the decomposition theorem, we require a representation theorem for
an arbitrary C2,1 function, in terms of the fundamental solution of Lu = 0. Such
a formula in terms of the fundamental solution of Laplace’s equation is classical
[7, p. 11]. The result below was proved for the heat equation by Smyrnélis [11];
furthermore Doob gave a less natural version for that case [7, p. 271].

Once the decomposition theorem is established, it permits an easy deduction
of a general analogue of Bôcher’s theorem from the particular case where E is an
infinite strip.

Finally, we consider in detail the case of the decomposition where K is a
subset of a characteristic hyperplane. Under minimal conditions on u , we establish
that w is the integral of a signed measure against the fundamental solution of
Lu = 0.

A typical element of X is written p = (x, t) or q = (y, s) . Therefore the
element of Lebesgue measure in n + 1 dimensions is written as dq , that in n
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dimensions as dx or dy , and that in 1 dimension as dt or ds . Where an integral
is taken over the boundary of a piecewise smooth domain, the element of surface
area is written as dσ , and the outward unit normal as (νx, νt) . The gradient in
the spatial variables is written ∇x , and the inner product in Rn as 〈· , · 〉 . All
measures appearing below are Radon measures.

Let A = (aij ) be a C∞ , symmetric, n×n matrix-valued function on X such
that, for some λ ∈]0, 1[,

λ‖ξ‖2 ≤ 〈A(x, t)ξ, ξ〉 ≤ λ−1‖ξ‖2

whenever (x, t) ∈ X and ξ ∈ Rn . Let

(1) Lu =
n∑

i=1

Di(aijDju)−Dtu = 0

be the corresponding parabolic partial differential equation with divergence form,
and let

L∗u =
n∑

i=1

Di(aijDju) + Dtu = 0

be its adjoint.
Under these hypotheses on A , the fundamental solution Γ exists and satisfies

Γ(x, t; y, s) ≤
(

β

4π(t− s)

)n/2
exp

(
− ‖x− y‖2

2α(t− s)

)
,

‖∇xΓ(x, t; y, s)‖ ≤ β(t− s)−(n+1)/2 exp

(
− ‖x− y‖2

2α(t− s)

)

for all (x, t), (y, s) ∈X such that s < t , where α and β are positive constants.
Furthermore, for each fixed (x, t) ,

L∗Γ(x, t; · , · ) = 0

on Rn×]0, t[ . Details are given in [9]. We adopt the convention that Γ(x, t; y, s) =
0 whenever t ≤ s .

Given (x0, t0) ∈ X and c > 0, the identity

(
β

4π(t0 − s)

)n/2
exp

(
− ‖x0 − y‖2

2α(t0 − s)

)
= (4πc)−n/2

holds if and only if

‖x0 − y‖2 = nα(t0 − s) log

(
cβ

t0 − s

)
.



A decomposition theorem for solutions of parabolic equations 153

Therefore, if c < t0/β , the sets

Ω(x0, t0; c) = {(y, s) : Γ(x0, t0; y, s) > (4πc)−n/2}

and
Ψ(x0, t0; c) = {(y, s) : Γ(x0, t0; y, s) = (4πc)−n/2}

have their closures in X . Since Γ(x0, t0; · , · ) ∈ C∞(Rn×]0, t0[ ) , for almost every
such c the set Ψ(x0, t0; c) is a smooth regular n-dimensional manifold, by Sard’s
theorem [12, p. 45]. Fabes and Garofalo [8] have studied mean values of solutions
of (1) over the sets Ω and Ψ. In particular, they have shown that, if

M (u;x0, t0; c) =

∫

Ψ(x0,t0;c)

u〈A∇xΓ(x0, t0; · , · ), νx〉 dσ,

then u(x0, t0) = M (u;x0, t0; c) whenever u is a solution of (1). In the sequel, we
shall use only the form of M and the fact that M (1;x0, t0; c) = 1.

2. The decomposition theorem

To prove the decomposition theorem, we require the following representation
theorem, for an arbitrary sufficiently smooth function, in terms of the fundamental
solution Γ.

Theorem 1. Let E be a bounded open subset of X with a piecewise smooth
boundary, and let u ∈ C2,1(E) . Then

u(x0, t0) = −
∫

E

Γ0(Lu) dq −
∫

∂E

(
〈A(u∇xΓ0 − Γ0∇xu), νx〉 + uΓ0νt

)
dσ

for each (x0, t0) ∈ E , where Γ0 = Γ(x0, t0; · , · ) .

Proof. Given (x0, t0) ∈ E , and any c ∈]0, t0/β[ such that Ψ(x0, t0; c) is a
smooth surface, for all γ ∈]0, cβ/e] we put

S(γ) = {(y, s) : ‖x0 − y‖2 < αnγ log(cβ/γ), t0 − γ < s < t0}

and
Ωγ = Ω(x0, t0; c) ∪ S(γ).

