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Abstract. The fact that compact Riemann surfaces of genus 2 are always hyperelliptic is
usually presented as a corollary of the Riemann–Roch theorem. Here we give a proof which involves
only the theory of Fuchsian groups that uniformize them.

The class of hyperelliptic Riemann surfaces in each genus g > 1, because of
its particular simplicity, is often taken as a model to illustrate known results or
to test new conjectures. These are the surfaces S that appear as double covers
of the Riemann sphere. They are characterized by the property that they admit
an automorphism J of order 2 whose quotient S/〈J〉 has genus zero, the double
cover being provided by the quotient map S → S/〈J〉 . A basic fact, which is part
of the widely developed theory of automorphism groups of Riemann surfaces, is
that surfaces of genus 2 are always hyperelliptic.

Due to the uniformization theorem, an arbitrary Riemann surface of genus
g > 1, S can be viewed as a quotient space S = H/K , where H is the upper
half-plane and K is the uniformizing group, a discrete subgroup of the group
of conformal automorphisms of H isomorphic to the fundamental group of the
surface. Such groups possess a very well known structure and are sometimes
termed (Fuchsian) surface groups. From this point of view the hyperellipticity
of surfaces of genus 2 is equivalent to the statement that a surface group K of
genus 2 is automatically contained, with index 2, in a larger group Γ so that
H/Γ ≡ CP1 , J being then induced by any element of Γ \K . In most textbooks
this result is presented as a consequence of the Riemann–Roch theorem, a result
whose presentation is involved. The purpose of this note is to prove this fact in
the framework of the elementary theory of Fuchsian groups.
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1. Notation and statement of the result

We now summarize some elementary facts from the theory of Riemann sur-
faces and Fuchsian groups. We refer to Beardon [1], Farkas–Kra [2] and Jones–
Singerman [3] for general background.

1.1. We recall that the group of conformal automorphisms of H agrees with
the group of orientation preserving isometries of H equipped with the hyperbolic
metric d . This is the well-known group of real Möbius transformations PSL(2,R) .

An element C ∈ PSL(2,R) is called hyperbolic if it fixes two points on the
boundary ∂H =R ∪ {∞} and none in H (see e.g. [2]). In fact, for any z ∈
H , these two points can be obtained as limn→∞Cnz (attractive fixed point) and
limn→−∞Cnz (repulsive fixed point), and the non Euclidean or hyperbolic line
connecting them is called the axis of C . The transformation C ∈ PSL(2,R) acts
on its axis, axis(C) , as a (hyperbolic) translation. Its translation length TC is
equal to d(z, Cz) for any point z on its axis. Moreover, C is determined by its
axis and its translation length. As a matter of fact, C can be written as the
product of two half-turns Rz and Rw at any pair of points z and w on the axis of
C with distance apart equal to 1

2TC . More precisely, C = Rz ◦Rw or C = Rw ◦Rz
according to whether the ray from w to z ends at the attractive or at the repulsive
fixed point of C . These facts can be easily proved by conjugation with a suitable
isometry so that C fixes 0 and ∞ and hence becomes a transformation of the
form

C =

(
λ 0
0 1/λ

)
, λ > 0,

whose axis is simply the upper half imaginary axis (see [1, p. 174]).

1.2. The fundamental group π1(S, P ) of a compact Riemann surface S of
genus 2 at a point P ∈ S is generated by the homotopy classes of simple loops
α1, β1 ; α2, β2 enjoying the following properties:

(i) any pair of them intersect only at P ;
(ii) this intersection is transversal (only) for the pairs α1, β1 and α2, β2 ;
(iii) they satisfy the single defining relation

[
[α1], [β1]

][
[α2], [β2]

]
= 1, where

the bracket [ , ] stands for the commutator and [γ] denotes the homotopy class of
a loop γ .

Such generators are called canonical.

1.3. The uniformization theorem quoted above shows that S can be viewed
as a quotient space S = H/K , where K is a discrete subgroup of the group
PSL(2,R) , i.e. a Fuchsian group, acting freely on H . In these circumstances K
consists entirely of hyperbolic elements (see e.g. [1]).

According to elementary covering space theory, for any p ∈ H projecting to
P ∈ S via the covering map π: H→S , we have an isomorphism φp: π1(S, P )→ K
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defined by sending [γ] ∈ π1(S, P ) to the Möbius transformation which maps p to
the endpoint of the lift of γ at p ; this lift we denote by γ̃p . By applying φp we
obtain canonical generators for K , Ai =: φp

(
[αi]
)

, Bi =: φp
(
[βi]
)

subject to the

same defining relation
[
A1, B1

][
A2, B2

]
= 1.

Let now γ be any non trivial simple loop based at P and put C = φp
(
[γ]
)

.
Let us consider the curve lp(γ) in H obtained by putting together the translates
of the arc γ̃p by all powers of C , that is, lp(γ) =

⋃
n∈Z C

nγ̃p . This is clearly a
connected curve since the arc Cnγ̃p ends where Cn+1γ̃p begins, namely at the
point Cn+1p . Moreover, lp(γ) does not cross itself, for if we had Crx = Cmy for
two different points x, y ∈ γ̃p then x and y would project to the same point of S .
It would then follow that x and y must be the endpoints of γ̃p , say x = p and
y = Cp ; hence we would have Cm+1−rp = p which, C being fixed point free, can
only occur if r = m + 1; in other words the arcs Crγ̃p and Cmγ̃p intersect only
if they are consecutive and then, at the correct point Cm+1p . This implies that
lp(γ) divides H into two connected components for on the one hand lp(γ) is a
topological line (in fact, the restriction of π: H→S to lp(γ) provides a universal
cover for the topological circle γ ) and on the other hand lp(γ) hits the boundary
of H at two points, namely limn→∞ Cnp and limn→−∞ Cnp , that is, the fixed
points of C .

