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Abstract. We consider solutions to the equation div(|A∇u · ∇u|(p−2)/2A∇u) = 0 with
1 < p < +∞ , A = A(x) a uniformly elliptic and Lipschitz continuous symmetric matrix, in
dimension two. We study the properties of critical points and level lines of such solutions and we
apply our results to obtain generalizations of a strong comparison principle due to Manfredi and
of a univalence theorem by Radó.

1. Introduction

In this paper we consider solutions u ∈ W 1,p
loc (Ω) to the following degenerate

elliptic equation which we shall call the anisotropic p-Laplace equation

(1.1) div(|A∇u · ∇u|(p−2)/2A∇u) = 0 in Ω ,

where Ω is a two-dimensional domain, p satisfies 1 < p < ∞ , and A = A(x) is
a symmetric matrix satisfying hypotheses of uniform ellipticity and of Lipschitz
continuity.

Equation (1.1) can be viewed as the Euler equation for the variational integral

J(u) =

∫

Ω

|A∇u · ∇u|p/2 dx

and its interest arises from various applied contexts related to composite materials
(such as nonlinear dielectric composites [BS, Section 25], [LK, Section 3.2]), whose
nonlinear behavior is modeled by the so-called power-law.

Our aim is to study the properties of level lines and of critical points of
solutions to (1.1) and to derive some relevant consequences of such properties.

If p = 2, then equation (1.1) becomes linear:

(1.2) div(A∇u) = 0 in Ω .
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In such a case many things are known about the local behavior of solutions and
about the structure of level lines and critical points. First, the Hartman and
Wintner theorem [HW] tells us that for every x0 ∈ Ω, and up to a linear change
of coordinates which renders A(x0) = const. I , u(x) − u(x0) is asymptotic to a
homogeneous harmonic polynomial of x−x0 , and this asymptotics carries over to
first order derivatives. From this basic fact, one can derive that if u is noniden-
tically constant, then its critical points are isolated. Moreover, if x0 is a zero of
multiplicity m for ∇u , then the level set {x | u(x) = u(x0)} is composed, near
x0 , by exactly m + 1 simple arcs intersecting at x0 only. Next, it is possible
to evaluate the number, and the multiplicities, of critical points of a solution in
terms of properties of its Dirichlet data [A1], [A2], or of other types of boundary
data [AM1]. Such results have also been generalized to weak solutions u to (1.2)
when the coefficient matrix A is merely bounded measurable [AM2]. In this case,
however, the notion of critical point requires some adjustments, since the gradient
of a solution may be discontinuous and, consequently, speaking of zeroes of the
gradient may become meaningless. This difficulty is circumvented through the
reduction of equation (1.2) to a first order elliptic system of Beltrami type, which
enables to represent locally a solution u to (1.2) in the form u = h ◦χ where h is
a harmonic function and χ is a quasiconformal mapping [BJS]. In view of such a
representation, one can introduce the notion of geometric critical point saying that
x0 is a geometric critical point of u if χ(x0) is a critical point of h . Moreover, one
can define the geometric index of u at x0 as the multiplicity of the critical point
χ(x0) for h . With such definitions, it is possible to extend to the case of equations
with L∞ coefficients A the evaluations of the number of geometric critical points
(see [AM2] for details).

One recent application of such type of results has been the generalization of
a theorem of Radó. Radó’s theorem says the following. Let B the unit disk, G a
bounded convex domain in R2 and Φ: ∂B → ∂G a homeomorphism from the unit
circle onto the boundary of G . If U : B → G is the the mapping whose components
u1, u2 are the harmonic functions having, as Dirichlet data, the components φ1, φ2

of Φ, then U is also a homeomorphism of the unit disk B onto G . Such a theorem
was originally stated by Radó [R], subsequently proven by Kneser [K] and also by
Choquet [C]. See Duren–Hengartner [DH], Lyzzaik [Ly] and Laugesen [La] for more
recent developments of the subject and details on the history of this theorem. See
also Schoen–Yau [SY], Jost [J] for generalizations to harmonic mappings between
Riemannian manifolds. Here we wish to focus on a different recent generalization
of Radó’s theorem due to Bauman, Marini and Nesi [BMN] which, in its essence,
says as follows. Let B , G and Φ as above, and let U = (u1, u2) , instead of being
harmonic, be such that u1, u2 are the solutions to (1.2) in B whose Dirichlet data
are ϕ1, ϕ2 , respectively. Also in this case, Bauman, Marini and Nesi are able to
prove that U is a homeomorphism of B onto G . The gist of their proof stands in
showing that, for every nontrivial combination uθ = u1 cos θ+u2 sin θ , 0 ≤ θ < π ,
of the components of U , uθ has no critical points inside of Ω, which in turn implies
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the non vanishing of the Jacobian determinant |∂(u1, u2)/∂(x1, x2)| . Indeed, such
absence of critical points for uθ can be inferred by the above mentioned evaluations
of the number of critical points.

Let us now return to the nonlinear equation (1.1). In this case, the study of
critical points of solutions has been developed, since now, only for the case when
A = I , that is for the well-known p -Laplace equation

(1.3) div(|∇u|p−2∇u) = 0 in Ω.

