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Abstract. Our main result is that if µ is an s -admissible measure in Rn and v ∈ Ap(dµ) ,
then the measure dν = v dµ is ps -admissible. A two-weighted version of this result is also proved.
It is further shown that every strong A∞ -weight w in Rn , n ≥ 2 , is n/(n− 1) -admissible, that
its power w1−1/n is 1 -admissible and that the weights w1−p/n with 1 < p < n are q -admissible
for some q < p . A counterexample showing that we cannot take q = 1 in general is also given.
Finally, a new class of p -admissible weights is described.

1. Introduction

In Fabes–Kenig–Serapioni [4] four conditions sufficient for extending Moser’s
iteration technique to weighted degenerate equations were singled out. Later, in
Heinonen–Kilpeläinen–Martio [12] such weights were called “p -admissible” and
a rich potential theory was developed for them. Recently, HajÃlasz, Heinonen,
Koskela and Semmes showed that the conditions described in Fabes–Kenig–Sera-
pioni [4] can be reduced to only two, see Theorem 2 in HajÃlasz–Koskela [10] and
Theorem 5.2 in Heinonen–Koskela [13]. Thus, a non-negative locally integrable
function w in Rn is a p-admissible weight with 1 ≤ p < ∞ if and only if the
measure µ associated with w through dµ = w dx , where dx denotes integration
with respect to the Lebesgue measure, satisfies the following two conditions:

Doubling condition: 0 < w < ∞ a.e. in Rn and there is a constant C > 0
such that

µ(2B) < Cµ(B)

for all balls B ⊂ Rn , where 2B denotes the ball concentric with B and with twice
the radius.
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Weak (1, p)-Poincaré inequality : There exist constants C > 0 and λ ≥ 1
such that ∫

B

|u− uB,µ| dµ ≤ Cr
(∫

λB

|∇u|p dµ
)1/p

holds whenever B is a ball with radius r and u is, say, a locally Lipschitz function
on λB . Here and in what follows, uB,µ =

∫
B
u dµ and the symbol

∫
stands for

the mean-value integral ∫

B

f dµ =
1

µ(B)

∫

B

f dµ.

A measure µ satisfying the above conditions will also be called p -admissible. The
Hölder inequality implies that every p -admissible measure is also p′ -admissible for
all p′ > p . Note also that by Theorem 1 in HajÃlasz–Koskela [10], a weak (1, p)-
Poincaré inequality for a doubling measure in Rn implies a strong (1, p)-Poincaré
inequality with λ = 1.

Many interesting examples of p -admissible weights are provided by weights
from the Muckenhoupt class Ap , see e.g. Chapter 15 in Heinonen–Kilpeläinen–
Martio [12]. Non-Ap examples of p -admissible weights have been given in e.g.
Chanillo–Wheeden [2] and Franchi–Gutiérrez–Wheeden [5]. In Chapter 15 in
Heinonen–Kilpeläinen–Martio [12] it is shown for 1 < p < n that (1 − p/n)-
powers of Jacobians of quasiconformal mappings in Rn , n ≥ 2, are p -admissible.
This result was extended to strong A∞ -weights by Heinonen and Koskela [13],
viz. they prove the following theorem in the case 1 < p < n . We will provide a
new proof of this theorem which covers also the case p = 1.

Theorem 1. Let w be a strong A∞ -weight in Rn , n ≥ 2 , and 1 ≤ p < n .
Then the weight w1−p/n is p -admissible.

Strong A∞ -weights were introduced in David–Semmes [3] and further studied
in e.g. Semmes [17] and [18]. For a doubling measure µ consider the function
δ(x, y) = µ(Bxy)1/n , where Bxy denotes the smallest closed ball containing both
x and y . The doubling condition of µ implies that δ is a quasi-metric, i.e. it
is symmetric, vanishes only if x = y and satisfies the weak triangle inequality
δ(x, y) ≤ C

(
δ(x, z) + δ(z, y)

)
. As mentioned in David–Semmes [3], an argument

by Gehring [9] shows that if there exists a metric d in Rn such that

(1) C−1d(x, y) ≤ δ(x, y) ≤ C d(x, y)

for some C > 0 and all x, y ∈ Rn , then the measure µ is absolutely continu-
ous with respect to the Lebesgue measure and its Radon–Nikodym derivative w
satisfies the reverse Hölder inequality

(2)

(∫

B

w(x)r dx

)1/r

≤ C
∫

B

w(x) dx

for some constants C > 0, r > 1 and every ball B ⊂ Rn .
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Definition 2. Weights satisfying the reverse Hölder inequality (2) are called
A∞ -weights and those satisfying (1) for some metric d in Rn are strong A∞ -
weights.