We next observe that, since αi , βi intersect only at the point P , lp(αi) and
lp(βi) intersect only at p ∈ H , for if there were another point p′ ∈ lp(αi)∩ lp(βi) ,
then, necessarily, π(p′) = P and we would have p′ = Adi (p) = Bmi (p) for some
integers d and m , but this, in turn, would imply Adi = Bmi , a contradiction.
Now the fact that lp(αi) and lp(βi) intersect transversally at only one point is
equivalent to saying that each of these lines separates the endpoints of the other
one. Of course this argument can be equally applied to any pair of topological lines
connecting these same endpoints and, in particular, to the axes of Ai and Bi . We
conclude that the axes of Ai and Bi do intersect.

1.4. Let us consider an arbitrary uniformization S = H/K . As in 1.1 we
may assume, by suitable conjugation, that

A1 =

(
λ 0
0 1/λ

)
, λ > 0,

with axis(A1) equals the upper half imaginary axis. We can even perform an extra
normalization and require B1 to fix 1 so that

B1 =

(
a b
c d

)
,

with a+ b = c+d and axis(B1) equals the semi-circle joining its two fixed points,
namely 1 and −b/c . Since axis(A1) ∩ axis(B1) 6= ∅ , a simple calculation shows
that we must have bc > 0, the intersection point being z1 = i

√
b/c .
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Theorem 1. Let S = H/K be an arbitrary compact Riemann surface of
genus 2 , and let

A1 =

(
λ 0
0 1/λ

)
, λ > 0,

B1 =

(
a b
c d

)
, a+ b = c+ d, bc > 0,

A2 and B2,

be a set of (normalized) canonical generators for the uniformizing group K . Then,
the Möbius transformation

R1(z) =
−b
cz

induces on S = H/K an automorphism J , the hyperelliptic involution, such that
the quotient S/〈J〉 has genus zero.

2. Proof

(i) First of all we observe that R1 is the half-turn fixing the point z1 = i
√
b/c

at which the axes of A1 and B1 meet. Now by 1.1 we can write

(1) A1 = R3R1, B1 = R1R2,

where R3 (respectively R2 ) is the half-turn at a certain point z3 ∈ axis(A1)
(respectively z2 ∈ axis(B1)). Similarly we put

(2) A2 = R6R5, B2 = R4R6,

where R6 is the half-turn at the point z6 ∈ axis(A2) ∩ axis(B2) and R5 (re-
spectively R4 ) is the half-turn at a suitable point z5 ∈ axis(A2) (respectively
z4 ∈ axis(B2)).

(ii) Using identities (1) and (2) we can write
[
A1, B1

]
= (R3R2R1)2 and[

A2, B2

]−1
= (R4R5R6)2 , thus the defining relation

[
A1, B1

]
=
[
A2, B2

]−1
be-

comes (R3R2R1)2 = (R4R5R6)2 . Since these elements are both hyperbolic, we
deduce that

(3) (R3R2R1) = (R4R5R6)

or equivalently,

(4) R1R2R3R4R5R6 = 1

(iii) Next we claim that the rotations Rj , j = 1, . . . , 6, are all equivalent
modK . By (1) and (2), the statement is clear if we consider the first three or the
second three separately. To complete the argument we only need to observe that
R1R6 ∈ K . Indeed we have R1R6 = B−1

1 A−1
1 B2A2 as it is readily seen using (3).
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(iv) In order to prove that R1 normalizes K and, hence, that its action (and,
by the previous point, that of any other Rj ) induces an automorphism J on
S = H/K we merely need to check that

R1A1R1 = A−1
1 , R1B1R1 = B−1

1 ,(5)

R1A2R1 = (R1R6)A−1
2 (R1R6)−1, R1B2R1 = (R1R6)B−1

2 (R1R6)−1.(6)

(v) Finally we prove that the quotient surface X = S/〈J〉 has genus zero.
Let us denote by p: S → X the natural quotient map. We have an induced
commutative diagram of homomorphisms between homology groups

H1(S)
J∗ //

p∗ $$IIIIIIIII
H1(S)

p∗zzuuuuuuuuu

H1(X)

If X has genus > 0, then there is on it a loop γ which is homologically
non trivial. Consider then a lift of γ2 to S . Such a lift, let us call it c , is
again a (closed) loop because p has degree 2, and so it defines a homology class
which satisfies p∗(c) = γ2 . But on the other hand, since the homology group
is the abelianization of the fundamental group, it follows from (5) and (6) that
J∗ = − identity. This contradicts the commutativity of the diagram above.

Remark 1. An alternative way to state our result is to say that the group K
is an index 2 subgroup of the Fuchsian group Γ generated by the half-turns Rj ,
j = 1, . . . , 6, which satisfy the relation (4), thus it is a group of signature (0, 6)
(see [3, p. 260]).

The projections π(zj) of the points zj , centers of the rotations Rj , are the
six points which, according to the Riemann–Hurwitz formula, J fixes. They are
called the Weierstrass points of S . Note that they divide the smooth geodesics
π
(
axis(Ai)

)
, π
(
axis(Bi)

)
into two parts of equal length.

Remark 2. If the genus g is larger than 2 we can still obtain expres-
sions analogous to (1) and (2) for any set of canonical generators A1, . . . , Ag ;
B1, . . . , Bg . However this way of reasoning will break down when we try to find
relations of the kind (5) and (6). In fact it is well known that when g > 2, most
surfaces are not hyperelliptic.
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