The study was initiated by Bojarski and Iwaniec [BI], who proved, for the case
p > 2, that critical points are isolated, by methods of quasiconformal mappings.
Other proofs were given for any 1 < p < ∞ , by Alessandrini [A3] where local
estimates on the number of critical points were obtained by real analytic methods,
and by Manfredi [Ma] who developed the methods by [BI]. See also Lewis [Le]
where an estimate on the number of critical points in terms of the Dirichlet data
is given.

A remarkable application of the discreteness of critical points that was found
by Manfredi is the validity of the strong comparison principle for solutions to (1.3)
[Ma, Theorem 2]. Namely if u1 6= u2 , u1 ≤ u2 , are solutions to (1.3) then they
satisfy the strict inequality u1 < u2 everywhere. This result is quite peculiar,
because, when the space dimension is bigger than two, such comparison principle
is still unknown for the p -Laplacian.

In this paper we prove that critical points of non-constant solutions to (1.1)
are isolated and that the local topological structure of the level lines is the same
as the one of harmonic functions (Proposition 3.3). Moreover we prove (Theo-
rem 3.1) estimates on the number of critical points in terms of the number of
oscillations of the Dirichlet data, which parallel those known for linear equations
[A1, Theorem 1.2], [A2, Theorem 1.1], [AM2, Theorem 2.7].

As applications of these results, we prove:

(i) a strong comparison principle (Theorem 4.1) for equation (1.1), which extends
the above mentioned result of Manfredi;

(ii) a generalization of Radó’s theorem for pairs u1, u2 of solutions to (1.1).

Let us stress here the remarkable fact that, when p 6= 2, a linear combination
uθ = u1 cos θ + u2 sin θ need not be a solution to equation (1.1). Nevertheless, we
are able to show that, away from the critical points of u1, u2 , uθ is a solution to a
suitable divergence structure linear elliptic equation, and thus, in the end, we can
show that under the above mentioned hypotheses on Φ and G , for every θ the
function uθ has no interior critical points.

In order to obtain the above mentioned results, we have found it convenient
to single out the relevant topological properties of level lines which are typical
of harmonic functions in two variables and which are known to be shared by
solutions to linear elliptic equations. To this purpose, we define the class S (Ω)
of continuous functions in Ω whose level lines are locally finite union of simple
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arcs with discrete pairwise intersections, and which satisfy the strong maximum
principle (in the sense that they do not admit interior relative extremum points),
see Definition 2.1. Since no differentiability is involved in such a definition, it
is necessary to introduce a generalized notion of critical point. Such a notion
indeed extends (see Corollary 2.6) the one of geometric critical point introduced
in [AM2], and for this reason we shall continue to use such a name. We shall
prove (Theorem 2.3) that it is possible to estimate the number of the geometric
critical points of a function u ∈ S (Ω) in terms of the number of oscillations of
its boundary values g = u|∂Ω , in the same fashion as it was known for solutions
to linear elliptic equations. By this device, we shall be able to prove our estimate
on the number of critical points of a solution u to (1.1), just by proving that
u belongs to the class S (Ω). Let us remark that this approach although being
different presents some resemblances with the theory of pseudoharmonic functions
by Morse (see, for instance, [Mo] and [JM]).

The plan of the paper is as follows. In Section 2 we introduce the class S (Ω),
and we prove the estimate on the number of geometric critical points of functions
u ∈ S (Ω) in Theorem 2.3. Finally we show how S (Ω) contains relevant sub-
classes formed by the components of quasiregular mappings, Proposition 2.5, and
by solutions to linear elliptic equations, Corollary 2.6, Proposition 2.7. The main
result of Section 3 is Theorem 3.1, which gives the estimate on the number of
critical points of solutions to (1.1) in terms of the Dirichlet data. We also prove,
in Proposition 3.3, a result on the local behavior of solutions to (1.1) which, in
particular, implies that critical points are isolated. In Section 4 we prove (The-
orem 4.1) the generalization of Manfredi’s strong comparison principle. Finally,
in Section 5, we prove Theorem 5.1 which provides the generalization of Radó’s
theorem for pairs of solutions to (1.1).

2. The class S (Ω) and geometric critical points

Definition 2.1. Let u ∈ C (Ω) and let Γt , for every t ∈ R , denote the level
line {z ∈ Ω | u(z)= t} . We shall say that u belongs to the class S (Ω) if it verifies
the following conditions:

(S.1) For every z0 ∈ Ω, there exist a neighborhood U ⊂ Ω of z0 and an integer
I(z0) , 0 ≤ I(z0) < ∞ , such that the set Γu(z0) ∩ U is made of I(z0) + 1
simple arcs, whose pairwise intersection consists of {z0} only.

(S.2) u does not have interior maxima nor minima (strong maximum principle).

Moreover we shall say that z0 ∈ Ω is a geometric critical point of u if

I(z0) ≥ 1.

In such a case we shall say that I(z0) is the geometric index of u at z0 .

Remark 2.2. Notice that, for any u ∈ S (Ω), property (S.1) implies that the
geometric critical points of u are isolated. Moreover, by virtue of property (S.2),
u is non-constant on every open subset of Ω. Hence, if Ω is simply connected for
every t ∈ R , the level line Γt does not contain closed curves.
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Let us also observe that if in addition u ∈ C 1(Ω) and has isolated critical
points then the geometric index coincides with the usual notion of index, namely
the index I(z0, u) of a critical point z0 ∈ Ω is defined as the limit

I(z0, u) = lim
r→0

I
(
Br(z0), u

)
,

where, for each D ⊂⊂ Ω such that ∂D is smooth and contains no critical points
of u , I(D,u) is given by

I(D,u) = − 1

2π

∫

∂D

d arg∇u.

