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Abstract. Kinnunen and Lindqvist proved in [9] that the local Hardy–Littlewood maximal
function, defined in an open set Ω in the Euclidean space, is a bounded operator from W 1,p(Ω) to
W 1,p(Ω) , provided p > 1 . In this note we give a simpler argument which leads to a slightly more
general result. Furthermore, the argument also allows us to prove boundedness of the spherical
maximal function in the Sobolev space W 1,p(Ω) , p > n/(n − 1) . We also raise many questions
concerning boundedness of maximal operators in Sobolev spaces.

1. Introduction

The theory of Sobolev spaces and the Hardy–Littlewood maximal function,
one of the most important tools in analysis, have been developed a great deal for
more than seven decades now. However, surprisingly, no one had raised a question
about boundedness of the maximal function in the Sobolev space W 1,p , until quite
recently, when Kinnunen, [7], proved that the Hardy–Littlewood maximal operator
is bounded in W 1,p(Rn), p > 1. His argument was very nice and simple, but even
a simpler argument leading to more general results is available now. The result
of Kinnunen has been employed and generalized in [3], [8], [9], [10], [11], [12], [13]
and [18].

Let us start with review of some basic definitions and facts. The Hardy–
Littlewood maximal function of u ∈ L1

loc(R
n) is defined by

(1) Mu(x) = sup
r>0

∫

−
B(x,r)

|u(z)| dz.

Here and in what follows, gA =
∫

−
A

g = |A|−1
∫

A
g denotes the integral average of

g over a set A . The maximal function is sub-linear in the sense that M (u + v) ≤
Mu + M v .
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More generally we say that an operator A: X → Y acting between linear
function spaces is sub-linear if Au ≥ 0 a.e. for u ∈ X and A(u + v) ≤ Au + Av
a.e. for u, v ∈ X . (1) If X and Y are normed spaces, then A is called bounded
provided ‖Au‖Y ≤ C‖u‖X for some C > 0 and all u ∈ X . Note that if A is not
linear, then its boundedness need not imply continuity.

The main classical result concerning the maximal operator M is its bound-
edness (even continuity) in Lp for 1 < p ≤ ∞ and the weak type estimate for
p = 1, see [15, Chapter 1].

The maximal function has an important property of being commutative with
translations. More precisely for a function u and y ∈ Rn we define uy(x) =
u(x − y). Then M (uy)(x) = (Mu)y(x) for all x, y ∈ Rn .

The Sobolev space W 1,p(Ω), where Ω ⊂ Rn is an open set and 1 ≤ p < ∞ ,
is defined as the class of all u ∈ Lp(Ω) such that the distributional gradient of u
satisfies |∇u| ∈ Lp(Ω). The space W 1,p(Ω) is a Banach space with respect to the
norm ‖u‖1,p = ‖u‖p + ‖∇u‖p .

It turns out that any sub-linear operator which commutes with translations
and is bounded in Lp for some 1 < p < ∞ forms a bounded operator in W 1,p(Rn).

Theorem 1. Assume that A: Lp(Rn) → Lp(Rn) , 1 < p < ∞ , is bounded

and sub-linear. If A(uy) = (Au)y for all u ∈ Lp(Rn) and every y ∈ Rn , then A
is bounded in W 1,p(Rn) .

Proof. According to [5, Section 7.11], u ∈ W 1,p(Rn), 1 < p < ∞ , if and only
if u ∈ Lp(Rn) and lim supy→0 ‖uy−u‖p/|y| < ∞ . Combining this characterization
with the following inequality

‖(Au)y − Au‖p = ‖A(uy) − Au‖p ≤ ‖A(u − uy)‖p + ‖A(uy − u)‖p ≤ C ‖uy − u‖p,

yields the claim.

Theorem 1 and its proof are folklore now. As a special case it gives Kinnunen’s
theorem:

M : W 1,p(Rn) → W 1,p(Rn) is bounded for 1 < p < ∞ .

Another interesting application concerns the spherical maximal function which is
defined by

S u(x) = sup
0<r≤1

∫

−
Sn−1(x,r)

|u(z)| dσ(z).