The above mentioned argument shows that every strong A∞ -weight is an
A∞ -weight. Note also that every A1 -weight is a strong A∞ -weight and that
Jacobians of quasiconformal mappings in Rn , n ≥ 2, are strong A∞ -weights, see
e.g. David–Semmes [3].

We shall use the notation v ∈ Ap(dµ) , 1 ≤ p <∞ , if for some C > 0 and all
balls B ⊂ Rn ,

∫

B

v dµ <




C

(∫

B

v1/(1−p) dµ

)1−p
for p > 1,

C ess inf
B

v for p = 1.

Equivalently, we can consider all cubes in Rn with sides parallel to the coordinate
axes. If µ is the Lebesgue measure, then we write Ap rather than Ap(dx) . For
various properties of Ap -weights see e.g. Garćıa-Cuerva–Rubio de Francia [8] and
Torchinsky [21]. We shall need the fact that w is an A∞ -weight if and only if
w ∈ Ap for some p <∞ .

Heinonen–Koskela’s proof of Theorem 1 is based on the following result due
to Franchi–Gutiérrez–Wheeden [5] (here stated in terms of the usual gradient
rather than the λ -gradient considered in [5]). For a similar result on spaces of
homogeneous type see Corollary 3.2 in Franchi–Pérez–Wheeden [7]. From now on,
the open ball in Rn with centre x and radius r will be denoted B(x, r) .

Theorem 3. Let w be a strong A∞ -weight in Rn , n ≥ 2 , 1 ≤ p < q <
∞ and v ∈ Ap(w

1−1/n dx) . Put dµ = vw1−1/n dx and let ν be a doubling
measure absolutely continuous with respect to the Lebesgue measure, satisfying
the condition

(3)
r′

r

(
ν(B′)
ν(B)

)1/q

≤ C
(
µ(B′)
µ(B)

)1/p

for all balls B = B(x, r) and B′ = B(x′, r′) in Rn such that B′ ⊂ cB with
some fixed c > 1 . Then the pair (ν, µ) admits the two-weighted (q, p) -Poincaré
inequality

(4)

(∫

B

|u− uB,ν |q dν
)1/q

≤ Cr
(∫

B

|∇u|p dµ
)1/p

.

Remark. Note that by Chanillo–Wheeden [1] the condition (3) is essentially
necessary for the Poincaré inequality (4) to be valid.

In this paper we give a short proof of the following analogue of Theorem 3
in the setting of admissible measures. Theorem 3 itself follows from Proposition 5
and Theorem 7 below.
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Theorem 4. Let µ be an s -admissible measure, 1 ≤ s < ∞ , and v ∈
Ap(dµ) , 1 ≤ p <∞ . Then the measure ν given by dν = v dµ is ps -admissible.

As (1−1/n)-powers of strong A∞ -weights are 1-admissible by e.g. Theorem 1,
Theorem 4 provides a simple proof of the following one-weighted (ν = µ) special
case of Theorem 3.

Proposition 5. Let w be a strong A∞ -weight in Rn , n ≥ 2 , and v ∈
Ap(w

1−1/n dx) , 1 ≤ p <∞ . Then the weight vw1−1/n is p -admissible.

Contrary to Theorem 3, Theorem 4 allows us to consider weights which are
not strong A∞ -weights. For example, we can prove the following generalization
of a result due to Chanillo–Wheeden [2].

Proposition 6. Let 2 ≤ k ≤ n and write the points in Rn as x = (x′, x′′) ,
where x′ ∈ Rk and x′′ ∈ Rn−k . Let 1 ≤ p < ∞ , v ∈ Ap , a1, a2, . . . , am ∈ Rk

and γj ≥ 0 , j = 0, 1, . . . ,m . Then the weight

v(x)(1 + |x′|)γ0

m∏

j=1

( |x′ − aj |
1 + |x′ − aj |

)γj

is p -admissible.