This, in fact, is a consequence of [AM1, Lemma 3.1] which provides a classification
of isolated critical points of C 1 functions in the plane.

Theorem 2.3. Let Ω be a bounded simply connected domain in R2 whose
boundary ∂Ω is a simple closed curve. Let g ∈ C (∂Ω) be such that

(ΣN ) ∂Ω can be split into 2N consecutive arcs on which g is alternatively a non-
increasing and nondecreasing function.

If u ∈ C (Ω)∩S (Ω) is such that u|∂Ω = g then the geometric critical points of u
are finite in number and their geometric indices satisfy

∑

z∈Ω

I(z) ≤ N − 1.

Remark 2.4. Notice that the above assumption (ΣN ) about g is equivalent
to saying that the set of points of relative maxima of g on ∂Ω has at most N
connected components. Likewise, relative maxima can be replaced by relative
minima.

Proof of Theorem 2.3. The proof we give here is based on ideas appearing in
[A2, Theorem 1.1], which are re-elaborated in a simplified version.

The present approach is based on the following observation. Let A be an
open subset of Ω such that ∂A ⊂ ∂Ω∪Γt for some t ∈ R . We shall call such A a
cell. We have that, within Ā , u attains either a maximum or a minimum strictly
larger or, respectively, smaller than t . Therefore, by (S.2), such an extremum is
attained at some point in the interior of ∂A∩ ∂Ω. Now, if we consider any family
F of pairwise disjoint cells, by our assumption on g , we have that F can have
at most 2N elements.

For any connected component L of a level line Γt , we set s(L) :=
∑
z∈L I(z) .

We have that Ω \ L is made of 2
(
s(L) + 1

)
connected components. This can be

proven by the arguments in [A2, Lemmas 1.1, 1.2, 1.3], see also [S, Lemmas 2.8,
2.9]. An alternative proof may be outlined as follows.

The number of connected components of Ω \ L remains unchanged if one
identifies to a single point each simple arc in L which joins any two contiguous
geometric critical points in L .
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Therefore, it suffices to consider the case when L contains only a single geo-
metric critical point (or none). In such a case L is composed of s(L) + 1 simple
arcs all intersecting just once in the single geometric critical point (if it exists)
which split Ω into 2

(
s(L) + 1

)
connected components.

Since such connected components form a family of disjoint cells we have that
s(L) ≤ N − 1. In particular L contains at most a finite number of geometric
critical points.

Consider now any finite family {Li}1≤i≤n of connected components of level
lines Γti , i = 1, . . . , n . We must show that

∑n
i=1 s(Li) ≤ N − 1. It suffices to

prove that we can select, among the set of connected components of Ω \⋃ni=1 Li ,
a family Fn of at least 2(1 +

∑n
i=1 s

(
Li)
)

disjoint cells. We have just proved
that this is the case when n = 1 and we complete the proof by induction on n .
Take n > 1 and choose a component, say Ln , such that L1, . . . , Ln−1 all lie in
the same connected component of Ω \ Ln (the existence of such Ln follows from
a straightforward induction argument). Let A be the connected component of

Ω \⋃n−1
i=1 Li that contains Ln . Denote by G the family of connected components

of Ω \ Ln contained in A and define Fn as follows

Fn := G ∪ (Fn−1 \ {A}).

Since

#G = 1 + 2s(Ln), #(Fn−1 \ {A}) ≥ #Fn−1 − 1 ≥ 1 + 2

n−1∑

i=1

s(Li)

we have

#Fn ≥ 2

(
1 +

n∑

i=1

s(Li)

)

and all elements of Fn are pairwise disjoint cells.

Let us now highlight an important subclass of S (Ω). To do this it is useful
to identify R2 and C in the standard way.

Proposition 2.5. Let f be a non-constant locally quasiregular mapping
on Ω . Then Re f and Im f , the real and the imaginary parts of f , belong
to S (Ω) .

Proof. This result is a rather straightforward consequence of the well-known
Ahlfors–Bers factorization theorem [AB]. For the sake of completeness we outline
a proof. Since (S.1) and (S.2) are local conditions, possibly replacing Ω by a
compact subset we are allowed to suppose f quasiregular in Ω. The theory of
quasiregular mappings in dimension two (see also [BJS, Chapter II.6]) ensures the
representation by factorization f = F ◦ χ where χ: Ω→ B1(0) is quasiconformal
and F : B1(0)→ C is holomorphic. Since χ is a homeomorphism, it is enough to
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observe that being ReF and ImF harmonic they belong to S
(
B1(0)

)
. This is

easily seen, noticing that, for each z0 ∈ Ω, F (z)− F (z0) is asymptotic as z → z0

to a homogeneous polynomial c(z − z0)n = |c|ρn
(
cos(nθ + θ0) + i sin(nθ + θ0)

)

where c ∈ C \ {0} , n ≥ 1, ρ, θ are the polar coordinates centered at z0 , and θ0

is given by c = |c|eiθ0 .