We choose c and γ such that Ωγ ⊆ E . Then, by Green’s formula for L ,

(2)

∫

E\Ωγ
Γ0(Lu) dq =

∫

∂(E\Ωγ)

(
〈A(Γ0∇xu− u∇xΓ0), νx〉 − uΓ0νt

)
dσ

since L∗Γ0 = 0 on E\Ωγ .
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We consider the integral on the right-hand side of (2), splitting the range of
integration into five pieces. First, on ∂Ωγ ∩ (Rn × {t0}) we have Γ0 = 0 and
∇xΓ0 = 0, so that this piece contributes nothing. Second, if

Λ(γ) =
{
(y, s) : ‖x0 − y‖2 = αnγ log(cβ/γ), t0 − γ < s < t0

}

denotes the lateral boundary of S(γ) , then νt = 0 on Λ(γ) , and

∫

Λ(γ)

〈AΓ0∇xu, νx〉 dσ → 0 as γ → 0

because A∇xu and Γ0 are bounded on S(cβ/e)\Ω(x0, t0; c) . Furthermore, if σn
denotes the surface area of the unit sphere in Rn , then for any r > 0 we have

∫

∂B(0,r)×]0,γ[

t−(n+1)/2 exp

(
−‖x‖

2

2αt

)
dσ = σn(2α)(n−1)/2

∫ ∞

r2/2αγ

s(n−3)/2e−s ds,

so that ∫

Λ(γ)

‖∇xΓ0‖ dσ ≤ κ

∫ ∞

(n/2) log(cβ/γ)

s(n−3)/2e−s ds→ 0

as γ → 0, where κ = βσn(2α)(n−1)/2 . It follows that

∫

Λ(γ)

〈uA∇xΓ0, νx〉 dσ → 0 as γ → 0,

so that the entire integral over Λ(γ) tends to zero. Third, if

F (γ) = ∂Ωγ ∩ (Rn × {t0 − γ}),

then the measure of F (γ) tends to zero as γ → 0, and uΓ0 is bounded on the
union over all γ ∈]0, cβ/e] of the sets F (γ) , so that

∫

F (γ)

uΓ0νt dσ → 0 as γ → 0.

Fourth, let B(γ) = (Rn×]−∞, t0− γ[ )∩ ∂Ωγ , so that Γ0 = (4πc)−n/2 on B(γ) .
Therefore, as γ → 0,

−
∫

B(γ)

(〈A∇xu, νx〉 − uνt)Γ0 dσ → (4πc)−n/2
∫

∂Ω(x0,t0;c)

(〈A∇xu, νx〉 − uνt) dσ

= (4πc)−n/2
∫

Ω(x0,t0;c)

Ludq
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by Green’s formula. Furthermore, as γ → 0,

∫

B(γ)

u〈A∇xΓ0, νx〉 dσ →M (u;x0, t0; c).

Fifth, the integral over ∂E is left unchanged. It now follows from (2) that

∫

E\Ω(x0,t0;c)

Γ0(Lu) dq =

∫

∂E

(
〈A(Γ0∇xu− u∇xΓ0), νx〉 − uΓ0νt

)
dσ

− (4πc)−n/2
∫

Ω(x0,t0;c)

Ludq −M (u;x0, t0; c).

We now make c→ 0, so that M (u;x0, t0; c)→ u(x0, t0) because u is continuous
and M (1;x0, t0; c) = 1, and

(4πc)−n/2
∫

Ω(x0,t0;c)

Ludq → 0

because the integrand is bounded and the measure of Ω(x0, t0; c) is dominated by
c(n+2)/2 . This proves the theorem.

For our present purpose, we do not need the full generality of Theorem 1, just
the following consequence.

Corollary. If u ∈ C2,1(X) and has compact support in X , then

u(x0, t0) = −
∫

X

Γ(x0, t0; · , · )Ludq

for each (x0, t0) ∈ X .

Proof. In Theorem 1, choose E to contain both (x0, t0) and the support of u .

We can now prove the decomposition theorem, using the method employed in
[3, p. 172] to prove the corresponding result for Laplace’s equation.

Theorem 2. Let K be a compact subset of an open subset E of X , and let
u satisfy Lu = 0 on E\K . Then u can be written uniquely as u = v + w , where
Lv = 0 on E , Lw = 0 on X\K , and w is zero both at infinity and on Rn×]0, k[
for k = inf

{
t : K ∩ (Rn × {t}) 6= ∅

}
.