Two-weighted versions of Theorem 4 and Propositions 5 and 6 follow imme-
diately from the following theorem.

Theorem 7. Let µ be a p -admissible measure. Let 1 ≤ p < q <∞ and let
ν be a doubling measure satisfying the condition (3) for all balls B = B(x, r) and
B′ = B(x′, r′) such that B′ ⊂ B . Then the pair (ν, µ) admits the two-weighted
(q, p) -Poincaré inequality (4).

Remark. A reader familiar with Poincaré inequalities on metric spaces easily
verifies that Theorem 4 (with the same proof) and Theorem 7 (with a weak two-
weighted (q, p)-Poincaré inequality in the conclusion and a slightly modified proof)
are valid in the setting of doubling metric measure spaces. We will not dwell on
this generalization in this paper.

Let us also mention some consequences of Proposition 5 and the reverse Hölder
inequality (2), which improve Theorem 1.

Corollary 8. Let w ∈ Aq be a strong A∞ -weight in Rn , n ≥ 2 , satisfying
the reverse Hölder inequality (2) with r > 1 and let 1− 1/n ≤ σ ≤ r . Then the
weight wσ is p -admissible for all

p ≥ n
(
σ(q − 1) + 1

)

q(n− 1) + 1
.

In particular, every strong A∞ -weight in Rn , n ≥ 2 , is n/(n− 1) -admissible.
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Corollary 9. Let w be a strong A∞ -weight in Rn , n ≥ 2 , and 1 < p < n .
Then the weight w1−p/n is q -admissible for all

q ≥ n(r − 1) + p

n(r − 1) + 1
,

where r is the exponent from the reverse Hölder inequality (2). In particular,
w1−p/n is q -admissible for some q < p .

If moreover w−t ∈ A1 for some t > 0, then it can be derived from Lemma 3.17
in Semmes [17] that ws = ws−1 w is a strong A∞ -weight for all 0 < s < 1, and
hence the weight w1−p/n = (w(n−p)/(n−1))1−1/n with 1 ≤ p ≤ n is 1-admissible,
by e.g. Theorem 1. On the other hand it is shown in the counterexample to
Question 4.1 in Semmes [17], that there are strong A∞ -weights (even Jacobians
of quasiconformal mappings) such that ws is not a strong A∞ -weight for any
0 < s < 1 and consequently the above argument cannot be applied. In fact, the
following occurs.

Proposition 10. There exists a strong A∞ -weight w in R2 such that none
of the weights w1−p/2 , 1 < p < 2 , is 1 -admissible.

Finally, note that the well-known p -admissibility of Ap -weights is a direct
consequence of Theorem 4 and the 1-admissibility of the Lebesgue measure.

Acknowledgement. The author is grateful to the referee for valuable sugges-
tions and comments.

2. The proofs

Let us first recall a simple consequence of the reverse Hölder inequality (2). If
0 < s < 1, the Hölder inequality with w = wθw1−θ and θ = s(r − 1)/(r − s) < 1
yields

(∫

B

wr dx

)1/r

≤ C
∫

B

w dx ≤ C
(∫

B

ws dx

)θ/s(∫

B

wr dx

)1−θ/s

and division by the last factor on the right-hand side gives

(5)

(∫

B

wr dx

)1/r

≤ C1/θ

(∫

B

ws dx

)1/s

.

From now on, the letter C will denote a positive constant whose exact value
is unimportant and may change even within a line. We shall also use the notation
a ' b if a/C ≤ b ≤ Ca holds for some C .
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Proof of Theorem 1. It suffices to consider the case p = 1. If p > 1, then (5)
and the Hölder inequality show that w(1−p)/n ∈ Ap(w1−1/n dx) and Theorem 4
then implies that the weight w1−p/n = w(1−p)/nw1−1/n is p -admissible.