From Proposition 2.5 and Theorem 2.1 in [AM2], where it is proved that a
solution to a linear uniformly elliptic equation in divergence form is the real part
of a quasiregular mapping, we get

Corollary 2.6. Let u ∈W 1,2
loc (Ω) be a non-constant solution to

div(A∇u) = 0 in Ω,

where the symmetric matrix A ∈ L∞loc(Ω) is uniformly elliptic on the compact
subsets of Ω . Then u belongs to S (Ω) .

The following proposition provides a variant to Corollary 2.6, in that it deals
with nondivergence elliptic equations. Although we shall not make use of it in
the sequel, it may be interesting to note that it could provide an alternative ap-
proach to the proof of Proposition 3.3 below. We insert it here, for the sake of
completeness.

Proposition 2.7. Let u ∈W 2,2
loc (Ω) be a non-constant solution to

aijuxixj + biuxi = 0 almost everywhere in Ω,

where the matrix A = (aij) ∈ L∞loc(Ω) is uniformly elliptic on compact sets of Ω
and b1, b2 ∈ L∞loc(Ω) . Then u belongs to S (Ω) .

Proof. By the results of Bers and Nirenberg (see [BN] and also [BJS]) we
have that u ∈ C 1,α

loc (Ω) for some α , 0 < α < 1. Moreover, its critical points are
isolated and have positive index. Therefore by [AM1, Lemma 3.1] u satisfies (S.1).
Moreover (S.2) follows from Hopf’s lemma (see for instance [GT, Theorem 9.6]).

3. Critical points for the anisotropic p-Laplacian

From now on we shall assume that the coefficient matrix A = (aij) is sym-
metric and satisfies the following conditions. For given constants λ,L , 0 < λ ≤ 1,
L > 0 we assume

λ|ξ|2 ≤ A(x)ξ · ξ ≤ λ−1|ξ|2 for every ξ ∈ R2 and x ∈ R2,(3.1)

|A(x)−A(y)| ≤ L|x− y| for every x, y ∈ R2.(3.2)

Theorem 3.1. Let Ω be a bounded simply connected domain in R2 verifying
an exterior cone condition and let ∂Ω be a simple closed curve. Let A satisfy
(3.1) and (3.2). Let g ∈ C (∂Ω) be a non-constant function satisfying (ΣN ). If
u ∈ W 1,p

loc (Ω) ∩ C (Ω) is the solution to (1.1) satisfying the Dirichlet condition
u|∂Ω = g , then the number of geometric critical points of u in Ω , when counted
according to their geometric index, is less than or equal to N − 1 .
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Remark 3.2. The exterior cone condition on Ω stated above has the only
motivation of providing a sufficient condition, both geometrically elementary and
independent of p , for the existence (and uniqueness) of a solution to the Dirichlet
problem which is continuous at every boundary point. More refined conditions
based on a Wiener test could be introduced and for this matter we refer to [MZ]
and in particular Corollary 6.22.

Before proceeding to the proof of Theorem 3.1 let us perform some formal
calculations. Computing the divergence in (1.1), we get

div(|A∇u · ∇u|(p−2)/2A∇u)

= |A∇u · ∇u|(p−2)/2 div(A∇u) +∇(|A∇u · ∇u|(p−2)/2) ·A∇u

= |A∇u · ∇u|(p−2)/2

[
div(A∇u) +

p− 2

2

∇(A∇u · ∇u) ·A∇u
A∇u · ∇u

]
.

Therefore, formally speaking, u satisfies the nondivergence uniformly elliptic equa-
tion (as we shall see later on in the course of the proof of Proposition 3.3)

bijuxixj + ciuxi = 0,

where

(3.3) bij = aij + (p− 2)
(A∇u)i(A∇u)j
A∇u · ∇u ,

and

ci = aji,xj +
p− 2

2

aijAxj∇u · ∇u
A∇u · ∇u .

Thus it is expected that u has indeed C 1,α
loc regularity and hence, for u , the index

and geometric index should coincide. Such formal considerations are justified by a
regularization argument, whose details are provided by the following proposition.
Let us remark that the local C 1,α regularity of a solution to (1.1) holds in any
space dimension n ≥ 2 ([To], [DB]).

Proposition 3.3. Let A satisfy the hypotheses in Theorem 3.1 and let
u ∈ W 1,p

loc (Ω) be a solution to (1.1). There exist constants α, k , 0 < α ≤ 1 ,
0 ≤ k < 1 only depending on p , λ and L such that for every G ⊂⊂ Ω there exist
s, h ∈ C α(G,C) such that the following representation holds in G :

(3.4) uz = esh,

and h is a k -quasiregular mapping in G .

Notice that here, and in the sequel, we denote ∂z = 1
2 (∂x1 − i∂x2) , ∂z̄ =

1
2 (∂x1 + i∂x2) .
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Remark 3.4. We observe that the representation (3.4) automatically implies
the C 1,α

loc regularity of u and also that, if we assume Ω connected and u non-
constant, then its critical points are isolated and have positive index.

