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Abstract. We prove a distortion theorem for bounded univalent functions. Our result
includes and refines distortion theorems due to Koebe, Pick, Blatter, Kim and Minda, Ma and
Minda, and Jenkins.

1. Introduction

Recently, using the general coefficient theorem, Jenkins [6] proved the sharp
estimate

(1.1) |f(z1)− f(z2)| ≥ sinh 2%

2(2 cosh 2p%)1/p

(
|D1f(z1)|p + |D1f(z2)|p

)1/p

for any function f analytic and univalent in the unit disk D := {z ∈ C | |z| < 1}
and any p ≥ 1, where % denotes the hyperbolic distance dD(z1, z2) between z1

and z2 obtained from the line element |dz|/(1−|z|2) , and D1f(z) = (1−|z|2)f ′(z)
is the “hyperbolic” derivative of f . Jenkins also showed that inequality (1.1) is
not true for 0 < p < 1.

The case p = 2 was established earlier by Blatter [2] using a mixture of coef-
ficient inequalities for normalized univalent functions and a comparison theorem
for solutions of certain linear differential inequalities. Blatter’s method was later
extended by Kim and Minda [7]. They showed that inequality (1.1) holds for all
p ≥ 3

2 for any univalent function and is not only necessary but also sufficient
for univalence (for nonconstant analytic functions). They also observed that the
choice p = ∞ in (1.1) is just an invariant version of the classical Koebe distor-
tion theorem and that the right-hand side of (1.1) is a decreasing function of p
on [1,∞) . Thus, the case p = 1, proved by Jenkins by means of his general co-
efficient theorem, is the sharpest result in the one-parameter family of distortion
theorems (1.1). The best possible p that can be obtained by Blatter’s method is

1

2

2e3 + 1

e3 − 1

.
= 1.07859, cf. [4].
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Ma and Minda [8] applied Blatter’s method to bounded univalent functions
f : D→ D and established sharp distortion theorems similar to (1.1), i.e., bounds
on the hyperbolic distance dD

(
f(z1), f(z2)

)
in terms of dD(z1, z2) and the value

of the hyperbolic derivative Df of f ,

Df(z) =
1− |z|2

1− |f(z)|2 f
′(z),

at z1 and z2 .

In this paper we prove an extension of the Ma–Minda distortion theorem by
a modification of a method due to Robinson [10]. We prefer to state our result in
the following form in order to point out the analogy with (1.1).

Theorem 1. If f : D → D is univalent, and z1 , z2 are two distinct points
in D , then we have, for p ≥ 1 ,
(1.2)(( |Df(z1)|

1− |Df(z1)|

)p
+

( |Df(z2)|
1− |Df(z2)|

)p)1/p

≤
(
2 cosh(2p%)

)1/p sinh(2%′)

sinh
(
2(%− %′)

) ,

where % is the hyperbolic distance between z1 and z2 and %′ is the hyperbolic
distance between f(z1) and f(z2) . Equality occurs if f maps D onto D slit
along a hyperbolic ray on the hyperbolic geodesic determined by f(z1) and f(z2) .
The inequality (1.2) is not true for 0 < p < 1 .

For p ≥ 3
2 , Theorem 1 was proved by Ma and Minda [8]. The classical

distortion theorem for bounded univalent functions due to Pick [9] is obtained for
p = ∞ . This is the weakest case of Theorem 1. As in the case of unbounded
univalent functions, Blatter’s method seems not to be capable to prove Theorem 1
for p = 1.

A simple rescaling argument shows that all distortion theorems for unbounded
univalent functions mentioned above are limiting cases of Theorem 1, which there-
fore includes and refines the distortion theorems of Koebe, Pick, Blatter, Kim and
Minda, Ma and Minda, and Jenkins. Our proof of Theorem 1 is methodologi-
cally remarkably simple. We shall only employ Löwner’s theory combined with
an elementary variational argument. In particular, a new proof of (a refinement
of) Jenkins’ distortion theorem is obtained without making use of the general
coefficient theorem.

