
Annales Academiæ Scientiarum Fennicæ
Mathematica
Volumen 27, 2002, 461–484

QUASISYMMETRIC EMBEDDING

OF SELF SIMILAR SURFACES

AND ORIGAMI WITH RATIONAL MAPS

Daniel Meyer

University of Washington, Department of Mathematics

Box 354350, Seattle, WA 98195-4350, U.S.A.; meyer@math.washington.edu

Abstract. We show how self similar surfaces can be quasisymmetrically embedded in the
plane. To do this we construct a rational map which realizes the self similarity. Several examples
of rational maps which realize subdivision rules are presented. We also show how the Xmas tree,
an embedded surface in R3 whose Hausdorff dimension can be arbitrarily close to 3 , can be
embedded quasisymmetrically in the plane.

1. Introduction

It is well known that the snowflake (or von Koch curve) can be mapped to
a circle by a quasiconformal map of the plane. The higher dimensional analogue
is to embed the snowball (see next section for the definition), or other self similar
surfaces quasisymmetrically in the plane. From recent work of Cannon et al.
([CFP, Section 6]) it follows that such an embedding exists, by the use of Cannon’s
combinatorial Riemann mapping theorem [C]. M. Bonk and B. Kleiner in [BK] used
circle packings to give another proof that such an embedding exists. We present an
alternative method, which is much less general than the above methods, but has
the advantages of being elementary and constructive. The main idea is to build
a rational map which realizes the self similarity. This map has the nice property
that every critical value is a repelling fixed point. Standard modulus estimates
then show that this map induces a quasisymmetric embedding.

Notation. Ĉ = C ∪ {∞} is the Riemann sphere, R̂ = R ∪ {∞} ⊂ Ĉ the
extended real line, H+ the upper half plane, H− the lower half plane. For two
nonnegative expressions f , g we write f ³ g if there is a constant C > 1, such
that 1/Cg ≤ f ≤ Cg . By So we denote the interior of a set S .

Acknowledgments. The idea to realize a subdivision rule by a rational map
is due to Rick Kenyon, see also [CFKP]. I also thank my advisor Steffen Rohde
for his patience and many helpful suggestions. He also suggested the Xmas tree
example in Section 6.4.
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2. Definitions

2.1. Quasisymmetry. The classical paper on quasisymmetry is [TV]. We
follow [H], where a detailed treatment can be found. Recall that a map is called
an embedding if it is a homeomorphism onto its image. An embedding f : X →
Y of metric spaces is called quasisymmetric (or η -quasisymmetric) if there is a
homeomorphism η: [0,∞)→ [0,∞) , such that

(2.1) |x− a| ≤ t|x− b| ⇒ |f(x)− f(a)| ≤ η(t)|f(x)− f(b)|

for all x, a, b ∈ X , t ≥ 0. Quasisymmetry may be viewed as a natural generaliza-
tion of quasiconformality: a homeomorphism Rn → Rn is quasisymmetric if and
only if it is quasiconformal. However, a Möbius transformation from the unit disc
to the upper half plane will not be quasisymmetric. This is easy to see, since a
quasisymmetry maps bounded sets to bounded sets.

To check whether a map is quasisymmetric can be quite tedious. Therefore
one often considers a weaker condition. An embedding f : X → Y of metric spaces
is called weakly quasisymmetric (or H -weakly quasisymmetric) if there is a number
H ≥ 0, such that

(2.2) |x− a| ≤ |x− b| ⇒ |f(x)− f(a)| ≤ H|f(x)− f(b)|

for all x, a, b ∈ X . Quasisymmetric maps are “more nicely” behaved than weakly
quasisymmetric ones. Equation (2.1) implies that f is continuous and either
constant or injective. If f is not constant then (2.2) implies that f−1 is η̃ -
quasisymmetric where η̃(t) = 1/η−1(t−1) on f(X) . So if f is not constant (2.1)
implies that f is a homeomorphism onto its image. Moreover if f1: X → Y
is η1 -quasisymmetric and f2: Y → Z is η2 -quasisymmetric f2 ◦ f1 is η2 ◦ η1 -
quasisymmetric.

On the other hand (2.2) does not imply continuity, and weak quasiconformal-
ity is in general not preserved under inverses and compositions. However in many
cases quasisymmetry is implied by weak quasisymmetry, which is much easier to
check. A metric space is called doubling if there is a number N such that every
ball of diameter d can be covered by N sets of diameter at most 1

2d , for all d > 0.

Theorem 2.1 ([H, Theorem 10.19]). A weakly quasisymmetric embedding of
a connected doubling space into a doubling space is quasisymmetric.

2.2. The snowball. The snowball is a topologically 2-dimensional analogue
of the snowflake (or von Koch curve). It is constructed in the following way. Divide
each face of the unit cube in Rn into 9 squares of sidelength 1

3 . Place a cube
of sidelength 1

3 on the middle square of each side, resulting in a body which is
bounded by 6 · 13 squares of sidelength 1

3 . One ‘face’ consisting of 13 squares is
called the generator of the snowball, see Figure 1.
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Figure 1. Generator of S .