Proof of Proposition 3.3. Let D be such that G ⊂⊂ D ⊂⊂ Ω and ∂D is C∞ -
smooth. By standard mollification let us construct functions gε ∈ C∞(D), ε > 0,
such that gε converges to u in W 1,p(D) as ε → 0, and symmetric matrices Aε

with C∞ entries such that Aε satisfies conditions (3.1), (3.2) and Aε converges
to A in W 1,q(D) as ε → 0, for every q < ∞ . For every ε > 0, we consider
uε ∈W 1,p(D) as the weak solution to

(3.5)

{
div((|Aε∇uε · ∇uε|+ ε)(p−2)/2Aε∇uε) = 0 in D,
uε − gε ∈W 1,p

0 (D).

For the regularized boundary value problem (3.5), standard elliptic regularity the-
ory applies (see for instance [GT, Theorems 6.19, 11.5]) and it ensures uε ∈ C∞(D)
for every ε > 0.

A computation for uε analogous to the one performed for u , yields

div
(
(|Aε∇uε ·∇uε|+ε)(p−2)/2Aε∇uε

)
= (|Aε∇uε ·∇uε|+ε)(p−2)/2[bεiju

ε
xixj+cεiu

ε
xi ],

where

bεij = aεij + (p− 2)
(Aε∇uε)i(Aε∇uε)j
|Aε∇uε · ∇uε|+ ε

, i, j = 1, 2,

and

cε = (cεi ) =

(
aεji,xj +

p− 2

2

aεijA
ε
xj∇uε · ∇uε

|Aε∇uε · ∇uε|+ ε

)
.

This allows us to rewrite (3.5) in the form

bεiju
ε
xixj + cεiu

ε
xi = 0.

Let us study the ellipticity of

Bε = (bεij)
2
i,j=1 = Aε + (p− 2)

(Aε∇uε)⊗ (Aε∇uε)
|Aε∇uε · ∇uε|+ ε

,

where v ⊗ w denotes, for v, w ∈ R2 , the matrix (viwj)
2
i,j=1 . Since for each

symmetric matrix M , the equalities M (v ⊗ w) = (M v) ⊗ w and (v ⊗ w)M =
v ⊗ (Mw) hold, we have

Bε =
√
Aε
(
I + (p− 2)

(
√
Aε∇uε)⊗ (

√
Aε∇uε)

|
√
Aε∇uε|2 + ε

)√
Aε.
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Observing that

0 ≤ (
√
Aε∇uε)⊗ (

√
Aε∇uε)

|
√
Aε∇uε|2 + ε

ξ · ξ ≤ |ξ|2 for every ξ ∈ R2,

we get

min{1, p− 1}|ξ|2 ≤
(
I + (p− 2)

(
√
Aε∇uε)⊗ (

√
Aε∇uε)

|
√
Aε∇uε|2 + ε

)
ξ · ξ

≤ max{1, p− 1}|ξ|2.

This shows that Bε satisfies an ellipticity condition like (3.1) when λ is replaced
by a constant 0 < λ̃ ≤ 1 only depending on p and λ . Let us stress that λ̃
is independent of ε . Similarly we obtain that cε satisfies a uniform L∞ bound
independent of ε . By well-known computations (see for instance [BJS]) we have,
setting fε := uεz ,

fεz̄ = µεfεz + νεfεz + γεfε + δεfε

with µε, νε, γε, δε ∈ L∞(D) such that

|µε|+ |νε| ≤ k < 1, |γε|+ |δε| ≤ K <∞ in D,

where k and K only depend on p, λ and L .
Thus, for each ε > 0, the Bers–Nirenberg factorization (see [BN] or [BJS, II.6])

applies to f ε . That is, f ε = es
ε

hε , where hε is k -quasiregular in D and sε is
α -Hölder in D for some α , 0 < α < 1, independent of ε , ‖sε‖C 0,α(D) ≤ C =
C(k,K) .

The ellipticity of Bε also implies (see for instance Talenti [Ta]) a C 1,α
loc esti-

mate for each uε , independent of ε . More precisely

(3.6) ‖∇uε‖∞;G + |∇uε|α;G ≤ C‖∇uε‖p,D

with α and C independent of ε .
By the uniqueness of the W 1,p solution to the Dirichlet problem for equation

(1.1) we have that there exists a sequence εn → 0 such that uεn converges to u
weakly in W 1,p(D) and, by (3.6) and the Ascoli–Arzelà theorem, possibly choosing
a smaller α , 0 < α < 1, is also convergent in C 1,α(G) . Possibly passing to
a subsequence, also sεn converges to s ∈ C α(G,C) and hεn = e−s

εn
fεn → h

in C α(G,C) . Thus, h being the uniform limit of a sequence of k -quasiregular
mappings, we also have that h is k -quasiregular [LV, I.4.9] and uz = esh in G .

Proof of Theorem 3.1. Let uε ∈ W 1,p
loc (Ω) ∩ C (Ω), ε > 0, be the solution to

the regularized equation

div((|Aε∇uε · ∇uε|+ ε)(p−2)/2Aε∇uε) = 0 in Ω
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with Dirichlet data
uε = g on ∂Ω,

where Aε is as in Proposition 3.3. In view of the theory in [MZ] we have that uε

converges to u in C (Ω), and also in the C 1,α
loc (Ω) sense. Let us fix an open subset

D ⊂⊂ Ω with C∞ -boundary such that u does not have critical points on ∂D .
Since the critical points of u are isolated, it suffices to prove, by the arbitrariness
of D , that the number of critical points of u in D , counted according to their
index, is ≤ N − 1.