First, note that by (5), w1−1/n is an A∞ -weight and hence the measure
dµ = w1−1/n dx is doubling. Let also dν = w dx . The (1, 1)-Poincaré inequality
for w1−1/n is a consequence of the following Poincaré type inequality for strong
A∞ -weights by David and Semmes [3],

(6)

∫

B

∫

B

|u(ξ)− u(η)| dν(ξ) dν(η) ≤ C µ(2B)

ν(B)1−1/n

∫

2B

|∇u(ξ)| dµ(ξ),

which holds for all balls B in Rn and all locally Lipschitz functions u . In order
to prove that w1−1/n is 1-admissible we have to show that the measure ν on the
left-hand side can be replaced by µ and that the factor in front of the integral
on the right-hand side is comparable to r . This is done using an argument as in
Franchi–HajÃlasz [6]:

Let B = B(x0, r) be a ball in Rn , uB,ν =
∫
B
u dν and let for x ∈ B and

k = 0, 1, . . . ,

Bk(x) = B(x, 21−kr) and uk =

∫

Bk(x)

u dν.

Then the doubling property of ν and the fact that uk → u(x) , as k →∞ , imply

|u(x)− uB,ν | ≤ |u0 − uB,ν |+
∞∑

k=0

|uk+1 − uk|

≤ |u0 − uB,ν |+ C

∞∑

k=0

∫

Bk(x)

∫

Bk(x)

|u(ξ)− u(η)| dν(ξ) dν(η).

Note that B ⊂ B0(x) and hence |uB,ν − u0| ≤ C
∫
B0(x)

|u− u0| dν , which can be

included in the above sum. The Poincaré type inequality (6) then implies

|u(x)− uB,ν | ≤ C
∞∑

k=0

µ
(
2Bk(x)

)

ν
(
Bk(x)

)1−1/n

∫

2Bk(x)

|∇u(ξ)| dµ(ξ).

The quotient µ
(
2Bk(x)

)
/ν
(
Bk(x)

)1−1/n
does not exceed C|Bk(x)|1/n ' 2−kr , by

the doubling property of µ and the Hölder inequality, and we obtain

|u(x)− uB,ν | ≤ Cr
∞∑

k=0

2−k
∫

2Bk(x)

|∇u(ξ)| dµ(ξ).
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Averaging both sides over the ball B with respect to µ gives

(7)

∫

B

|u− uB,ν | dµ ≤ Cr
∞∑

k=0

2−k
∫

B

∫

Rn

χ2Bk(x)(ξ)

µ
(
2Bk(x)

) |∇u(ξ)| dµ(ξ) dµ(x),

where χ denotes the characteristic function of a set. Note that 2B0(x) ⊂ 5B ,
χ2Bk(x)(ξ) = χ2Bk(ξ)(x) and that the doubling property of µ implies µ

(
2Bk(x)

)
'

µ
(
2Bk(ξ)

)
whenever ξ ∈ 2Bk(x) . It follows that

χ2Bk(x)(ξ)

µ
(
2Bk(x)

) ≤ Cχ5B(ξ)
χ2Bk(ξ)(x)

µ
(
2Bk(ξ)

) ,

which inserted into (7) together with the Fubini theorem and the doubling property
of µ yields ∫

B

|u− uB,ν | dµ ≤ Cr
∫

5B

|∇u| dµ.

The required (1, 1)-Poincaré inequality for µ then follows from the inequality

(8)

∫

B

|u− uB,ν | dµ ≤ 2

∫

B

|u− uB,µ| dµ.

Proof of Theorem 4. We shall assume p > 1, the case p = 1 is treated
similarly. If B is a ball then the Hölder inequality and the fact that v ∈ Ap(dµ)
yield

µ(B) =

∫

B

v−1/pv1/p dµ ≤
(∫

2B

v1/(1−p) dµ

)1−1/p(∫

B

v dµ

)1/p

≤ Cµ(2B) ν(2B)−1/p ν(B)1/p.

The doubling condition µ(2B) ≤ Cµ(B) then implies ν(2B) ≤ Cν(B) , i.e. the
measure ν is doubling.