An inequality in the opposite sense is easier to establish. We shall prove the
following result which provides a counterpart to Theorem 2 in [6] for bounded
univalent functions and includes it as a limiting case. Ma and Minda (cf. Theo-
rem 2(ii) in [8]) also found an estimate for dD

(
f(z1), f(z2)

)
from above in terms

of |Df(z1)| , |Df(z2)| and dD(z1, z2) which, however, is of a different nature.
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Theorem 2. If f : D → D is univalent, and z1 , z2 are two distinct points
in D , then we have, for p > 0 ,

(1.3)

(( |Df(z1)|
1− |Df(z1)|

)p
+

( |Df(z2)|
1− |Df(z2)|

)p)1/p

≥ 21/p sinh(2%′)
sinh(2%)− sinh(2%′)

,

where % is the hyperbolic distance between z1 and z2 and %′ is the hyperbolic
distance between f(z1) and f(z2) . Equality occurs if f maps D onto D slit along
two hyperbolic rays on the hyperbolic geodesic determined by f(z1) and f(z2)
such that f(z1) and f(z2) have the same hyperbolic distance to the boundary
of f(D) .

Acknowledgements. I thank Fred Gehring, Richard Greiner, Stephan Rusche-
weyh and the referee for helpful comments and suggestions.

2. Representation and variational lemmas

It suffices to consider appropriately normalized univalent functions f : D→ D
since if (1.2) or (1.3) is proved for some f , then it follows for S◦f ◦T , where S and
T are conformal automorphisms of D . We shall use the standard normalization
and denote by S0 the set of univalent functions f : D→ D with f(0) = 0.

We consider, for fixed 0 < v < r < 1, the set

D(v, r) :=
{(
|Df(0)|, |Df(z0)|

) ∣∣ f ∈ S0, |z0| = r, |f(z0)| = v
}
.

In order to prove (1.2) and (1.3) we have to find the maximum and the minimum
of the function

F (a, e) =

(
a

1− a

)p
+

(
e

1− e

)p

for (a, e) ∈ D(v, r) .

The following lemma shows that D(v, r) admits a very simple description. It
is the key to the proof of Theorem 1 and is maybe interesting in its own.

Lemma 1. For any 0 < v < r < 1

(2.1) D(v, r) =

{(
exp

[
−
∫ r

v

u(x)

x
dx

]
, exp

[
−
∫ r

v

dx

xu(x)

]) ∣∣∣ u ∈ U (v, r)

}
,

where

U (v, r) =

{
u : [v, r]→ R measurable

∣∣∣ 1− x
1 + x

≤ u(x) ≤ 1 + x

1− x for a.e. x ∈ [v, r]

}
.

Moreover, D(v, r) is convex in logarithmic coordinates, that is, the set
{(log x, log y) | (x, y) ∈ D(v, r)} is convex.
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Remark. The lemma is a consequence of the Löwner theory which gives
a parametric representation of S0 in conjunction with a version of Liapunov’s
convexity theorem on vector measures due to Aumann [1]. Parts of the following
argument can be found in Robinson’s paper [10].

Proof. (i) We denote the set on the right-hand side of (2.1) by E (v, r) . Note
that both sets, D(v, r) and E (v, r) , are compact. This is obvious for D(v, r) . To
prove the compactness of E (v, r) , we first observe that

(2.2)

{(∫ r

v

u(x)

x
dx,

∫ r

v

dx

xu(x)

) ∣∣∣ u ∈ U (v, r)

}

=

{∫ r

v

α(x) dx
∣∣∣ α: [v, r]→ R2 measurable, α(x) ∈ A(x), x ∈ [v, r]

}
,

where

A(x) =

{(
u

x
,

1

xu

) ∣∣∣ 1− x
1 + x

≤ u ≤ 1 + x

1− x

}
, v ≤ x ≤ r.

The sets A(x) are nonempty compact subsets of R2 and the set-valued function
x 7→ A(x) is continuous in the Hausdorff topology of compact subsets of R2 . Thus
a version of Liapunov’s convexity theorem due to Aumann [1] (cf. also [5, p. 29])
applies and shows that the set in (2.2) is convex and compact. Hence E (v, r) is
compact and convex in logarithmic coordinates, i.e., E (v, r) is compact (but not
necessarily convex, cf. Figure 1).

(ii) We are now going to prove D(v, r) ⊆ E (v, r) . Since both sets are compact
it suffices to show that the dense subset of D(v, r) which corresponds to one-slit
mappings in S0 is contained in E (v, r) .