Since uεn is smooth, its index and geometric index coincide. Moreover, by
construction, we can consider uεn as the solution of the elliptic equation in diver-
gence form

div(Ãn∇uε) = 0 in Ω,

where
Ãn = (|Aεn∇uεn · ∇uεn |+ ε)(p−2)/2Aεn ,

for which the hypotheses of Corollary 2.6 apply. Therefore

I(D,uεn) ≤ N − 1.

By the C 1(D) convergence of uεn to u and since |∇u| is uniformly bounded away
from 0 on ∂D , we have that arg∇uεn converges uniformly to arg∇u as n→∞
and that uεn , for n large enough, does not have critical points on ∂D . Hence we
obtain

I(D,u) =

∫

∂D

d arg∇u = lim
n→∞

∫

∂D

d arg∇uεn = I(D,uεn) ≤ N − 1.

Remark 3.5. It is known (see [HKM, Theorem 6.5]) that a non-constant
solution u to (1.1) on a simply connected domain verifies a maximum principle in
the (S.2)-form. Since, in Proposition 3.3, we have proved that u ∈ C 1,α

loc (Ω) and
its critical points are isolated, in view of [AM1, Lemma 3.1], we also obtain that
u belongs to the class S (Ω).

4. The strong comparison principle

Theorem 4.1 (Strong comparison principle). Let Ω be a bounded domain
in R2 , let A satisfy (3.1), and (3.2), and let u0, u1 ∈ W 1,p

loc
(Ω) be two distinct

solutions to (1.1). If u0 ≤ u1 in Ω , we have u0 < u1 everywhere in Ω .

We first prove the following lemma.

Lemma 4.2. Let F : R4 \ {0} → R be defined by

F (X0, X1) =

∫ 1

0

|tX0 + (1− t)X1|p−2 dt

for each pair (X0, X1) of vectors in R2 . Then there exist two constants 0 < cp ≤
Cp < +∞ only depending on p such that

(4.1) cp(|X0|2 + |X1|2)(p−2)/2 ≤ F (X0, X1) ≤ Cp(|X0|2 + |X1|2)(p−2)/2

for every (X0, X1) ∈ R4 \ {0} .
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Proof. Let G1 denote the subset of R4 \ {0} consisting of pairs (X0, X1)
such that 0 does not belong to the segment [X0, X1] . If (X0, X1) ∈ G1 then

0 < dist (0, [X0, X1]) ≤ |tX0 + (1− t)X1| ≤ max{|X0|, |X1|} < +∞.

Notice that dist (0, [X0, X1]) and max{|X0|, |X1|} are continuous functions of
(X0, X1) in G1 . We get,

0 <
(
dist (0, [X0, X1])

)p−2 ≤ F (X0, X1) ≤
(
max{|X0|, |X1|}

)p−2
<∞ when p ≥ 2,

and

0 <
(
max{|X0|, |X1|}

)p−2 ≤ F (X0, X1) ≤
(
dist (0, [X0, X1])

)p−2
<∞ when p ≤ 2.

Consequently, there exist two continuous and positive functions φ1 and Φ1 on
G1 , only depending on p , such that φ1 ≤ F ≤ Φ1 on G1 .

Let G2 denote the subset of R4 \ {0} consisting of the pairs (X0, X1) such
that X0 6= X1 . Notice that on G2 we have a uniquely determined, continuous
function τ defined, for each pair (X0, X1) , by

∣∣τ(X0, X1)X0 +
(
1− τ(X0, X1)

)
X1

∣∣ = min
t∈R
|tX0 + (1− t)X1|.

Fix (X0, X1) ∈ G2 and set τ = τ(X0, X1) . Since X0 − X1 is perpendicular to
τX0 + (1− τ)X1 , then, for all t ∈ [0, 1] ,

|t− τ | |X0 −X1| ≤ |(t− τ)(X0 −X1) + τX0 + (1− τ)X1|
= |tX0 + (1− t)X1| ≤ max{|X0|, |X1|}.

Let us remark that ∫ 1

0

|t− τ |p−2 dt =

∫ 1−τ

−τ
|s|p−2 ds;

therefore, being p − 2 > −1,
∫ 1

0
|t − τ |p−2 dt is a continuous function of τ and,

consequently, of (X0, X1) in G2 . As we did for G1 , also on G2 we can bound
F from above and below by two continuous positive functions, say φ2 , Φ2 , only
depending on p .

Since F is homogeneous of degree p− 2, we have

F (X0, X1) = (|X0|2 + |X1|2)(p−2)/2F (ξ0, ξ1),

where

ξi =
Xi

(|X0|2 + |X1|2)1/2
, i = 0, 1,

in such a way that (ξ0, ξ1) ∈ S3 , where S3 denotes the unit sphere in R4 .
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Let {α1, α2} be a partition of unity on S3 subordinate to the covering
{G1, G2} . Then

α1φ1 + α2φ2 ≤ F ≤ α1Φ1 + α2Φ2 on S3,

and the desired estimate (4.1) holds with

cp = min
S3

(α1φ1 + α2φ2), Cp = max
S3

(α1Φ1 + α2Φ2).