Each of the 6·13 squares is then again subdivided into 9 squares of sidelength
1
9 , on the middle square put a cube of sidelength 1

9 , and so on. Let K be the
limiting body. The snowball is the set of prime ends of Ko . Let S be the part
of the snowball that corresponds to one side of the original cube. In each step
the 13n squares get replaced by scaled copies of the generator. Let Sn be the
surface after n steps, S0 being the unit square. The boundary ∂K of K has
self-intersections, see Figure 2. This is the reason why we take prime ends. In S
the two points indicated by the arrows are distinct.

Figure 2. Cut through S2 .

S is naturally divided into 13 pieces which correspond to the 13 squares that
make up S1 . Each of these is naturally mapped to S by stretching, rotating, and
translating. The rational map constructed in the next section will represent this
selfsimilarity.

In the same way as above S consists of 13n copies of itself, scaled by a factor
of 3−n . These are called cylinders of order (or length) n , or n -cylinders. For
such a cylinder X the notation |X| = n is used. For each point x ∈ S there is a
sequence of cylinders such that

(2.3) S = X0 ⊃ X1 ⊃ X2 · · · ,
⋂
n
Xn = {x}, |Xn| = n.

In general this sequence is not unique.
An alternative definition that avoids prime ends may be given as follows. We

have two representations of the generator (and hence of S ): in R3 as in Figure 1,
and in R2 as in Figure 3. We use the representation in R2 to define the topology
on S . The representation in R3 will be used to define the metric on S in the
next section.
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2.3. The internal metric. We equip S with the internal metric:

(2.4) dint(x, y) := inf{length (γ) : γ is a path in S which joins x and y}.

Here we do not allow γ to cross over self-intersecting points, meaning that γ can
exit a cylinder only through its four sides, length refers to the length of γ as a
subset of R3 .

At first glance it may not be clear whether dint(x, y) = ∞ for some points,
since S contains many non-rectifiable curves. We have however:

dint(x, y) ≤ 4, for all x, y ∈ S.

This is seen as follows: any of the four corners of S (=cylinder of order 0) can be
joined to a corner of any cylinder of order 1 by a path in S of length at most 4

3 .
The path always follows the edges of cylinders of first order. Figure 3 shows two
such paths. Such a path is always in S .

Figure 3. Connecting a corner to a cylinder.

For a sequence X0 ⊃ X1 ⊃ X2 · · · ,
⋂
nXn = {x} , |Xn| = n we can iterate

the above procedure, joining a corner of X1 to one of X2 by a path whose length
is at most 1

3 · 4
3 and so on, resulting in a path that joins a corner of S to x of

length at most

4

3

∑

j≥0

(
1

3

)j
= 2.

From this the above assertion follows.

2.4. The combinatorial pseudometric. For x, y ∈ S we define the
combinatorial pseudometric by

δ̃(x, y) := 3−n,
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where n is the smallest number such that there exist cylinders X 3 x , Y 3 y ,
|X| = |Y | = n , such that

X ∩ Y = ∅.
A slight variation of δ̃ will later be denoted by δ . Note that δ̃ is not a metric
since it does not satisfy the triangle inequality, as one can see in Figure 4. Here
we have δ̃(x, y) = 1

3 > δ̃(x, z) + δ̃(z, y) = 1
9 + 1

9 . For our purposes however it is as
good as the internal metric.

yx z

Figure 4.

Lemma 2.2. We have δ̃(x, y) ≤ dint(x, y) ≤ 12 · δ̃(x, y) , for all x, y ∈ S .

Proof. Let δ̃(x, y) = 3−n . The first inequality is easily seen. Let Xn 3 x ,
Yn 3 y , |Xn| = |Yn| = n , Xn ∩ Yn = ∅ . Then each path from x to y must
pass through the ring of cylinders of order n which have nonempty intersection
with Xn . Each such path has length at least 3−n .

For the second inequality let Xn−1 3 x , Yn−1 3 y be cylinders of order n−1.
By definition of δ̃ we know that Xn−1 and Yn−1 intersect at least in a common
corner z . By the argument in the last section

dint(x, y) ≤ dint(x, z) + dint(z, y) ≤ 2 · 3−n+1 + 2 · 3−n+1 = 12δ̃(x, y).

3. Representing the snowball by a rational map

Cut S along the diagonals into 4 pieces. From now on we will only look at
one such piece T . Since this contains a small copy of S it is enough to embed T
quasisymmetrically. Also each cylinder gets split into 4 pieces along its diagonals.
From now on “cylinder” will refer to these small copies of T , and δ will denote
the combinatorial pseudometric with respect to these cylinders. We have

(3.1) δ̃(x, y) ≤ δ(x, y) ≤ 3δ̃(x, y), for all x, y ∈ T
as one easily checks. Again T consists of 13 cylinders of order 1, denoted by Tj ,
1 ≤ j ≤ 13. Since the Tj ’s are scaled copies of T , there are maps

τj : Tj → T.