Here the integral average of |u| is taken with respect to the (n − 1)-dimensional
surface measure. It is a deep result of Stein, [16], when n ≥ 3, and Bourgain,
[2], when n = 2, that the spherical maximal function is bounded in Lp for p >

(1) We do not assume that A(λu) = |λ|Au .
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n/(n − 1), see also [17]. This operator is clearly sub-linear and commutes with
translations. Hence we conclude from Theorem 1 that

(2) S : W 1,p(Rn) → W 1,p(Rn) is bounded for n/(n − 1) < p < ∞ ,

see also [10]. All this raise several natural questions.
Is the Hardy–Littlewood maximal function bounded in W 1,1(Rn)? No, it is

not. Since the maximal operator of the characteristic function of the unit ball is
not integrable over Rn , a smooth bump function shows that the operator M is not
bounded in W 1,1(Rn). Of course, we are more interested in weak differentiability
properties of Mu rather than in its global integrability, so we may inquire whether
Mu is in W 1,1

loc with |∇Mu| ∈ L1 for u ∈ W 1,1 .

Question 1. Is the operator u 7→ |∇Mu| bounded from W 1,1(Rn) to

L1(Rn)?

Tanaka, [18], gave a positive answer to this question in the case of the non-
centered maximal function and provided that n = 1. The non-centered maximal
function is defined as the supremum taken over all balls containing x ∈ R . How-
ever, his proof does not suggest how to approach the case n > 1.

If 1 < p < n , n ≥ 2, then by the Sobolev embedding theorem, [19],
W 1,p(Rn) ⊂ Lp∗

(Rn), p∗ = np/(n − p) > n/(n − 1), so the Bourgain–Stein
maximal theorem (mentioned earlier) implies that

S : W 1,p(Rn) → Lp∗

(Rn) is bounded for 1 < p < n .

Such a result would also be a consequence of (2) together with the positive answer
to

Question 2. Is S : W 1,p(Rn) → W 1,p(Rn) bounded for 1 < p ≤ n/(n− 1)?

There are easy examples showing that S is not bounded on W 1,1(Rn) and
even that the operator u 7→ |∇S u| is not bounded from W 1,1(Rn) to L1(Rn).

Indeed, if u is a smooth extension of |x|1−n log−1−(n−1)/n(e/|x|) from the unit ball
to a compactly supported function, then u ∈ W 1,1(Rn), but there is no constant c
such that (S u)− c ∈ Ln/(n−1) , which contradicts the integrability of |∇S u| , see
e.g. [6] and also Remark 4 following Theorem 3. To see that (S u)− c /∈ Ln/(n−1)

for any choice of c we estimate

S u(x) ≥ v(x) :=

∫

−
Sn−1(x,|x|)

|u| dσ

and easily show that v /∈ Ln/(n−1) in any neighborhood of the origin.
In general, bounded non-linear operators need not be continuous. An example

of this type is a surprising result of Almgren and Lieb [1] who proved that the
(known to be bounded) symmetric decreasing rearrangement R: W 1,p(Rn) →
W 1,p(Rn) is not continuous when 1 < p < n and n > 1. The following question
was asked by Iwaniec.
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Question 3. Is the Hardy–Littlewood maximal operator continuous in

W 1,p(Rn) , 1 < p < ∞?

The same question can be formulated for the spherical maximal function.
However, one should try first the case n/(n− 1) < p < ∞ , because we know that
the operator is bounded in this instance.

Recently Kinnunen and Lindqvist [9] have proved that the Hardy–Littlewood
maximal function forms a bounded operator in W 1,p(Ω), where 1 < p < ∞ and
Ω ⊂ Rn is an arbitrary open set. Here we need a local maximal function defined
for u ∈ L1

loc(Ω) by (2)

MΩu(x) = sup

{
∫

−
B(x,r)

|u(z)| dz : 0 < r < dist (x, ∂Ω)

}

.

Their result reads as follows.

Theorem 2. Let Ω ⊂ Rn be open and 1 < p < ∞ . If u ∈ W 1,p(Ω) , then

MΩu ∈ W 1,p(Ω) and

(3) |∇MΩu(x)| ≤ 2MΩ|∇u|(x)

for almost every x ∈ Ω .

It turns out that this result does not follow from a simple modification of
Kinnunen’s proof for the case of Ω = Rn . Also the proof of Theorem 1 does not
easily modify to cover Theorem 2. Indeed, there is no group structure in Ω which
would allow for translations f 7→ fy . The argument of Kinnunen and Lindqvist
was neat and tricky.