Proof of Theorem 4.1. Without loss of generality we can assume that either
u0 or u1 is non-constant. Set v = u1−u0 and, for t ∈ [0, 1] , ut = tu1 + (1− t)u0 .

For each test function ϕ ∈W 1,p
c (Ω) we have

0 =

∫

Ω

(
|A∇u1 · ∇u1|(p−2)/2A∇u1 − |A∇u0 · ∇u0|(p−2)/2A∇u0

)
· ∇ϕ

=

∫

Ω

(∫ 1

0

d

dt

(
|A∇ut · ∇ut|(p−2)/2A∇ut

)
· ∇ϕ

)
dt.

A calculation gives us

d

dt

(
|A∇ut · ∇ut|(p−2)/2A∇ut

)

= |A∇ut · ∇ut|(p−2)/2A∇v + (p− 2)|A∇ut · ∇ut|(p−4)/2(A∇ut · ∇v)A∇ut

= |A∇ut · ∇ut|(p−2)/2(A+ (p− 2)
A∇ut ⊗A∇ut
A∇ut · ∇ut

)∇v,

and we obtain ∫

Ω

A∇v · ∇ϕ = 0 for all ϕ ∈W 1,p
c (Ω),

where

(4.2) A =

∫ 1

0

|A∇ut · ∇ut|(p−2)/2

(
A+ (p− 2)

A∇ut ⊗A∇ut
A∇ut · ∇ut

)
dt.

This means that v ∈W 1,p
loc (Ω) is a weak solution to

(4.3) div(A∇v) = 0 in Ω.

Notice that

A =

∫ 1

0

|A∇ut · ∇ut|(p−2)/2Bt dt,

where Bt is the matrix B in (3.3) when u is replaced by ut . By the same
arguments used in the proof of Proposition 3.3 we have

λ̃|ξ|2 ≤ Btξ · ξ ≤ λ̃−1|ξ|2 for every ξ ∈ R2 and x ∈ R2,
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where λ̃ only depends on p and on λ . Denoting by λ1 , λ2 the eigenvalues of A ,
λ1 ≤ λ2 , we obtain

λ̃

∫ 1

0

|A∇ut · ∇ut|(p−2)/2 ≤ λ1 ≤ λ2 ≤
1

λ̃

∫ 1

0

|A∇ut · ∇ut|(p−2)/2.

By the ellipticity assumption on A and the definition of F given in Lemma 4.2,
we obtain

λ̃λ|p−2|F (∇u0,∇u1) ≤ λ1 ≤ λ2 ≤
1

λ̃λ|p−2|F (∇u0,∇u1).

Denote by S the set of critical points common to u0 and u1 . Proposition 3.3
implies that S is discrete. From Lemma 4.2 it follows that the equation (4.3) is
uniformly elliptic in each D ⊂⊂ Ω \ S . If such a D is also connected, then we
have that v is either strictly positive or identically equal to zero in D . From the
arbitrariness of D we obtain that either v ≡ 0 or v > 0 in Ω \S . In the first case
we would have, by continuity, that v ≡ 0 in Ω, contrary to the hypothesis that
u0 6= u1 . So the second case is true.

Pick a neighborhood V of z0 ∈ S such that ∂V ∩ S = ∅ and let m > 0 be
the minimum of v on ∂V . The weak maximum principle for the solutions to the
equation (1.1) (see for instance [HKM, Theorem 7.6]) leads to u0 +m ≤ u1 in V
and, in particular, in z0 .

Then u0 < u1 everywhere in Ω.

5. The generalization of Radó’s theorem

Theorem 5.1. Let Ω be an open bounded simply connected domain in R2

satisfying an exterior cone condition and let ∂Ω be a simple closed curve, G a
bounded convex domain in R2 and Φ = (φ1, φ2): ∂Ω → ∂G a sense-preserving
homeomorphism. Set U = (u1, u2) where, for i = 1, 2 , ui ∈ W 1,p

loc (Ω) ∩ C (Ω) is
the solution to

{
div(|A∇ui · ∇ui|(p−2)/2A∇ui) = 0 in Ω,
ui|∂Ω = φi,

and the matrix A satisfies (3.1) and (3.2). Then

(a) U is a diffeomorphism from Ω onto G and detDU > 0 in Ω .
(b) If, moreover, ∂Ω ∈ C 1,α , 0 < α < 1 , satisfies an interior sphere condition and

Φ ∈ C 1,α(∂Ω) , then U is a diffeomorphism from Ω onto G and detDU > 0
in Ω.

Before proving the theorem, let us recall the notion of Brower degree. If
Ψ ∈ C 1(Ω; R2) ∩ C (Ω; R2) and y ∈ R2 \Ψ(∂Ω) then

deg(Ψ,Ω, y) :=

∫

Ω

f
(
Ψ(x)

)
detDΨ(x) dx
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for any f ∈ C∞(R2; R) with compact support in the connected component of
R2 \Ψ(∂Ω) containing y and such that

∫

R2

f(x) dx = 1.

It is known that deg(Ψ,Ω, · ) is integer-valued, constant on connected components
of R2 \Ψ(∂Ω) and within such domains it only depends on Ψ|∂Ω . Moreover, if
detDΨ(x) 6= 0 for each x ∈ Ψ−1(y), we have

(5.1) deg(Ψ,Ω, y) =
∑

x∈Ψ−1(y)

sgn
(
detDΨ(x)

)
.