This gives us the standard identification of cylinders with words. More precisely
for each cylinder X of order n we set

(x0 · · ·xn−1) := X where x0 = j if and only if X ⊂ Tj
and xk = j if and only if τxk−1

◦ τxk−2
◦ . . . τx0(X) ⊂ Tj(3.2)

for 1 ≤ k ≤ n− 1.
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Figure 5. Generator G of T .

Note that (x0 · · ·xn+k) ⊂ (y0 · · · yn) if and only if xj = yj , 0 ≤ j ≤ n .
The generator G of T is just a quarter of the generator of S . We can unfold

G to map it in the plane, see Figure 5, the triangles in Figure 5 correspond to
cylinders of order one. The corners of the generator G are labeled a0 , b0 , and c0 ,
the corners of the other triangles are labeled ak , bl , and cm according to Figure 5.

Now G (or more precisely the simply connected domain from Figure 5) gets
mapped to the upper half plane H+ by a Riemann map, which is normalized
by mapping the corners a0 , b0 , and c0 to 1 =: a′0 , ∞ =: b′0 , and −1 =: c′0
respectively (it is the inverse of a Schwarz–Christoffel map). The images of each
triangle corresponding to Tj will be denoted by Hj , the images of the corners
ak , bl , and cm by a′k , b′l , and c′m . We consider Hj to be “black” or “white”
depending on whether the corresponding triangle in Figure 5 is drawn like that.
By symmetry we have a′k = −c′k , b′1 = −b′4 , and b′2, b

′
3 ∈ iR .

Now the map R is defined in the following way:

– R on white triangles Hj is a Riemann map to the upper half plane H+ ,
normalized by a′k 7→ 1, b′l 7→ ∞ , c′m 7→ −1;

– R on black triangles Hj is a Riemann map to the lower half plane H− with
the same normalization.

Now consider two pieces Hi and Hj which share a side. Hi and Hj are
reflections along this common side, since they are conformal images of real triangles
for which this is true. So by reflection principle R|Hi extends analytically to
Hi ∪ Hj . One immediately checks that this agrees on Hj with the way it was
defined before (being a Riemann map with the right normalization).

Using reflection principle again one can extend R to the whole sphere by
R(z) = R(z̄) . Another way to look at this would be to have a second copy of the
generator, map it to H− , and map each of the image triangles to H+ and H−

with the right normalizations.
From the construction it follows that b′1, b

′
2, b
′
3, b
′
4 , and −b′2,−b′3 are the poles

of R . The critical points are a′1, a
′
2, a
′
3 , and b′1, b

′
2, b
′
3 . We can read off the order
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of the poles and critical points. So R can be written in two forms:

R(z) = λ
(z − 1)(z − a′1)3(z − a′2)4(z − a′3)5

(z2 − b′12)2(z2 − b′22)2(z2 − b′32)2
+ 1(3.3)

= µ
(z + 1)(z − c′1)3(z − c′2)4(z − c′3)5

(z2 − b′12)2(z2 − b′22)2(z2 − b′32)2
− 1,(3.4)

where we took b′1 = −b′4 into account. By equating (3.3) and (3.4), multiplying
by the denominator, and comparing coefficients, one gets a system of equations
for the numbers a′j and b′j (using the relations a′j = −c′j ). A different way to get
these equations is to observe that R is an odd function.

Since the numbers a′j and b′j are images of the points aj and bj , we can
obtain them from a numerical approximation of the function G → H+ . We used
Don Marshall’s program zipper

(http://www.math.washington.edu/˜marshall/zipper.html)
for this. By using a standard Newton method for the system of equations we can
increase the precision arbitrarily. We use the results from zipper as initial values,
since the Newton method fails to converge otherwise.

We find that
a′1 = −69.2485 . . . ,

a′2 = −0.726663 . . . ,

a′3 = 3.33137 . . . ,

b′1 = 1.07729 . . . ,

b′2 = i · 1.04067 . . . ,

b′3 = i · 18.7881 . . . ,

λ = −0.00518147 . . . .

The critical values of R are −1, 1, and ∞ . These are repelling fixed points,
so R is postcritically finite.

4. Embedding the snowball

Remark. All metrical properties such as |x− y| , dist and diam that occur
here refer to the spherical metric, |dz| denotes the length element on the sphere.

The function R induces a subdivision of the sphere into cylinders in a natural
way, the cylinders of order n being the preimages of H

+

and H
−

under Rn . Each
cylinder X ⊂ H

+

of order n can again be identified with the word

(x0 · · ·xn−1) := X, xk = j if Rk(X) ⊂ Hj(4.1)

or Rk(X) ⊂ −Hj = {−z : z ∈ Hj}.(4.2)

Again we have (x0 . . . xn+k) ⊂ (y0 . . . yn) if and only if xj = yj , 0 ≤ j ≤ n . The
n -cylinders in T form a simplicial complex, where faces, edges, and vertices (or
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n -faces, n -edges, and n -vertices) are defined in the obvious way. By the combina-
torics of the cylinders of nth order we mean this simplicial complex together with
the inclusion relations of n -faces, n -edges, and n -vertices in k -faces, k -edges, and
k -vertices, for all k < n . Note that the combinatorics for any n are completely
determined by the combinatorics of the cylinders of first order.