Let f(z) = az + · · · : D → D be such a univalent function, i.e., D \ f(D) is
a Jordan arc. Then f(z) = aw(z, T )/|a| , T = − log |f ′(0)| , where w(z, t) is the
solution of the Löwner differential equation

(2.3)

d

dt
w(z, t) = −w(z, t)

1 + κ(t)w(z, t)

1− κ(t)w(z, t)
, t ∈ [0, T ],

w(z, 0) = z,

for some measurable function κ(t): [0, T ]→ ∂D . See, for instance, [3].
Fix z0 ∈ D , let x(t) = |w(z0, t)| and r = |z0| . We deduce from (2.3)

(2.4)

d

dt
x(t) = − x(t)

u
(
x(t)

) ,

x(0) = r,

with

u
(
x(t)

)
=

1

Re

(
1 + κ(t)w(z0, t)

1− κ(t)w(z0, t)

) =
|1− κ(t)w(z0, t)|2

1− |w(z0, t)|2
.
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Taking into account that t 7→ x(t) is monotonically decreasing from x(0) = r to
x(T ) = v = |f(z0)| , the latter identity defines a function u: [v, r] → R which
satisfies

1− x
1 + x

≤ u(x) ≤ 1 + x

1− x.

Thus u ∈ U (v, r) for v = |f(z0)| , and

|Df(0)| = |f ′(0)| = e−T = exp

(
−
∫ T

0

dt

)
= exp

(
−
∫ r

v

u(x)

x
dx

)

by (2.4). A straightforward calculation using the Löwner ODE (2.3) and (2.4)
shows

d

dt
log

( |w′(z0, t)|
1− |w(z0, t)|2

)
=

x′(t)

x(t)u
(
x(t)

) ,

that is,

|Df(z0)| = (1− |z0|2)
|w′(z0, T )|

1− |w(z0, T )|2 = exp

(∫ T

0

d

dt
log

( |w′(z0, t)|
1− |w(z0, t)|2

)
dt

)

= exp

(∫ T

0

x′(t)

x(t)u
(
x(t)

) dt
)

= exp

(
−
∫ r

v

dx

xu(x)

)
.

This proves D(v, r) ⊆ E (v, r) .

(iii) In order to prove the converse inclusion, we fix u ∈ U (v, r) and define
measurable functions ζ: [v, r]→ [−1, 1] and ϕ: [v, r]→ ∂D by

ζ(x) =
(1 + x2)− (1− x2)u(x)

2x
, ϕ(x) = ζ(x) + i

√
1− ζ(x)2 ,

so that

u(x) =
|1− ϕ(x)x|2

1− x2
.

Let x(t) be the uniquely determined absolutely continuous solution of the sepa-
rable ODE (2.4) corresponding to our choice of u , i.e., x(t) = R−1(t) , where

R(x) = −
∫ x

r

u(η)

η
dη, x ∈ [v, r].

Note that x(t) is absolutely continuous because c ≤ R′(x) ≤ 1/c for a.e. x ∈ [v, r]
for some constant c < 0. Moreover, x(t) is monotonically decreasing, satisfies
x(t) ≤ r + t/c and exists as long as x(t) ≥ v , i.e., x(T ) = v for some T > 0.
Finally, let

%(t) = −
∫ t

0

2 Im
(
ϕ
(
x(t)

))
x(t)

|1− ϕ
(
x(t)

)
x(t)|2 dt.
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A calculation shows x(t)ei%(t) = w(r, t) , where w(z, t) is the solution of the Löwner
ODE (2.3) for κ(t) = ϕ(x(t))e−i%(t) . Therefore, w( · , t) ∈ S0 for every t ∈ [0, T ]
and |w(r, t)| = x(t) . Moreover,

d

dt
log

( |w′(r, t)|
1− |w(r, t)|2

)
=

x′(t)

x(t)u
(
x(t)

) .

Thus

exp

[
−
∫ r

v

u(x)

x
dx

]
= exp

[
−
∫ T

0

dt

]
= e−T = |w′(0, T )| = |Dw(0, T )|,

exp

[
−
∫ r

v

dx

xu(x)

]
= (1− r2)

|w′(r, T )|
1− |w(r, T )|2 = |Dw(r, T )|,

and we have proved E (v, r) ⊆ D(v, r) .

We now combine the representation Lemma 1 with an elementary variational
argument which is in fact a particularly simple case of Pontryagin’s maximum
principle in optimal control theory. It essentially reduces extremal problems over
D(v, r) to a family of extremal problems over the intervals

U(x) =

[
1− x
1 + x

,
1 + x

1− x

]
, x ∈ [v, r].

Lemma 2. Let a: U (v, r)→ R and e: U (v, r)→ R be defined by

(2.5)

a(u) := exp

[
−
∫ r

v

u(x)

x
dx

]
,

e(u) := exp

[
−
∫ r

v

dx

xu(x)

]
.

Let F : [0, 1]× [0, 1]→ R be differentiable and û ∈ U (v, r) such that

sup
u∈U (v,r)

F
(
a(u), e(u)

)
= F

(
a(û), e(û)

)
.