Proof of Theorem 5.1. (a) The first, topological, step shall consist in verifying
that G ⊆ U(Ω). Since Φ is orientation preserving and since, as seen, deg(U,Ω, y)
only depends on U |∂Ω = Φ, we have, for each y ∈ G ,

(5.2) deg(U,Ω, y) = 1.

Let E = U(Ω) ∩ G . If E is not dense in G , we can pick f ∈ C∞0 (G \ E) such
that

∫
G\E f(x) dx = 1. Hence we have

∫

Ω

f
(
U(x)

)
︸ ︷︷ ︸
≡0

detDU(x) dx = 0,

which contradicts (5.2). From the continuity of U we deduce, as desired, G ⊆
U(Ω).

Let us denote, for every θ ∈ [0, π[ ,

uθ = u1 cos θ + u2 sin θ.

Notice that the convexity of G implies, for each θ , that the number of connected
components of points of maximum of uθ|∂Ω = U |∂Ω · (cos θ, sin θ) is exactly equal
to 1. By Theorem 3.1 we then obtain that u0 = u1 and uπ/2 = u2 do not have
critical points in Ω.

Applying to uθ the interpolation argument used for v in the proof of Theo-
rem 4.1, we get, in analogy to (4.3) and (4.2), that uθ is a weak solution to

div(Aθ∇uθ) = 0 in Ω,

where

Aθ =

∫ 1

0

|A∇uθ,t · ∇uθ,t|(p−2)/2

(
A+ (p− 2)

A∇uθ,t ⊗A∇uθ,t
A∇uθ,t · ∇uθ,t

)
dt,
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and uθ,t = tu2 sin θ + (1− t)u1 cos θ for t ∈ [0, 1] .
Since u1 and u2 do not have critical points in Ω, the matrix Aθ , by virtue

of Lemma 4.2, is uniformly elliptic on every compact subset of Ω.
By Corollary 2.3 and Remark 3.2 we have that uθ belongs to S (Ω) for each

θ ∈ [0, π[ . In particular (S.2) implies U(Ω) ⊆ G since a convex subset of the plane
coincides with the intersection of the half-planes containing it. Thus, U(Ω) = G .

Notice that uθ has a unique component of maximum on ∂Ω. By Theorem 2.3
we then have that ∇uθ 6= 0 in Ω for each θ ∈ [0, π[ , that is, detDU 6= 0
everywhere in Ω.

By continuity, detDU > 0 in Ω and thus, by (5.1),

#{U−1(y)} = 1 for all y ∈ G.

(b) Let us introduce, for i = 1, 2, the regularized solutions ui,ε associated to
ui as we did in Theorem 3.1. That is, for every ε > 0, ui,ε is the solution to the
regularized equation

div
(
(|Aε∇ui,ε · ∇ui,ε|+ ε)(p−2)/2Aε∇ui,ε

)
= 0 in Ω

coupled with the Dirichlet condition ui,ε|∂Ω = φi .
A regularity result due to Lieberman [Li, Theorem 1] implies that ui,ε satisfy

a uniform C 1,α(Ω; R) bound for some α , 0 < α ≤ 1, independent of ε and the
same bound applies to ui , i = 1, 2.

Next we prove that detDU > 0 on ∂Ω. Let us fix θ ∈ [0, π[ and x0 ∈ ∂Ω. If
x0 is a critical point of uθ , then the derivative of uθ with respect to the tangent
unit vector is zero. Thus x0 lies in a component of points of maximum or of
minimum of uθ . Otherwise ∂G should have a point of inflection contrary to the
hypothesis that G is convex.

Now, let x0 be a point of, say, minimum for uθ and let us prove that x0 is
not a critical point for uθ . Suppose for the moment θ = 0, that is uθ = u1 . Since
u1,ε|∂Ω = u1|∂Ω , x0 is a point of minimum for each u1,ε . Then the Hopf maximum
principle (see for instance [GT, Lemma 3.4]) applies to u1,ε . Thus, denoting by ν
the inward unit normal to ∂Ω at x0 , we have

∂u1,ε

∂ν
(x0) ≥ C > 0 for every ε, 0 < ε ≤ 1,

where C is independent of ε .
Thus passing to a limit on a subsequence εn ↘ 0 we obtain

∂u1

∂ν
(x0) > 0

and thus ∇u1(x0) 6= 0. Analogous considerations hold when x0 is a point of
relative maximum and also for u2 . Therefore we have that both ∇u1 and ∇u2

never vanish in Ω.
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Hence the matrix Aθ is uniformly elliptic in all of Ω and its entries are in
C β(Ω), for each θ in [0, π[ . We are then justified in applying to uθ , at a point of
relative maximum or minimum x0 , the generalized Hopf maximum principle due
to Finn and Gilbarg [FG, Lemma 7] which applies to the case of elliptic equations
in divergence form with Hölder continuous coefficients. Hence we obtain that the
derivative of uθ along the inward normal to ∂Ω at x0 does not vanish. Thus x0

is not a critical point for uθ for any θ ∈ [0, π[ .

As we did in (a), by the arbitrariness of θ , we deduce that detDU 6= 0 on
∂Ω and, by continuity, detDU > 0 everywhere in Ω.
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