Theorem 2 raises more questions. Which results related to Questions 1–3 do
extend to the case of a general domain? In particular we may ask

Question 4. Is the spherical maximal function bounded in W 1,p(Ω) , when

n/(n − 1) < p < ∞?

Here we mean a local spherical maximal function defined by

SΩu(x) = sup

{
∫

−
Sn−1(x,r)

|u(z)| dσ(z) : 0 < r < min{dist (x, ∂Ω), 1}

}

.

The main results of this paper are Theorems 3 and 4 below. Theorem 3
generalizes the result of Kinnunen and Lindqvist and Theorem 4 gives a positive
answer to Question 4.

(2) We say that u ∈ Lp
loc(Ω) if u is in Lp on every bounded and measurable subset of Ω. In

particular Lp
loc(Ω) = Lp(Ω) , if Ω is bounded. Clearly, our definition differs from the standard one.

We also define u ∈ W 1,p
loc (Ω) by assuming that |u| and |∇u| are both in Lp

loc(Ω) .



On boundedness of maximal functions in Sobolev spaces 171

Theorem 3. Let Ω ⊂ Rn be an arbitrary open set and u ∈ W 1,1
loc (Ω) . If

MΩu < ∞ a.e. and MΩ|∇u| ∈ L1
loc(Ω) , then MΩu ∈ W 1,1

loc (Ω) and

(4) |∇MΩu(x)| ≤ 2MΩ|∇u|(x)

for almost every x ∈ Ω .

Remarks. (1) Theorem 2 follows immediately from Theorem 3. Moreover,
Theorem 3 applies to the case in which |∇u|

(

log(e+|∇u|)
)

∈ L1
loc(Ω), Ω 6= Rn . (3)

Indeed, in this case MΩ|∇u| ∈ L1
loc(Ω) by the Stein theorem [14], and hence

MΩu ∈ W 1,1
loc (Ω) by Theorem 3.

(2) We will actually show that for Ω = Rn , inequality (4) holds with the
constant 1 in place of 2.

(3) If u(x) = x and Ω = Rn , then Mu = ∞ everywhere, so the assumption
MΩu < ∞ a.e. is needed.

(4) If Ω = Rn and u ∈ W 1,1
loc (Rn) with |∇u| ∈ L1(Rn) then, Mu < ∞

a.e. Indeed, if n = 1, then integrability of u′ implies boundedness of u and
hence boundedness of Mu . If n > 1, then there is a constant c , such that
u − c ∈ Ln/(n−1) , see e.g. [6], so the claim follows from the boundedness of the
maximal function in Ln/(n−1) .

(5) If Ω 6= Rn , then MΩu < ∞ a.e. for u ∈ W 1,1
loc . Indeed, u is in L1 on

bounded sets and on each such set the radii that are used in the definition of the
maximal function MΩu are uniformly bounded, so finiteness of MΩu follows from
the finiteness of M v for v ∈ L1(Rn).

(6) Note that Theorem 3 cannot be concluded from the method of Kinnunen
and Lindqvist, which is based on the reflexivity of the Sobolev space W 1,p , p > 1.
For the same reason no argument related to Theorem 1 can be used here.

Theorem 4. Let Ω ⊂ Rn be an arbitrary open set. If u ∈ W 1,1
loc (Ω) , and

SΩ|∇u| ∈ L1
loc(Ω) , then SΩu ∈ W 1,1

loc (Ω) and

|∇SΩu(x)| ≤ 2SΩ|∇u|(x)

for almost every x ∈ Ω .

Combining Theorem 4 with the Bourgain–Stein theorem, we conclude the
positive answer to Question 4.

Corollary 5. If Ω ⊂ Rn is open, n ≥ 2 , then SΩ: W 1,p(Ω) → W 1,p(Ω) is

bounded for p > n/(n − 1) .

(3) A suitable version holds also for Ω = Rn .
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2. Theorems 3 and 4 in the entire space

The case of a general domain is pretty similar to the case in which the under-
lying domain is Rn . However, in the general case the technical details are more
difficult which makes the main geometric idea less visible. For this reason we will
present the global case separately.