Then

(2.6) H
(
û(x), x

)
= min
u∈U(x)

H(u, x) for a.e. x ∈ [v, r],

where the hamiltonian H: (0,∞)× [v, r]→ R is given by

(2.7) H(u, x) =
∂F

∂a

(
a(û), e(û)

)a(û)

x
u+

∂F

∂e

(
a(û), e(û)

)e(û)

x

1

u
.
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Proof. Fix a Lebesgue point x0 ∈ [v, r] of the functions x 7→ û(x)/x and
x 7→ 1/

(
xû(x)

)
, that is, suppose

lim
δ→0+

1

δ

∫ x0+δ

x0

û(x)

x
dx =

û(x0)

x0
, lim

δ→0+

1

δ

∫ x0+δ

x0

dx

xû(x)
=

1

x0û(x0)
,

and let u be an arbitrary point in U(x0) . For δ > 0 consider the needle variation

uδ(x) =

{
u for x ∈ [x0, x0 + δ],

û(x) for x ∈ [v, r] \ [x0, x0 + δ].

Since U(x0) ⊆ U(x1) for x1 ≥ x0 , we have uδ ∈ U (v, r) . A calculation yields

lim
δ→0+

a(uδ)− a(û)

δ
=
a(û)

x0

(
û(x0)− u

)
,

lim
δ→0+

e(uδ)− e(û)

δ
=
e(û)

x0

(
1

û(x0)
− 1

u

)
,

and thus

lim
δ→0+

F
(
a(uδ), e(uδ)

)
− F

(
a(û), e(û)

)

δ
= H

(
û(x0), x0

)
−H(u, x0).

By hypothesis,

F
(
a(uδ), e(uδ)

)
− F

(
a(û), e(û)

)

δ
≤ 0, δ > 0,

so that (2.6) follows since almost every point in [v, r] is a Lebesgue point of the
L1 -functions x 7→ û(x)/x and x 7→ 1/

(
x û(x)

)
.

3. An extremal problem for the set U (v, r)

We next apply Lemma 2 to F (a, e) =
(
a/(1− a)

)p
+
(
e/(1− e)

)p
, p > 0.

Lemma 3. Let û ∈ U (v, r) such that

(
a(u)

1− a(u)

)p
+

(
e(u)

1− e(u)

)p
≤
(

a(û)

1− a(û)

)p
+

(
e(û)

1− e(û)

)p

for every u ∈ U (v, r) . Then there exists a constant γ ∈ [v, r] such that either

(a) û(x) = u1,γ(x) :=





1− x
1 + x

for a.e. x ∈ [v, γ],

1− γ
1 + γ

for a.e. x ∈ [γ, r];
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or

(b) û(x) = u2,γ(x) :=





1 + x

1− x for a.e. x ∈ [v, γ],

1 + γ

1− γ for a.e. x ∈ [γ, r];

or

(c) û(x) = u3,α(x) = α for a.e. x ∈ [v, r],

for some α ∈
[
(1− v)/(1 + v), (1 + v)/(1− v)

]
.

Proof. By Lemma 3, H(u, x) ≥ H
(
û(x), x

)
for a.e. x ∈ [v, r] where

H(u, x) = p

(
a(û)

1− a(û)

)p−1
a(û)

(
1− a(û)

)2
1

x
u+ p

(
e(û)

1− e(û)

)p−1
e(û)

(
1− e(û)

)2
1

x

1

u
.

Since u 7→ H(u, v) is a non-constant convex function, it attains its minimum
on the interval U(v) =

[
(1 − v)/(1 + v), (1 + v)/(1 − v)

]
at (1 − v)/(1 + v) ,

at (1 + v)/(1 − v) or at some unique point α in between. In the latter case,
u 7→ H(u, x) attains its minimum on U(x) only at α for every x ∈ [v, r] , so
that û(x) = α for a.e. x ∈ [v, r] . If u 7→ H(u, v) takes its minimum on U(v) at
(1− v)/(1 + v) but not at (1 + v)/(1− v) , then obviously case (a) holds.

Remark. In the proof of Lemma 3 we only used the convexity of u 7→ H(u, x)
and the fact that in this case u 7→ H(u, x) attains its minimum always at the same
point (independent of x).

Lemma 4. The functional

η(u) :=
a(u)

1− a(u)
+

e(u)

1− e(u)

attains its maximum on U (v, r) only at u = u1,r and u = u2,r .