By Theorems 3.2 and 3.3 in HajÃlasz–Koskela [11] or Lemma 5.15 in Heinonen–
Koskela [14], the weak (1, s)-Poincaré inequality for µ is equivalent to the validity
of the inequality

|u(x)− u(y)| ≤ C|x− y|
(
Mµ,λ|x−y| |∇u|s(x) +Mµ,λ|x−y| |∇u|s(y)

)1/s

for some C > 0, λ ≥ 1, µ -a.e. x, y ∈ Rn and all locally Lipschitz functions u .
Here Mµ,λ|x−y| |∇u|s(x) is the maximal function defined for g ∈ L1

loc(Rn, µ) by

Mµ,R g(x) = sup
0<%<R

∫

B(x,%)

g dµ.
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If we can show that for some C > 0,

(9) Mµ,R g(x) ≤ C
(
Mν,R g

p(x)
)1/p

,

then another application of Lemma 5.15 in Heinonen–Koskela [14] or Theorem 3.3
in HajÃlasz–Koskela [11] implies that ν admits the weak (1, ps)-Poincaré inequality
and the theorem follows. In order to prove (9), let B be a ball. The Hölder
inequality gives

∫

B

g dµ ≤
(∫

B

gpv dµ

)1/p(∫

B

v1/(1−p) dµ

)1−1/p

=

(∫

B

gp dν

)1/p(∫

B

v dµ

)1/p(∫

B

v1/(1−p) dµ

)1−1/p

.

As v ∈ Ap(dµ) , the product of the last two factors is bounded by a constant
independent of B and (9) follows by taking supremum over all balls B with
radius 0 < % < R and centre x .

Proof of Proposition 6. We can assume that the points a0 = 0, a1, a2, . . . , am
are distinct and that p > 1. The case p = 1 is treated similarly. Let

w(x) = w̃(x′) = (1 + |x′|)γ0

m∏

j=1

( |x′ − aj |
1 + |x′ − aj |

)γj
.

First, we claim that v ∈ Ap(w dx) . Indeed, let Q = Q′ × Q′′ be a cube in
Rk ×Rn−k with sides parallel to the coordinate axes. Partitioning the cube Q′

into
(
6(m+ 1)

)k
equally sized cubes we find a subcube Q̃ of Q′ with sidelength

comparable to that of Q′ , such that the sidelength h of Q̃ satisfies 2h ≤ dj =

dist(Q̃, aj) for all j = 0, 1, . . . ,m . Consider the weights defined on Rk by

ṽ1(x′) =

∫

Q′′
v(x′, x′′) dx′′ and ṽ2(x′) =

∫

Q′′
v(x′, x′′)1/(1−p) dx′′.

One easily verifies that both ṽ1 and ṽ2 satisfy the doubling condition on Rk

with the same doubling constants as v and v1/(1−p) , respectively. Lemma 6.3
in Strömberg–Wheeden [20] then implies that both ṽ1w̃ and ṽ2w̃ are doubling
weights in Rk . Consequently, we have

∫

Q

v(x)w(x) dx

(∫

Q

v(x)1/(1−p)w(x) dx

)p−1

=

∫

Q′
ṽ1(x′)w̃(x′) dx′

(∫

Q′
ṽ2(x′)w̃(x′) dx′

)p−1

≤ C
∫

Q̃

ṽ1(x′)w̃(x′) dx′
(∫

Q̃

ṽ2(x′)w̃(x′) dx′
)p−1
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and as dj ≤ |x′ − aj | ≤
(
1 +
√
k /2

)
dj for all x′ ∈ Q̃ and j = 0, 1, . . . ,m , this is

comparable to

∫

Q̃

ṽ1(x′) dx′
(∫

Q̃

ṽ2(x′) dx′
)p−1[

(1 + d0)γ0

m∏

j=1

(
dj

1 + dj

)γj]p
.

The Ap -condition for v implies

∫

Q̃

ṽ1(x′) dx′
(∫

Q̃

ṽ2(x′) dx′
)p−1

≤
∫

Q

v(x) dx

(∫

Q

v(x)1/(1−p) dx

)p−1

≤ C|Q|p ≤ C|Q̃×Q′′|p.