Since cylinders of first order in H
+

are a homeomorphic image of cylinders
of first order in T , their combinatorics are the same. Hence the combinatorics of
any order for cylinders in T and in H

+

are the same.
Using (4.1) and (3.2) one gets a map

(4.3) cylinders in T → cylinders in H
+

.

Lemma 4.1. The map (4.3) induces a surjective map

f : T → H
+

.

Proof. Since R is postcritically finite it is subhyperbolic (see [Mil, p. 194] and
[CG, p. 91]), which means there is a metric dσ(x, y) = inf

∫
γ
σ(z) |dz| , the infimum

is taken over all curves γ which connect x and y with the following properties:

– dσ is expanding with respect to R , meaning there is an A > 1, such that

(4.4) σ
(
R(z)

)
|dR(z)| ≥ Aσ(z) |dz|,

for all z ∈ Ĉ;
– dσ is Hölder comparable to |x−y| , more precisely there are constants C > 1,
α ∈ (0, 1), such that

(4.5)
1

C
|x− y| ≤ dσ(x, y) ≤ C|x− y|α,

for all x, y ∈ Ĉ.

Now for each x ∈ T there is a sequence (Xn)n∈N , |Xn| = n of cylinders in
T such that

X0 ⊃ X1 ⊃ · · · , and
⋂
Xn = {x},

which gives us a mapped sequence (X ′n)n∈N with |X ′n| = n , of cylinders in H
+

with
X ′0 ⊃ X ′1 ⊃ · · · .

By (4.4) and (4.5) we have diamX ′n → 0, for n → ∞ . Since the X ′n are also
compact we get

⋂
X ′n = {x′} , so we define

f(x) = x′.
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We have to show that f is well-defined. Let (Yn)n∈N be a second sequence
of cylinders in T , such that |Yn| = n and

Y0 ⊃ Y1 ⊃ · · · , and
⋂
Yn = {x}.

Let n0 be the smallest number, such that Xn0 6= Yn0 . From this it follows that
Xn 6= Yn , for all n ≥ n0 . Since the interiors of distinct cylinders of the same order
are disjoint, we get Xn ∩ Yn = ∂Xn ∩ ∂Yn and ∂Xn ∩ ∂Yn ⊃ ∂Xn+1 ∩ ∂Yn+1 , for
all n ≥ n0 . So

∂Xn0 ∩ ∂Yn0 ⊃ ∂Xn0+1 ∩ ∂Yn0+1 ⊃ · · · .

Since the combinatorics of the cylinders in H
+

are the same, we get

∂X ′n0
∩ ∂Y ′n0

⊃ ∂X ′n0+1 ∩ ∂Y ′n0+1 ⊃ · · · ,

where each ∂X ′n0+j ∩ ∂Y ′n0+j 6= ∅ and compact. Thus
⋂

(X ′n ∩ Y ′n) 6= ∅ . So⋂
X ′n =

⋂
Y ′n = {x′} , and f is well defined.

On the other hand we can find for each x′ ∈ H
+

a sequence of cylinders
(X ′n)n∈N in H

+

as above. From this we get a sequence of cylinders (Xn)n∈N in
T , which gives an x such that f(x) = x′ . This shows that f is surjective.

We now come to our main result.

Theorem 4.2. The map
f : T → H

+

is a quasisymmetric embedding.

Before proving the theorem let us record some facts.
Each n -cylinder X in Ĉ gets mapped to H

+

or H
−

by Rn . We say that X
is of type H

+

in the first case, of type H
−

in the second.
The preimages of the critical values −1, 1, and ∞ under Rn are called

corners (or n -corners). We say an n -corner c is of type Rn(c) (= −1, 1, or ∞).
The preimages of (−∞,−1), (−1, 1), and (1,∞) under Rn are called sides

or n -sides. An n -side s is of type Rn(s) (= (−∞,−1), (−1, 1), or (1,∞)).
R maps n -(cylinders, sides, corners) to n−1-(cylinders, sides, corners). Since

the critical values are repelling fixed points we have

(4.6) degRn(z) ≤ max
w∈Ĉ

degR(w) = 5,

for any z ∈ Ĉ and n ≥ 0. At each n -corner c , 2 degRn(c) n -cylinders and n -sides
intersect.

Two cylinders of the same order are called neighbors if they share a side.
Neighbors always get mapped to different half planes (i.e. are of different type).
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For two neighbors X,Y of order n with shared side s the map

(4.7) Rn: Xo ∪ Y o ∪ s→ H+ ∪H− ∪Rn(s)

is conformal. So neighbors are conformal reflections of each other along shared
sides. For each n , the cylinders of order n form a tiling of the sphere. One can
construct the tiling from one cylinder, since the other cylinders of given order can
be constructed by repeated reflection.