Proof. In view of Lemma 3, the only candidates for maximizing η(u) over
U (v, r) are the functions u1,γ and u2,γ for γ ∈ [v, r] and the functions u3,α for
α ∈

[
(1− v)/(1 + v), (1 + v)/(1− v)

]
. To decide which of these functions actually

maximizes η(u) is now a pure calculus problem. The basic steps are as follows.

Integrating (2.5) with u = u1,γ yields

(3.1)

â(γ) := a(u1,γ) =
(1 + γ)2

γ

v

(1 + v)2
exp

[
−1− γ

1 + γ
log

r

γ

]
,

ê(γ) := e(u1,γ) =
(1− γ)2

γ

v

(1− v)2
exp

[
−1 + γ

1− γ log
r

γ

]
.
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It is easy to see that â′(γ) > 0 and ê′(γ) < 0. Thus, ê(γ) < â(γ) , since ê(v) <
â(v) . Next, for γ ∈ [v, r] , we have

(3.2)

d

dγ

(
â(γ)

1− â(γ)
+

ê(γ)

1− ê(γ)

)

= 2

(
log

r

γ

)[
1

(1 + γ)2

â(γ)

(1− â(γ))2
− 1

(1− γ)2

ê(γ)
(
1− ê(γ)

)2
]
≥ 0,

with equality if and only if γ = r , since
[

1

(1 + γ)2

â(γ)
(
1− â(γ)

)2 −
1

(1− γ)2

ê(γ)
(
1− ê(γ)

)2
]
> 0.

The latter inequality is equivalent to
(3.3)

(1 + v)
(
1− â(γ)

)
−
(
1− ê(γ)

)
(1− v) exp

[
2γ

1− γ2
log

r

γ

]
< 0, 0 < v ≤ γ ≤ r < 1,

which in turn follows from the easily verified fact that the left-hand side of (3.3)
is a strictly convex function of the variable v which is obviously not positive for
v = 0 and takes the value
(3.4)

2

[
(1+γ) sinh

(
1

2

1− γ
1 + γ

log
r

γ

)
−(1−γ) sinh

(
1

2

1 + γ

1− γ log
r

γ

)]
exp

[
−1

2

1− γ
1 + γ

log
r

γ

]

at v = γ . The first factor in (3.4) is strictly decreasing on [γ, 1] as a function of
variable r and vanishes at r = γ . This proves (3.3) and hence (3.2).

It follows that η(u1,γ) < η(u1,r) for all γ ∈ [v, r] , so that among u1,γ only
u1,r maximizes η(u) . Similarly, η(u) is maximized among u2,γ only by u2,r .
Moreover, η(u1,r) = η(u2,r) .

Finally, on
[
(1 − v)/(1 + v), (1 + v)/(1 − v)

]
, the function α 7→ η(u3,α) is a

convex function since the second derivatives

(3.5)

d2

dα2

a(u3,α)

1− a(u3,aα)
=

(
log

r

v

)2
1 + a(u3,α)
(
1− a(u3,α)

)3 a(u3,α),

d2

dα2

e(u3,α)

1− e(u3,aα)
=

(
log

r

v

)
2

α3

1 + e(u3,α)
(
1− e(u3,α)

)3 e(u3,α)

×
[

log(r/v)

2α
− tanh

(
log(r/v)

2α

)]

are obviously positive. Thus, α 7→ η(u3,α) is maximized at α− = (1− v)/(1 + v)
or at α+ = (1 + v)/(1 − v) . However, η(u3,α−) = η(u1,v) < η(u1,r) by the first
part of the proof. Similarly, η(u3,α+) = η(u2,v) < η(u2,r) . Therefore, none of the
functions u3,α maximizes η over U (v, r) .
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Lemma 5. For any p ≥ 1 the functional

(3.6) ηp(u) :=

(
a(u)

1− a(u)

)p
+

(
e(u)

1− e(u)

)p

attains its maximum on U (v, r) only at u = u1,r and u = u2,r . For 0 < p < 1
the functional (3.6) is not maximized by u1,r and u2,r .