Proof. Suppose first that E is bounded. For any set S and r > 0, we denote
by Sr the set of all points with distance less than r from S . We choose r such
that Kr ∩ (∂E)r = ∅ , and put

E(ρ) = E\
(
Kρ ∪ (∂E)ρ

)
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for each ρ ≤ r . Let φr ∈ C∞(X) , have compact support in E\K , and be equal
to 1 throughout E(r) . Given (x0, t0) ∈ E(r) , we can apply the above corollary
to uφr and obtain

−u(x0, t0) = vr(x0, t0) + wr(x0, t0),

where vr and wr are defined on X by

vr(x, t) =

∫

(∂E)r

Γ(x, t; · , · )L(uφr) dq

and

wr(x, t) =

∫

Kr

Γ(x, t; · , · )L(uφr) dq.

Differentiation under the integral sign shows that Lvr = 0 and Lwr = 0 outside
their respective ranges of integration. Furthermore, wr is zero at infinity and on
Rn×]0, k[ .

If 0 < s < r , then on E(r) we have vr + wr = u = vs + ws , so that wr − ws
is a solution of (1) on X\Kr that equals vs − vr on E(r) , and can therefore
be extended to a solution of (1) on X . Since wr − ws is zero at infinity and
on Rn×]0, k[ , it is zero everywhere. Hence wr = ws and vr = vs on E(r) .
Therefore, given (ξ, τ ) ∈ E we can choose r such that (ξ, τ ) ∈ E\(∂E)r , and
define v(ξ, τ ) = vr(ξ, τ ) unambiguously. Similarly, if (ξ′, τ ′) ∈ X\K we can
define w(ξ′, τ ′) = wr(ξ

′, τ ′) for small r . Then u = v + w as asserted, and the
uniqueness follows by similar reasoning to that used to show that wr = ws and
vr = vs above.

Now suppose that E is unbounded. For any bounded open set D such that
K ⊆ D ⊆ E , we have the unique decomposition u = v + w on D\K , as above.
Then u−w is a solution of (1) on E\K that can be extended by v to a solution
h on E . Hence u = h + w as required, and the uniqueness follows as before.

3. Some consequences of the decomposition theorem

Theorem 2 enables us to easily deduce a general analogue of Bôcher’s theorem
from the particular case first considered by Krzyżański [10]. Subtler analogues
were given by Aronson [1]. Isolated singularities of nonnegative solutions of the
heat equation were characterized by Widder [16, p. 119], and those of arbitrary
solutions by Chung and Kim [5].

Theorem 3. Let E be an open subset of X , let (y0, s0) ∈ E , and let u be
a solution of (1) on E\{(y0, s0)} such that u is bounded below on some cylinder
B(y0, r)×]s0, t0[ . Then u can be written uniquely in the form

u = v + κΓ(· , · ; y0, s0),

where v is a solution of (1) on E , and κ ∈ [0,∞[ .
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Proof. By Theorem 2, there is a unique decomposition u = v + w on
E\{(y0, s0)} , where Lv = 0 on E , Lw = 0 on X\{(y0, s0)} , and w is zero both
at infinity and on Rn×]0, s0[ . If B(y0, r)×]s0, t0[ is chosen to have its closure in
E , then w = u− v is bounded below on that set. Hence, if ε > 0 and

h(x, t) = w(x, t) + ε

∫

B(y0,r)

Γ(x, t; y, s0)‖y − y0‖−n/2 dy,

then
lim inf

(x,t)→(z,s0+)
h(x, t) ≥ 0

for all z ∈ Rn . Since h is a solution of (1) that vanishes at infinity, it follows
from the minimum principle that h ≥ 0. Making ε → 0, we deduce that w ≥ 0.
It now follows that w = κΓ(· , · ; y0, s0) , by [4, Theorem 3].

Using more sophisticated techniques, we can improve Theorem 3 in several
directions. This requires the following result on the uniqueness of parts of a rep-
resenting measure. The result holds in the more general context of [14], but here
we keep to the present one.

We shall use the following terminology. A family F of closed balls in Rn is
called an abundant Vitali covering of Rn if, given any x ∈ Rn and ε > 0, F
contains uncountably many balls centred at x with radius less than ε .

We also use the following notation. Given any open subset D of Rn+1 such
that D∩ (Rn×{0}) 6= ∅ , we put D(0) = {x ∈ Rn : (x, 0) ∈ D} and D+ = D∩X .

Theorem 4. Let u be a solution of (1) such that

u(x, t) =

∫

Rn

Γ(x, t; y, 0) dµ(y) + v(x, t)

for all (x, t) ∈ D+ , where µ is a signed measure concentrated on D(0) and v is a
solution of (1) on D+ with a continuous extension to 0 on D(0)×{0} . Let F be
an abundant Vitali covering of Rn . If there is a signed measure ν concentrated
on D(0) such that

(3) lim
t→0+

∫

A∩V
u(x, t) dx = ν(A ∩ V )

whenever A,V ∈ F , V ⊆ D(0) , and A ∩ V 6= ∅ , then µ = ν .