A union of cylinders X =
⋃
j∈J Xj of order n may be viewed as a two-

dimensional simplicial complex Σ(X) , where n -cylinders, n -sides, and n -corners
are the faces, edges, and vertices. The combinatorial type of X is Σ(X) together
with the type of each n -cylinder, n -side, and n -corner in X . Note that here
we do not require any information about cylinders of order k 6= n that may be
contained in X . Two unions of cylinders

(4.8)

X =
⋃
j∈J

Xj , |Xj | = n and

Y =
⋃
i∈I

Yi, |Yi| = m

are called combinatorially equivalent if they are of the same combinatorial type.
More precisely if there is a (simplicial complex) isomorphism

(4.9) Φ: Σ(X)→ Σ(Y),

such that for each n -cylinder X , n -side s , and n -corner c in X the types of X
and Φ(X) , s and Φ(s) , c and Φ(c) are all the same. Combinatorial equivalence
implies conformal equivalence.

Lemma 4.3. Let X and Y as in (4.8) be combinatorially equivalent. Then
there is a conformal map

g: Xo → Yo.

Furthermore n + k -(cylinders, sides, corners) in Xo are mapped to m + k -
(cylinders, sides, corners) in Yo by g (for any k ≥ 0).

Proof. Let Φ be as in (4.9). Pick an n -cylinder X1 ⊂ X . Let X2 ⊂ X be
a neighbor of X1 with common side s1 . Let Y1 := Φ(X1) , Y2 := Φ(X2) , and
t1 := Φ(s1) . By equation (4.7) the functions

Rn: Xo
1 ∪Xo

2 ∪ s1 → H+ ∪H− ∪ type of s1,

Rm: Y o1 ∪ Y o2 ∪ t1 → H+ ∪H− ∪ type of t1

are conformal. The first function maps n + k -(cylinders, sides, corners) to k -
(cylinders, sides, corners), the second function maps m+ k -(cylinders, sides, cor-
ners) to k -(cylinders, sides, corners). Since s1 and t1 are of the same type this
gives us a function

g: Xo
1 ∪Xo

2 ∪ s1 → Y o1 ∪ Y o2 ∪ t1
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which is conformal and maps (cylinders, sides, and corners) in the desired fashion.
We can now proceed to further neighbors to extend g to the whole component of
X which contains Xo

1 (corners lying inside are of course removable singularities).
On the other components g is constructed in the same way.

The proof of Theorem 4.2 follows essentially from the next two lemmas.

Lemma 4.4. There is a constant C > 0 , such that for all n -cylinders X
and Y for which X ∩ Y = ∅ , we have

C dist(X,Y ) ≥ diamX.

Proof. Let X and Y be as above. Let

(4.10) X :=
⋃

|X′|=|X|, X′∩X 6=∅
X ′.

Each cylinder X ′ in the above union shares at least a corner c with X . Since at c ,
2 degR|X|(c) cylinders intersect, there are by (4.6) only finitely many cylinders in
the union (4.10). For each cylinder X ′ , there are only finitely many possibilities
for the types of its sides and corners. So there are only finitely many different
combinatorial types of unions X as above. For the modulus of the annulus A :=
Xo \X we therefore have

(4.11) M(A) ≥ const > 0,

since the modulus for each combinatorial type is the same by Lemma 4.3.

Remark. It might happen that A is not an annulus (that Ĉ \ A has more
than two components). Still A contains an annulus A′ that separates X from Y
with a modulus bounded below.

Let comp(Y ) be the component of Ĉ\ A that contains Y . It is well known
that the modulus behaves as

M(A) ∼ dist
(
X, comp(Y )

)

min
{

diam(X),diam
(
comp(Y )

)}

(meaning that both sides simultaneously go to 0 and ∞). If the order n is
sufficiently large we have diam(X) ≤ diam

(
comp(Y )

)
.

This finishes the proof, since A separates X and Y .

Lemma 4.5. Let X , Y be n -cylinders such that X ∩ Y 6= ∅ . Then

diamX ³ diamY.

Proof. Let X and Y be as above. Then X and Y must intersect at least in
a corner. By (4.6) it is enough to assume that X and Y are neighbors. Consider

Z :=
⋃

Z∩(X∪Y )6=∅, |Z|=n
Z.

There are only finitely many different combinatorial types of such Z . The set
X ∪ Y is compactly contained in Zo . The statement now follows from Koebe
distortion theorem and Lemma 4.3.
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Proof of Theorem 4.2. One can easily check that T is doubling. To do this
first check that T is doubling in the combinatorial pseudometric δ . Any cylinder
of δ -diameter 3−n can be covered by 13 cylinders of δ -diameter 3−n−1 . Any ball
of δ -diameter 3−n is a union of at most 10 cylinders of δ -diameter 3−n . It follows
from Lemma 2.2 and (3.1) that T is doubling.