Proof. Employing the notation used in the proof of Lemma 4, we obtain

d

dγ

[(
â(γ)

1− â(γ)

)p
+

(
ê(γ)

1− ê(γ)

)p]
= p

(
â(γ)

1− â(γ)

)p−1
â′(γ)

(1− â(γ))2

+ p

(
ê(γ)

1− ê(γ)

)p−1
ê′(γ)

(
1− ê(γ)

)2

(3.2)

≥ p

[
−
(

â(γ)

1− â(γ)

)p−1

+

(
ê(γ)

1− ê(γ)

)p−1]
(3.7)

× ê′(γ)
(
1− ê(γ)

)2 > 0,

if p ≥ 1, since ê′(γ) < 0 and ê(γ) < â(γ) . Therefore, ηp(u) is maximal among
u1,γ only for u1,r . Similarly, ηp(u) is maximal among u2,γ only for u2,r and
ηp(u1,r) = ηp(u2,r) . Finally, α 7→ ηp(u3,α) is strictly convex for p ≥ 1 since its
second derivative is found to be

p(p− 1)

[(
a(u3,α)

1− a(u3,α)

)p−2(
d

dα

a(u3,α)

1− a(u3,α)

)2

+

(
e(u3,α)

1− e(u3,α)

)p−2(
d

dα

e(u3,α)

1− e(u3,α)

)2]

+ p

(
a(u3,α)

1− a(u3,α)

)p−1
d2

dα2

(
a(u3,α)

1− a(u3,α)

)

+ p

(
e(u3,α)

1− e(u3,α)

)p−1
d2

dα2

(
e(u3,α)

1− e(u3,α)

)
> 0

by (3.5). Thus ηp(u) is maximal among u3,α only for α = (1− v)/(1 + v) or for
α = (1 + v)/(1− v) where its value is less than for u = u1,r .

It remains to consider the case 0 < p < 1. Since

d

dγ

(
â(γ)

1− â(γ)
+

ê(γ)

1− ê(γ)

)

γ=r

= 0,
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ê(γ) < â(γ) and ê′(γ) < 0 < â′(γ) , (3.7) shows

d

dγ

[(
â(γ)

1− â(γ)

)p
+

(
ê(γ)

1− ê(γ)

)p ]
< 0

for all γ ∈ [v, r] sufficiently close to r . Therefore, ηp(u) is not maximized at
u = u1,r .

4. Proof of Theorem 1

Using Lemma 1 we deduce from Lemma 5

Lemma 6. For any p ≥ 1 and any 0 < v < r < 1 , we have
(4.1)(( |Df(0)|

1− |Df(0)|

)p
+

( |Df(z0)|
1− |Df(z0)|

)p)1/p

≤
(

2 cosh(2p%)

)1/p
sinh(2%′)

sinh
(
2(%− %′)

)

for
(
|Df(0)|, |Df(z0)|

)
∈ D(v, r) , where % and %′ denotes the hyperbolic distance

between 0 and z0 , and 0 and f(z0) , respectively. Equality occurs if f maps D
univalently onto D slit along a segment on the line determined by 0 and f(z0) .
The inequality (4.1) is not valid for 0 < p < 1 .

Proof. Since the hyperbolic distance between 0 and r = |z0| , and between 0
and v = |f(z0)| is given by

% =
1

2
log

1 + |z0|
1− |z0|

and %′ =
1

2
log

1 + |f(z0)|
1− |f(z0)| ,

respectively, we obtain from (3.1) and (3.6)

ηp(u1,r)
1/p =

((
a(u1,r)

1− a(u1,r)

)p
+

(
e(u1,r)

1− e(u1,r)

)p)1/p

=
(
2 cosh(2p%)

)1/p sinh(2%′)

sinh
(
2(%− %′)

) .

In view of Lemma 1 and Lemma 5 this proves (4.1) for p ≥ 1 and shows that
this inequality does not hold for 0 < p < 1. It remains to show that equality
occurs in (4.1) if f maps D univalently onto D slit along a segment on the
line determined by 0 and f(z0) . In this case g(z) := |f(z0)|/f(z0)f(z0z/|z0|)
maps D univalently onto D \ [β, 1) for some β ∈ (0, 1) and g′(0) > 0. Thus
g(z) = w(z, T ) , T = − log g′(0), where w(z, t) is the solution of the Löwner
equation (2.3) corresponding to κ(t) ≡ 1. Note that w(r, t) > 0. If we define the
function u ∈ U(v, r) by

u
(
w(r, t)

)
=
|1− w(r, t)|2
1− |w(r, t)|2

as in part (ii) of the proof of Lemma 1, we see that u = u1,r by construction
and |Df(0)| = |Dw(0, T )| = a(u1,r) and |Df(z0)| = |Dw(r, T )| = e(u1,r) . Thus
equality holds in (4.1) in this case.
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Utilizing the invariance property of the problem, we have proved Theorem 1.
It remains to deduce Jenkins’ distortion theorem from Theorem 1.