Proof. By [14, Theorem 3(i)], there is an abundant Vitali covering F0 ⊆ F
such that |µ|(∂A) = 0 for all A ∈ F0 . Given V ∈ F0 such that V ⊆ D(0), put

wV (x, t) =

∫

V

Γ(x, t; y, 0) dµ(y)
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and

wD\V (x, t) =

∫

D(0)\V
Γ(x, t; y, 0) dµ(y)

for all (x, t) ∈ X . Then wV = u− v − wD\V on D+ .
If A ∈ F0 and A ∩ V 6= ∅ , then A ∩ V is a compact subset of D(0), so that

(4) lim
t→0+

∫

A∩V
v(x, t) dx = 0.

Furthermore, because the boundaries of A∩V and A\V are both µ-null, it follows
from [14, Theorem 1(i)] that

(5) lim
t→0+

∫

A∩V
wD\V (x, t) dx = 0 = lim

t→0+

∫

A\V
wV (x, t) dx.

Combining (3), (4) and (5), we obtain

lim
t→0+

∫

A

wV (x, t) dx = lim
t→0+

∫

A∩V
wV (x, t) dx = ν(A ∩ V ).

On the other hand, if A ∈ F0 and A ∩ V = ∅ , then it follows from [14,
Theorem 1(i)] that

lim
t→0+

∫

A

wV (x, t) dx = 0 = ν(A ∩ V ).

Therefore the restrictions of µ and ν to V are identical, by [14, Theorem 3(ii)].
Given any open subset U of D(0), choose a sequence {Vk} in F0 with union

U , and put W1 = V1 , Wj = Vj\
⋃j−1
k=1 Vk for all j ≥ 2. Then, by the above,

µ(U) =
∞∑

j=1

µ(Wj ) =
∞∑

j=1

ν(Wj) = ν(U).

The result now follows from the regularity of Radon measures.

Theorem 4 enables us to consider the uniqueness of just a part of the repre-
senting measure, because we can vary D(0) without altering D+ . For example, if
D+ = X , G is any relatively open subset of Rn , and u has the representation

u(x, t) =

∫

Rn

Γ(x, t; y, 0) dλ(y)

for all (x, t) ∈ X , we can take D = X ∪ (G × {0}) ∪ (Rn×] − ∞, 0[ ) , µ the
restriction of λ to G , and

v(x, t) =

∫

Rn\G
Γ(x, t; y, 0) dλ(y).

This technique is used in the proof of our next theorem, which generalizes [15,
Theorem 5], where only the heat equation was considered and the method of proof
was very different. The case of lower bounded solutions of the heat equation was
discovered independently by Chung [6], who used yet another approach.
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Theorem 5. Let E be an open subset of X , and let K be a nonempty
compact subset of E ∩ (Rn × {b}) . If u is a solution of (1) on E\K such that

lim inf
t→b+

∫

U

u+(x, t) dx <∞

for some relatively open subset U of Rn such that K ⊆ U ×{b} , then there exist
a unique solution v of (1) on E , and a unique signed measure µ supported in
K(b) = {x ∈ Rn : (x, b) ∈ K} , such that

u(x, t) = v(x, t) +

∫

K(b)

Γ(x, t; y, b) dµ(y)

for all (x, t) ∈ E\K .

Proof. We may assume that U × [b, d] is a compact subset of E , for some
d > b . By Theorem 2, u can be written uniquely as the sum of a solution v
of (1) on E , and a solution w of (1) on X\K that is zero both at infinity and
on Rn×]0, b[ . If M = max{|v(x, t)| : x ∈ U, b ≤ t ≤ d} , and mn denotes
n-dimensional Lebesgue measure, then

lim inf
t→b+

∫

U

w+(x, t) dx ≤ lim inf
t→b+

∫

U

u+(x, t) dx + Mmn(U) <∞.

By the maximum principle, w is bounded outside U × [b, ε] for any ε ∈]b, d[ .
Therefore, for any α > 0, the function

∫

Rn

exp(−α‖x‖2)w+(x, · ) dx

is bounded on ]ε, a[ , and there is a number N such that

lim inf
t→b+

∫

Rn

exp(−α‖x‖2)w+(x, t) dx ≤ N

∫

Rn\U
exp(−α‖x‖2) dx

+ lim inf
t→b+

∫

U

w+(x, t) dx <∞.

It now follows from [13, Theorem 13, Corollary] that there is a signed measure µ
on Rn such that

w(x, t) =

∫

Rn

Γ(x, t; y, b) dµ(y)

for all (x, t) ∈ X\K . The uniqueness of such a representation is proved in [2,
p. 688]. Finally, since w is continuous and zero on (Rn ×{b})\K , it follows from
Theorem 4 (with D(0) corresponding to Rn\K(b)) that Rn\K(b) is µ-null.
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