Figure 6. Embedding of cylinders of second order.

Since T is also connected it is enough to show that f is weakly quasisym-
metric, by Theorem 2.1. To avoid switching back and forth between points in T
and H

+

we regard δ as a function on Ĉ× Ĉ:

δ(x, y) := 3−n,

where n is the smallest number such that there are disjoint n -cylinders X 3 x ,
Y 3 y in Ĉ. We need to show that there is a C > 0 such that

δ(x, y) ≤ δ(x, z) ⇒ |x− y| ≤ C|x− z|,

for all x, y ∈ Ĉ. All cylinders and points are now considered to be living in Ĉ.
Suppose δ(x, y) ≤ δ(x, z) , δ(x, y) = 3−n , so for Xn−1 3 x , Yn−1 3 y ,

|Xn−1| = |Yn−1| = n− 1, we have Xn−1 ∩ Yn−1 6= ∅ . By Lemma 4.5

|x− y| ≤ diamXn−1 + diamYn−1 ≤ C diamXn−1 ≤ C ′ diamXn,

for any Xn 3 x , |Xn| = n , since Xn−1 contains only finitely many cylinders of
order n which have comparable diameter by Lemma 4.5.

Since δ(x, z) ≥ 3−n , there are disjoint n -cylinders Xn 3 x , Zn 3 z . So by
Lemma 4.4

|x− y| ≤ C ′ diamXn ≤ C ′′ dist(Xn, Zn) ≤ C ′′|x− z|,
which proves the theorem.
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Figures 6 and 7 show the embedding. They show the part of H+ that corre-
sponds to the square (a2, c2, a3, c3) in Figure 5.

Figure 7. Embedding of cylinders of third order.

5. General form of the theorem

Let R be a rational map satisfying the following conditions:

– R(z) = R(z̄) ;
– for the postcritical set PR := {Rn(c) : c critical point of R, n ≥ 1} we re-

quire: PR is finite, PR ⊂ R̂, and every periodic cycle in PR is repelling.

The second condition implies that R is subhyperbolic. Such a map divides
the sphere in a natural way into cylinders of order n : the preimages of H

+

and
H
−

under Rn . As before these induce a combinatorial pseudometric:

δ(x, y) := %n,

where % ∈ (0, 1), and n is the smallest number such that Xn ∩ Yn = ∅ , for all
cylinders Xn 3 x , Yn 3 y of order n . We have

Theorem 5.1. Let R and δ be as above, then

id: (Ĉ, δ)→ (Ĉ, spherical metric)

is quasisymmetric.

The proof is the same as the proof of Theorem 4.2 and will not be repeated.
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Figure 8. R1 .

6. Origami with rational maps

In this section we give further examples of rational maps which represent a
subdivision rule. In the case that such a subdivision rule describes a surface whose
metric is quasisymmetrically comparable to the combinatorial pseudometric, The-
orem 5.1 gives a quasisymmetric embedding. The construction is always the same
as in Section 3: a generator consisting of triangles (in one case squares) symmetric

on common sides is mapped to H
+

by a Riemann map, which is normalized by
requiring that corners labeled by “a 7→ b” get mapped to a . The rational func-
tion is defined by mapping each of the “white” image triangles (or squares) to H

+

and each of the “black” ones to H
−

by a Riemann map, which is normalized by
requiring that corners labeled by “ 7→ b” get mapped to b . As before the reflection
principle ensures that the map is holomorphic in H

+

, and by R(z) = R(z̄) we
define R on the whole sphere, so R is a rational map.

The generator together with the data on how corners are to be mapped defines
the map and so may be viewed as an alternative description of the map. In fact
important properties such as critical points and poles, and their order can be
immediately read off. Similarly to (3.3) and (3.4), we can express the rational maps
in terms of the critical points and poles. Again one gets a system of equations for
the critical points and poles. In the easier cases this can be solved by elementary
means. In the more difficult cases we used Don Marshall’s zipper as well as the
Schwarz–Christoffel toolbox

(http://www.math.udel.edu/˜driscoll/SC/)
by Tobin Driscoll and Nick Trefethen to get numerical values for the critical points.
With a Newton method the precision can be increased arbitrarily. Often the
coefficients of the rational maps turn out to be rational numbers. From this one
often can guess the precise values of the critical points. One can confirm these
guesses by showing that they satisfy the system of equations exactly; we used
Mathematica for this.

Another nice way to visualize these maps is to actually cut the generator out
of paper. The generators should be viewed as a sphere, the two sides representing
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Figure 9. R2 .

H+ and H− . One can then fold the generator such that white triangles land
on the front, black ones on the back, resulting in a small triangle. This is again
viewed as the sphere, the white side being interpreted as H+ , the black side as
H− , thereby illustrating the covering behavior of the rational map.

Hopefully this explains our use of the word “origami”.