Proof of Theorem 3 in the case Ω = Rn . Since |u| ∈ W 1,1
loc (Rn) and

∣

∣∇|u|
∣

∣ =
|∇u| a.e., we can assume that the function u is non-negative. We will prove
absolute continuity of Mu on segments xy , for a.e. x, y ∈ Rn . More precisely,
we will prove the estimate

(5)
∣

∣Mu(x) − Mu(y)
∣

∣ ≤

∫

xy

M |∇u|

for a.e. x, y ∈ Rn . Fix x, y ∈ Rn such that Mu(x) < ∞ and Mu(y) < ∞ .
By symmetry, we can assume that Mu(x) ≥ Mu(y). Pick a sequence (rn)∞n=1 ,
0 < rn < ∞ , such that

lim
n→∞

∫

−
B(x,rn)

u(z) dz = Mu(x).

We write

urn
(x) =

∫

−
B(x,rn)

u(z) dz

for all n ∈ N . Since

|Mu(x) − Mu(y)| = Mu(x) − urn
(y) + urn

(y) − Mu(y)

≤ Mu(x) − urn
(y)

=
(

Mu(x) − urn
(x)

)

+
(

urn
(x) − urn

(y)
)

for all n ∈ N , we have

|Mu(x) − Mu(y)| ≤ lim sup
n→∞

(

urn
(x) − urn

(y)
)

.

Combining this with the following estimate

|urn
(x) − urn

(y)| =

∣

∣

∣

∣

∫

−
B(x,rn)

u(z) dz −

∫

−
B(y,rn)

u(z) dz

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

−
B(x,rn)

(

u(z) − u
(

z + (y − x)
))

dz

∣

∣

∣

∣
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=

∣

∣

∣

∣

∫

−
B(x,rn)

∫ 1

0

d

dt
u
(

z + t(y − x)
)

dt dz

∣

∣

∣

∣

≤ |y − x|

∫ 1

0

∫

−
B(x,rn)

∣

∣∇u
(

z + t(y − x)
)
∣

∣ dz dt

= |y − x|

∫ 1

0

∫

−
B(x+t(y−x),rn)

|∇u(z)| dz dt

≤

∫

xy

M |∇u|,

yields the desired inequality (5).
Now, fix a direction ν ∈ Sn−1 . By Fubini’s theorem M |∇u| is locally in-

tegrable on almost all lines parallel to the direction ν . Combining this with
inequality (5), we find that

|DνMu(x)| ≤ M |∇u|(x)

for almost every x ∈ Rn (cf. [4, Section 4.9]). Taking the supremum over a
countable and dense set of directions ν ∈ Sn−1 yields |∇Mu| ≤ M |∇u| a.e., as
desired.

Proof of Theorem 4 in the case Ω = Rn . We notice that the same method
extends to the case of the spherical maximal operator provided the spherical max-
imal operator is finite almost everywhere in Rn . This follows from the well-known
trace theorem:

Lemma 6. If u ∈ W 1,1
loc (Ω) , then SΩu is finite almost everywhere 4 in Ω .

Remark. Although we prove Theorem 4 in Rn now, we prove the lemma
for a general domain as it will be needed in the next section.

Proof. If u ∈ W 1,1
(

B(0, 1)
)

, then the trace of u on the boundary Sn−1(0, 1)
satisfies

∫

−
Sn−1(0,1)

|u| dσ ≤ C

(
∫

−
Bn(0,1)

|u| +

∫

−
Bn(0,1)

|∇u|

)

,

with C depending on n only, see [4, Section 4.3]. Hence a standard scaling
argument (affine change of variables) shows that

∫

−
Sn−1(x,r)

|u| dσ ≤ C

(
∫

−
Bn(x,r)

|u| + r

∫

−
Bn(x,r)

|∇u|

)

4 While dealing with the definition of S u , for u in the Sobolev space, the restriction of u to

a sphere is understood as a trace of a Sobolev function.
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for u ∈ W 1,1
loc (Ω), whenever B(x, r) ⊂ Ω. Taking the supremum over r ≤

min
{

dist (x, ∂Ω), 1
}

yields

SΩu ≤ C(MΩu + MΩ|∇u|) < ∞ a.e.

This completes the proof of Lemma 6 and hence that of Theorem 4 for Ω = Rn .

Remark. A delicate point in the proof of Theorem 4 is that we defined the
spherical maximal function of a Sobolev function using traces. Equivalently we
could say that there is a representative of u ∈ W 1,1

loc (in the class of functions
equal to u a.e.) such that S u defined now in the standard way (with restrictions
to spheres instead of traces) has all desired properties. At the same time our
proof was very elementary, avoiding the use of the Bourgain–Stein theorem. On
the other hand it follows from the Bourgain–Stein theorem that for two different
representatives of a given function spherical maximal functions are equal a.e. (5)

Hence the conclusion of Theorem 4 and its corollary is true for any representative
of u with S u defined in a standard way.