Corollary 1. If f : D → C is univalent, and z1 , z2 are two distinct points
in D , then we have, for p ≥ 1 ,

(4.2) |f(z1)− f(z2)| ≥ sinh 2%

2(2 cosh 2p%)1/p

(
|D1f(z1)|p + |D1f(z2)|p

)1/p
,

where % denotes the hyperbolic distance between z1 and z2 .

Proof. We can approximate any univalent function f : D → C by bounded
univalent functions, if the bound is allowed to vary. Let f : D → C be univalent
and fn: D → C a sequence of univalent functions bounded by Mn such that
fn → f locally uniformly in D . We may assume that Mn →∞ . Using the easily
verified facts

Mn
|Dgn(z)|

1− |Dgn(z)| → |D1f(z)|,

and
Mn sinh

(
2dD

(
gn(z1), gn(z2)

))
→ 2|f(z1)− f(z2)|

for gn(z) = fn(z)/Mn , we see that (4.2) follows from (1.2) applied to gn .

5. Proof of Theorem 2

Proof. According to Lemma 1 we have to maximize the function

µp(u) := −
(

a(u)

1− a(u)

)p
−
(

e(u)

1− e(u)

)p

on the set U (v, r) , where a(u) and e(u) are given by (2.5). Let û ∈ U (v, r) such
that µp(u) ≤ µp(û) for every u ∈ U (v, r) . We first show that µp(û) = µp(uσ) ,
where

uσ(x) :=





1− x
1 + x

, v ≤ x < σ,

1 + x

1− x, σ ≤ x ≤ r,

for some suitably chosen constant σ ∈ [v, r] .
To see this we note that the hamiltonian H(u, x) in Lemma 2 is now a strictly

concave function of u for every fixed x ∈ [v, r] . Thus the function u 7→ H(u, x) is
minimal on the interval

[
(1− x)/(1 + x), (1 + x)/(1− x)

]
at one of its boundary

points, and Lemma 2 implies for every x ∈ [v, r] that û(x) = (1 + x)/(1 − x) or
û(x) = (1−x)/(1+x) . For u(x) = û(x) we construct the function κ(t) , 0 ≤ t ≤ T ,
as in part (iii) of the proof of Lemma 1. Then κ(t) takes only the values ±1.
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Hence the solution w(z, T ) of the Löwner equation (2.3) generated by κ(t) satisfies
a(û) = |Dw(0, T )| and e(û) = |Dw(r, T )| , and maps D univalently onto D slit
along two segments on the real axis (see [3, p. 116]). Therefore, w(z, T ) = ŵ(z, T ) ,
where ŵ(z, t) is the solution to the Löwner ODE (2.3) corresponding to κ̂(t) = 1
for 0 ≤ t < τ and κ̂(t) = −1 for τ ≤ t ≤ T for some constant 0 ≤ τ ≤ T .
Note that ŵ(r, t) > 0. If we now define u ∈ U (v, r) as in part (ii) of the proof of
Lemma 1 by

u
(
ŵ(r, t)

)
=
|1− κ̂(t)ŵ(r, t)|2

1− |ŵ(r, t)|2 ,

then, by construction, u(x) = uσ(x) for σ = ŵ(r, τ) , and a(u) = |Dŵ(0, T )| =
|Dw(0, T )| = a(û) and e(u) = |Dŵ(r, T )| = |Dw(r, T )| = e(û) , that is, µp(uσ) =
µp(û) .

We have to decide which of the functions uσ actually maximizes µp(u) . A
calculation yields

(5.1)

a(uσ) =
(1− r)2

r

v

(1 + v)2

(
1 + σ

1− σ

)2

,

e(uσ) =
(1 + r)2

r

v

(1− v)2

(
1− σ
1 + σ

)2

.

Thus

d

dσ
µp(uσ) = − 4p

1− σ2

[(
a(uσ)

1− a(uσ)

)p
1

1− a(uσ)
−
(

e(uσ)

1− e(uσ)

)p
1

1− e(uσ)

]
= 0

if and only if a(uσ) = e(uσ) , because xp/(1 − x)p+1 is monotonically increasing
on (0, 1) for p > 0. Since a(uσ) = e(uσ) is equivalent to

(5.2)
1 + r

1− r ·
1 + v

1− v =

(
1 + σ

1− σ

)2

,

we conclude that σ 7→ µp(uσ) has precisely one critical point σ = σ0 ∈ [v, r]
which is given by (5.2). A straightforward computation using (5.1) shows that
the second derivative of µp(uσ) is negative for σ = σ0 , so that σ0 is the global
maximum for µp(uσ) . By (5.1) and (5.2)

a(uσ0) =
(1− r)2

r
· v

(1 + v)2
· 1 + r

1− r ·
1 + v

1− v =
sinh(2%′)
sinh(2%)