Altogether, using once again |x′ − aj | ' dj for x′ ∈ Q̃ , we obtain

∫

Q

v(x)w(x) dx

(∫

Q

v(x)1/(1−p)w(x) dx

)p−1

≤ C
[
(1 + d0)γ0

m∏

j=1

(
dj

1 + dj

)γj]p
|Q̃×Q′′|p

≤ C
(∫

Q′′

∫

Q̃

w̃(x′) dx′ dx′′
)p

≤ C
(∫

Q

w(x) dx

)p
,

i.e. v ∈ Ap(w dx) .
The proposition now follows from Theorem 4 if we show that the weight w is

1-admissible. To this end, it is easily verified that the product

m∏

j=1

( |x′ − aj |
1 + |x′ − aj |

)kαj
,

with αj > 0, is comparable to the Jacobian of the k -dimensional quasiconformal
mapping

f(x′) =




aj +

( |x′ − aj |
%

)αj
(x′ − aj) if |x′ − aj | ≤ %,

x′ otherwise,

where % > 0 is fixed so that the balls {x′ ∈ Rk : |x′ − aj | ≤ %} , j = 0, 1, . . . ,m ,
are pairwise disjoint. Similarly, the factor (1+ |x′|)kα0 with α0 > 0 is comparable
to the Jacobian of the quasiconformal mapping

g(x′) =

{
x′ if |x′| ≤ 1,
|x′|α0x′ otherwise.
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As |f(x′)| ' |x′| for all x′ ∈ Rk , we obtain by choosing αj = γj/(k − 1) that

w̃(x′) ' J(x′)1−1/k,

where J denotes the Jacobian of the quasiconformal mapping g◦f . By Theorem 1
and the fact that Jacobians of quasiconformal mappings in Rk , k ≥ 2, are strong
A∞ -weights, w̃ is 1-admissible in Rk . The 1-admissibility of w in Rn then
follows from the following lemma which is easily proved using the Fubini theorem,
cf. Lemma 2 in Lu–Wheeden [15].

Lemma 11. Let µ1 and µ2 be doubling measures on Rn1 and Rn2 , re-
spectively, admitting the (1, p) -Poincaré inequality with p ≥ 1 . Then the product
measure µ = µ1 × µ2 on Rn1 ×Rn2 is doubling and admits the (1, p) -Poincaré
inequality.

Proof of Theorem 7. The argument is similar to the proof of Theorem 5.3 in
HajÃlasz–Koskela [11]. Let B = B(x0, r) be a ball in Rn and let u be a Lipschitz
function on B . We can assume that uB,µ = 0 and that λ = 1 in the (1, p)-
Poincaré inequality for µ . The (1, p)-Poincaré inequality for µ then implies as in
the proof of Theorem 1 that for every x ∈ B ,

|u(x)| ≤ C
∞∑

j=0

rj

(∫

Bj

|∇u|p dµ
)1/p

,

where Bj = B(xj , rj) , rj = 2−jr and each xj lies on the segment [x0, x] at the
distance 2−j |x − x0| from x . The condition (3) applied to the balls Bj and B
then yields

|u(x)| ≤ Crν(B)1/q

µ(B)1/p

∞∑

j=0

1

ν(Bj)1/q

(∫

Bj

|∇u|p dµ
)1/p

.

Next, we write the above sum as Σ′ + Σ′′ , where the summation in Σ′ and Σ′′ is
over j < j0 and j ≥ j0 , respectively (j0 will be chosen later). Note also that as
Bj+1 ⊂ Bj and the set Bj \ Bj+1 contains a ball B′j such that Bj ⊂ 7B′j , the
doubling property of ν implies ν(Bj+1) ≤ γν(Bj) for some γ < 1 independent
of j . It follows that ν(Bj) ≥ γj−j0ν(Bj0) for j < j0 and ν(Bj) ≤ γj−j0ν(Bj0)
for j ≥ j0 . Hence,

Σ′ =

j0−1∑

j=0

1

ν(Bj)1/q

(∫

Bj

|∇u|p dµ
)1/p

≤ C

ν(Bj0)1/q

(∫

B

|∇u|p dµ
)1/p

and

Σ′′ =
∞∑

j=j0

1

ν(Bj)1/q

(∫

Bj

|∇u|p dµ
)1/p

≤ Cν(Bj0)1/p−1/qM(x)1/p,
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where

M(x) = sup
B′

1

ν(B′)

∫

B′
|∇u|p dµ

and the supremum is taken over all balls B ′ ⊂ B containing x . Next, as
ν(B)−1

∫
B
|∇u|p dµ ≤M(x) , we can find j0 such that

ν(Bj0) ' 1

M(x)

∫

B

|∇u|p dµ

and inserting this into the above estimates of Σ′ and Σ′′ yields

|u(x)| ≤ Crν(B)1/q

µ(B)1/p
(Σ′ + Σ′′) ≤ Crν(B)1/q

µ(B)1/p

(∫

B

|∇u|p dµ
)1/p−1/q

M(x)1/q.