6.1. Euclidean subdivisions. The first four examples have the property
that their generator is similar to its pieces. Thus, when one cuts the generator
out of paper and folds as suggested above, the resulting piece can be folded again.
This represents the second iterate, another folding the third iterate, and so on.

The functions given by Figures 8, 9, 10, and 11 are

R1 = 1− 2

z2
,

R2 = 1− 2
(z − 1)(z + 3)3

(z + 1)(z − 3)3
,

R3 = 1 + 8
z(z2 − 1)

(z2 − 2z − 1)2
,

R4 = 1− (3z + 1)3

(9z − 1)2
.

The function R3 is the only example considered here where the generator
consists of squares, however the Riemann maps from which R3 is constructed are
well-defined. Indeed, let Q be a square with vertices v1, v2, v3, v4 and f : Q→ H+

be a Riemann map normalized by f(v1) = −1, f(v2) = 0 and f(v3) = 1. Then
we have by symmetry f(v4) =∞ .

To further illustrate these examples we need the notion of orbifolds, see [McM]
and [Mil] for definitions and properties. The signature or ramification index of the
orbifold of R1 is (2, 4, 4), of R2 is (3, 3, 3), of R3 is (2, 2, 2, 2), and of R4 is
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Figure 10. R3 .
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Figure 11. R4 .

(2, 3, 6). All these orbifolds are euclidean, meaning that their universal orbifold
covering maps have domain C . In fact the above signatures are the only ones
that can occur for euclidean orbifolds over Ĉ, see [McM]. The mapping behavior
of the universal orbifold covering maps fj is indicated in Figure 12 (again white
triangles map to H+ , and black ones to H− ), they are elliptic functions. We have

f1

(√
2 e3πi/4z

)
= R1

(
f1(z)

)
,

f2(2z) = R2

(
f2(z)

)
,

f3(2iz) = R3

(
f3(z)

)
,

f4

(√
3 eπi/6z

)
= R4

(
f4(z)

)
.

So R1 , R2 , R3 , and R4 are all Lattès type functions.
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Figure 12. Universal orbifold coverings for R1 , R2 , R3 , and R4 .

6.2. The barycentric subdivision rule. Figure 13 shows the barycentric
subdivision rule which is generated by

R5 = 1− 54(z2 − 1)2

(z2 + 3)3
.

This map was already found in [CFKP]. It is an example where Cannon’s combi-
natorial Riemann mapping theorem cannot be used. Of course our Theorem 5.1
does not work as well, since all critical values are again critical points and hence
all cycles in PR are superattracting. In fact one can show that the diameter of
the cylinders generated by this function fail to go to zero with their order.

������
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Figure 13. R5 .

6.3. Variants of the snowball. The next three examples embed variants
of the snowball.

We start with an equilateral triangle which is divided into 4 equilateral tri-
angles as in Figure 9. On the middle triangle put a tetrahedron, which produces
the generator of a self similar surface consisting of 6 equilateral triangles. Cut
the surface into 6 pieces along the symmetry axes. We restrict our attention to
one such piece T6 (see Figure 14). Simultaneously cut each triangle into 6 as in
the barycentric subdivision in Figure 13. T6 consists of 6 scaled (and possibly
reflected) copies of itself. The generator of T6 consists of 6 triangles. One can
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Figure 14. Generator of the tetrahedron-snowball.
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Figure 15. R6 .

construct T6 by replacing in each step each of these triangles by a scaled (and
possibly reflected) copy of the generator. The generator of T6 can be folded flat
in the plane (see Figure 15). The corresponding function is given by

R6 = 2

(
3

4

)3
z2 − 1

z2
(
z2 − 9

8

)2 + 1.

Figure 16. Embedding of cylinders of first and second order by R6 .
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Figure 16 shows how R6 embeds cylinders of first and second order.
Another selfsimilar surface is obtained when one puts an octahedron instead

of a tetrahedron on the middle triangle. The rest of the construction is analogous
to the last. Again the surface is cut into 6 pieces. Figure 17 shows the generator
and how the corresponding rational map is constructed. Again the construction
embeds the surface quasisymmetrically. The thick lines are lines along which the
generator was folded when it was mapped into the plane. We have

R7 =
z(z − 1)5(z + 80)4

1000
(
z3 − 213

8 z2 − 132z − 32
5

)3 .

A third example of this type is obtained by putting an icosahedron on the
middle triangle. Again the generator and every face is subdivided into 6 pieces. As
before the generator can be folded into the plane. See Figure 18 for the generator
and the corresponding construction of the rational map. The thick lines are the
ones along which the generator has been folded. We obtain

R8 =
λz(z − 1)6(z3 + a2z

2 + a1z + a0)5

(z7 + b6z6 + b5z5 + b4z4 + b3z3 + b2z2 + b1z + b0)3
,

where

λ =
2

52 · 112
,

a2 =
3 · 17 · 1439

24 · 5 ,

a1 = −3 · 54 · 11 · 17

23
,

a0 = −59 · 11

24
,

b6 = −378223

27 · 5 ,

b5 = −3 · 863 · 24907

26 · 52
,

b4 = −601 · 1381 · 689761

27 · 54
,

b3 =
5 · 19 · 103 · 113 · 1399

25
,

b2 = −3 · 56 · 19 · 53 · 3001

27
,

b1 = −511 · 3907

26
,

b0 = − 516

27 · 11
.
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Figure 17. R7 .
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Figure 18. R8 .