,

i.e.,

(5.3) µp(u) ≤ µp(uσ0) = −2

(
a(uσ0)

1− a(uσ0)

)p
= −2

[
sinh(2%′)

sinh(2%)− sinh(2%′)

]p
,

where % = 1
2 log

(
(1 + r)/(1− r)

)
and %′ = 1

2 log
(
(1 + v)/(1− v)

)
is the hyper-

bolic distance between 0 and r and between 0 and v , respectively. We have
proved (1.3).
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Let f map D univalently onto D slit along two hyperbolic rays on the
hyperbolic geodesic determined by f(z1) and f(z2) such that f(z1) and f(z2)
have the same hyperbolic distance to the boundary of f(D) . We shall show
that equality holds in (1.3). By conformal invariance we may assume z1 = 0,
z2 = r ∈ (0, 1), f(0) = 0 and f(r) = v ∈ (0, r) . Thus f maps D onto D slit
along the segments (−1,−r1] and [r2, 1). Since dD(0,−r1) =dD(r, r2) , we have
r1 = (r2 − v)/(1− r2v) . Hence

f(z) = −
f

(
r − z
1− rz

)
− v

1− vf
(
r − z
1− rz

) ,

which implies Df(0) = Df(r) .
On the other hand, f(z) = w(z, T ) , T = − log f ′(0), where w(z, t) is the

solution of the Löwner equation (2.3) for κ(t) = 1 for 0 ≤ t < τ and κ(t) = −1
for τ ≤ t ≤ T for some constant τ ∈ (0, T ) . Note that w(r, t) > 0. If we now
define the function u ∈ U (v, r) as in part (ii) of the proof of Lemma 1 by

u
(
w(r, t)

)
=
|1− κ(t)w(r, t)|2

1− |w(r, t)|2 ,

then u = uσ for some σ ∈ [v, r] by construction and a(uσ) = Df(0) = Df(r) =
e(uσ) . As we have seen, this is only possible if σ = σ0 , where σ is given by (5.2).
Hence

(( |Df(z1)|
1− |Df(z1)|

)p
+

( |Df(z2)|
1− |Df(z2)|

)p)1/p

=

(
−µp(uσ0)

)1/p

= 21/p sinh(2%′)
sinh(2%)− sinh(2%′)

by (5.3).

Using the same arguments as in the proof of Corollary 1, we can deduce the
following result of Jenkins (Theorem 2 in [6]) from Theorem 2.

Corollary 2. If f : D → C is univalent, and z1 , z2 are two distinct points
in D , then we have, for p ≥ 0 ,

(5.4) |f(z1)− f(z2)| ≤ sinh 2%

21+1/p

(
|D1f(z1)|p + |D1f(z2)|p

)1/p
,

where % denotes the hyperbolic distance between z1 and z2 .
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Figure 1. The set D( 1
5 ,

4
5 ).

6. Final remarks

1. In principle, Lemma 2 can be used to solve any extremal problem for the
set D(v, r) . Indeed, if we want to solve the extremal problem

max
(a,e)∈D(v,r)

F (a, b)

for some differentiable function F : [0, 1] × [0, 1] → R , then the corresponding
hamiltonian H(u, x) , cf. (2.7), is either (I) convex or (II) concave as function
of u . Case (I) is completely characterized by Lemma 3, whereas case (II) can
handled as in the proof of Theorem 2. In either case, the determination of the
extremal values of F on D(v, r) is reduced to a calculus problem, namely to
maximize a real-valued function of one real variable.

2. Our method can also be used to describe the set D(v, r) explicitly. It turns
out that D(v, r) is a simply-connected domain whose boundary consists of two
smooth Jordan arcs corresponding to the cases (I) and (II) above, cf. Figure 1.
The two common end points of these two Jordan arcs correspond to univalent
functions mapping onto D slit along a radial ray. Points on the Jordan arc (II)
correspond to univalent functions mapping onto D with slits along the positive
and the negative real axes or rotations of such functions. Points on the Jordan
arc (I) correspond to forked slit mappings in case (a) and (b) of Lemma 3 and to
analytic one-slit mappings in case (c) of Lemma 3.
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3. The expression
|Df(z1)|p + |Df(z2)|p

is not maximized by the extremal functions of Theorem 1. In fact, the extremal
functions for this functional belong to the complicated part (I), (c) of the set
D(v, r) .
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