3. Proofs of Theorems 3 and 4

Let us first focus on the case of the Hardy–Littlewood maximal operator.

Proof of Theorem 3. We can assume that Ω 6= Rn . The argument will be
similar to that in the case Ω = Rn . There is, however, a problem that has to be
faced. Namely the line segments connecting z to z + (y − x), for x, y, z ∈ Ω are
not necessarily contained in the domain Ω.

It suffices to prove that for every ε > 0 inequality (3) holds a.e. in Ωε =
{

x ∈ Ω : dist(x, Ωc) > ε
}

. To this end it suffices to prove inequality (7) for a.e.
x, y ∈ Ωε which are sufficiently close one to another.

Let x, y ∈ Ωε be such that MΩu(x), MΩu(y) < ∞ and |x − y| < 1
2ε . By

symmetry, we can assume that MΩu(x) ≥ MΩu(y). Similarly as in the case of
Ω = Rn we define (rn)∞n=1 as a sequence of positive radii 0 < rn < dist (x, ∂Ω)
such that urn

(x) → MΩu(x). Next we split our argument into two separate cases.

Case 1. If there is N ∈ N such that rn ≤ |x − y| for all n > N , then
B(x, rn + |x− y|) ⊂ B(x, ε) ⊂ Ω for all n > N . Hence exactly the same argument
as in the case Ω = Rn shows that

(6) |MΩu(x) − MΩu(y)| ≤

∫

xy

MΩ|∇u|.

(5) Because the spherical maximal function of a function which equals zero a.e. equals zero a.e.
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Case 2. If there is a subsequence (rnk
) such that rnk

> |x − y| , then we
define auxiliary radii r̃nk

= rnk
− |x− y| . Notice that B(x, r̃nk

+ |x− y|) ⊂ Ω. As
in the case Ω = Rn we have

|MΩu(x) − MΩu(y)| ≤ lim sup
k→∞

(

urnk
(x) − ur̃nk

(y)
)

.

We now estimate the right-hand side

|urnk
(x) − ur̃nk

(y)| =

∣

∣

∣

∣

∫

−
B(x,rnk

)

u(z) dz −

∫

−
B(y,r̃nk

)

u(z) dz

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

−
B(x,rn

k
)

(

u(z) − u

(

r̃nk

rnk

(z − x) + y

))

dz

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

−
B(x,rn

k
)

∫ 1

0

d

dt
u

(

z + t

(

r̃nk

rnk

(z − x) + y − z

))

dt dz

∣

∣

∣

∣

≤ 2|x − y|

∫

−
B(x,rnk

)

∫ 1

0

∣

∣

∣

∣

∇u

(

z + t

(

r̃nk

rnk

(z − x) + y − z

))
∣

∣

∣

∣

dt dz,

where the last inequality follows from
∣

∣

∣

∣

r̃nk

rnk

(z − x) + y − z

∣

∣

∣

∣

≤ |y − x| +

∣

∣

∣

∣

r̃nk

rnk

(z − x) + x − z

∣

∣

∣

∣

≤ |y − x| + |z − x|

∣

∣

∣

∣

r̃nk

rnk

− 1

∣

∣

∣

∣

≤ 2|x − y|.

Hence we have

|urnk
(x) − ur̃nk

(y)| ≤ 2|x − y|

∫ 1

0

∫

−
B(x+t(y−x),rnk

−t|x−y|)

|∇u(z)| dz dt

≤ 2|x − y|

∫ 1

0

MΩ|∇u|
(

x + t(y − x)
)

dt ≤ 2

∫

xy

MΩ|∇u|.

The above estimates give

(7) |MΩu(x) − MΩu(y)| ≤ 2

∫

xy

MΩ|∇u|.

This inequality, in turn, implies, as in the case of Ω = Rn , that

|∇MΩu(x)| ≤ 2MΩ|∇u|(x)

for almost every x ∈ Ωε . Finally, letting ε → 0, the desired point-wise estimate
(4) follows.
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Proof of Theorem 4. Since S u is finite a.e. in Ω by Lemma 6, the previous
proof extends also to the case of the spherical maximal function.
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