While there is extremely strong numerical evidence that these are indeed the
precise values, it turns out to be too difficult to rigorously check that. So the
above values are to be understood as the conjectured precise values.

As for the snowball, it is easy to check that for the three previous exam-
ples the internal metric is comparable to the combinatorial pseudometric. Since
all the conditions for Theorem 5.1 are satisfied this produces a quasisymmetric
embedding.

6.4. The Xmas tree. The three preceding examples have the disadvantage
that as surfaces in R3 they have self-intersections. The next class of examples are
surfaces embedded in R3 (without self-intersections) whose Hausdorff dimension
can be arbitrarily close to 3. The construction is similar to the snowball, again
we have a generator built from small squares. In each iterative step each square
gets replaced by a scaled copy of the generator.

The generator of the n-Xmas tree is given the following way. Start with a
unit square. Divide the square into (4n+5)2 squares of sidelength s = 1/(4n+ 5).
On the middle square put a cube of sidelength s (an s -cube). On this put a layer

of
(
4(n− 1) + 3

)2
s -cubes, arranged in a square of sidelength s

(
4(n− 1) + 3

)
.

On top of this layer put an s -cube in the middle. On this put another layer
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Figure 19. Generator of the 4-Xmas tree from the side and the top.

of
(
4(n − 2) + 3

)2
s -cubes, arranged in a square of sidelength s

(
4(n − 2) + 3

)
,

and so on. Figure 19 shows the generator of the 4-Xmas tree from the side and
from above.

A short calculation shows that the generator of the n -Xmas tree is made from
#(squares ) = 1

3 (32n3 + 96n2 + 136n+ 12) squares of sidelength s = 1/(4n+ 5)
(the exact number is not important, only that #(squares ) = O(n3)). We have
the following facts.

– The generator can be placed inside a rectangular pyramid which is indicated
in Figure 19. This ensures that the resulting surface is embedded in R3

without self-intersections.
– This also implies that the Xmas tree satisfies the open set condition, so the

Hausdorff dimension is (see [F, p. 118, Theorem 9.3])

log #(squares )

log(4n+ 5)
→ 3, as n→∞.

To embed the Xmas tree quasisymmetrically on the plane (or rather on the
sphere), use the same procedure as before: cut the generator into 4 pieces along
the diagonals. Again consider only one such piece G . Simultaneously each square
gets divided into 4 triangles. As before G can be folded in the plane, see Figure 20.
From this we construct the rational map RX that mirrors the selfsimilarity. It is
not hard to check that on the Xmas tree the induced metric from R3 is comparable
to the internal metric, which is comparable to the combinatorial pseudometric.
Theorem 5.1 again shows that RX embeds our surface quasisymmetrically.

6.5. The n-gon subdivision rule. In [BS] the pentagonal subdivision rule
is studied. It consists of replacing each pentagon in each step by 6 pentagons as
in Figure 21. In [CFKP] it was shown that this subdivision can be represented by
the rational map

(6.1) R5−gon =
2z
(
z + 9

16

)5

27
(
z − 3

128

)3
(z − 1)2

.



482 Daniel Meyer

Figure 20. G for the 2-Xmas tree folded in the plane.

Figure 21. The pentagonal subdivision rule.

To do this, Figure 21 is cut along the diagonals into 10 pieces. Only one such
piece is considered as a generator. Simultaneously the 6 pentagons are cut into 10
pieces as well.

The map in (6.1) may be explicitly constructed using the method of this
section. The generator can be realized by triangles symmetric on common edges,
as in Figure 22, which constructs the map. R5−gon equips the subdivision with
a conformal structure (see [C] and [CFP] for this). This may be seen by using
Theorem 5.1.

An analogous construction can actually be done for any n -gon, where n ≥ 5
and odd. See Figure 23 for the 7-gon. The rational map in this case is

R7−gon = λ
(z − 1)z2(z − b1)2(z − b2)3

(z − c)7
+ 1,

where λ = −0.00461795 . . . , b1 = −27.9055 . . . , b2 = 0.856734 . . . , c = 1.60219 . . . .
Again by Theorem 5.1 this map equips the subdivision with a conformal structure.
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Figure 22. Construction of R5−gon .
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Figure 23. Construction of R7−gon .

For n even and n ≥ 4 an analogous subdivision can be defined as well (see
Figure 24). The corresponding rational map is

R4−gon = 1− (z − 1)2(z + 9)3

25
(
z2 + 27

5

)2 .

However, for n even the maps Rn−gon have critical values that are themselves
critical points.
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