A standard argument using a Vitali type covering lemma (e.g. Lemma 5.5 in
Heinonen–Koskela [14]) and the doubling property of ν shows that

ν
(
{x ∈ B : M(x) ≥ τ}

)
≤ C

τ

∫

B

|∇u|p dµ,

cf. e.g. Chapter 1 in Stein [19]. Hence

ν
(
{x ∈ B : |u(x)| ≥ t}

)
≤ Crqν(B)

tqµ(B)q/p

(∫

B

|∇u|p dµ
)q/p

.

The rest of the proof is by Maz’ya’s truncation method [16] as in the proof of
Lemma 5.15 in Heinonen–Koskela [14] or Theorem 2.1 in HajÃlasz–Koskela [11]:
We apply the above argument to the truncation of u given by

v(x) = min
{

2j ,max{u(x)− 2j , 0}
}
,

and conclude

2jqν
(
{x ∈ B : u(x) ≥ 2j+1}

)
≤ Crqν(B)

µ(B)q/p

(∫

{x∈B:2j<u(x)<2j+1}
|∇u|p dµ

)q/p
.

Summing up over all integers j then gives
∫

{x∈B:u(x)>0}
|u|q dν ≤

∞∑

j=−∞
2(j+2)qν

(
{x ∈ B : u(x) ≥ 2j+1}

)

≤ Crqν(B)

µ(B)q/p

∞∑

j=−∞

(∫

{x∈B:2j<u(x)<2j+1}
|∇u|p dµ

)q/p

≤ Crqν(B)

(∫

B

|∇u|p dµ
)q/p

.

The integral over {x ∈ B : u(x) < 0} is estimated similarly and the inequality (8)
finishes the proof.
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Proof of Corollary 8. Apply Proposition 5 to v = wσ−(1−1/n) and

p =
n
(
σ(q − 1) + 1

)

q(n− 1) + 1
.

The inequality (5) with s = 1 − 1/n , v1/(1−p)w1−1/n = w1/(1−q) and w ∈ Aq
imply that v ∈ Ap(w1−1/n dx) and the claim follows.

Proof of Corollary 9. By Proposition 5 it suffices to show that w(1−p)/n ∈
Aq(w

1−1/n dx) , where

q =
n(r − 1) + p

n(r − 1) + 1
.

This follows from the inequality (5) with s = 1−1/n and the Hölder inequality.

Proof of Proposition 10. Let w1: R2 → R be the weight from the counterex-
ample to Question 4.1 in Semmes [17] and let

w(x1, x2) = w1(x1, x2) + w1(x1,−x2),

so that w(x1, x2) = w(x1,−x2) . It is easily verified using the definition (1) that
w is also a strong A∞ -weight. Let 1 < p < 2 and dµ = w1−p/2 dx . Define the
functions uε: R2 → R , ε > 0, by

uε(x1, x2) =

{ x2

ε
if |x2| < ε,

sgnx2 otherwise,

and let B be the ball in R2 with center
(

1
2 , 0
)

and radius 1
2 . Then uε,B =∫

B
uε dµ = 0 and

∫

B

|uε − uε,B | dµ =

∫

B

|uε| dµ→ 1, as ε→ 0.

On the other hand, for 0 < ε < 1
2 ,

∫

B

|∇uε| dµ ≤
1

ε

∫ ε

−ε

∫ 1

0

w(x1, x2)1−p/2 dx1 dx2

≤ 2

ε

∫ ε

−ε

∫ 1

0

w1(x1, x2)1−p/2 dx1 dx2.

It is shown in Semmes [17, p. 224], that for 0 < s < 1,

lim
x2→0

∫ 1

0

w1(x1, x2)s/2 dx1 = 0.

Taking s = 2− p now yields that
∫

B

|∇uε| dµ→ 0, as ε→ 0,

i.e. the weight w1−p/2 , 1 < p < 2, does not admit the 1-Poincaré inequality.
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Poincaré inequality? - Ann. Polon. Math. (to appear).
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