ON FACTORIZATIONS OF ENTIRE FUNCTIONS OF BOUNDED TYPE

Liang-Wen Liao and Chung-Chun Yang
Nanjing University, Department of Mathematics
Nanjing, China; maliao@nju.edu.cn
The Hong Kong University of Science \& Technology
Department of Mathematics Kowloon, Hong Kong; mayang@ust.hk

Abstract

We prove that if f is a transcendental entire function and the set of all finite singularities of its inverse function f^{-1} is bounded, then $f(z)+P(z)$ is prime for any nonconstant polynomial $P(z)$, unless $f(z)$ and $P(z)$ has a nonlinear common right factor. Particularly, it is shown that $f(z)+a z$ is prime for any constant $a \neq 0$.

1. Introduction

A transcendental meromorphic function F is said to be prime (pseudo-prime) if, and only if, whenever $F=f(g)$ for some meromorphic functions f and g, either f or g must be bilinear (rational); F is called left-prime (right-prime) if every factorization of F implies that f is bilinear whenever g is transcendental $(g$ is linear if f is transcendental). It is easily seen F is prime if and only if F is leftprime as well as right-prime. We refer the readers to [3] or [4] for an introduction to the factorization theory of entire and meromorphic functions.

A point a is called a singularity of f^{-1} (the inverse function of f), if a is either a critical value or asymptotic value of f. We denote by $\operatorname{sing}\left(f^{-1}\right)$ the set of all finite singularities of f^{-1}, i.e.

$$
\operatorname{sing}\left(f^{-1}\right)=\left\{z \in \mathbf{C}: z \text { is a singularity of } f^{-1}\right\}
$$

We denote by B the class of all entire functions f such that $\operatorname{sing}\left(f^{-1}\right)$ is bounded and by S the class of all entire functions f such that $\operatorname{sing}\left(f^{-1}\right)$ is finite. If $f \in B$ ($f \in S$), we say f is of bounded (finite) type.

In 1981, Noda [8] proved the following result.
Theorem A. Let $f(z)$ be a transcendental entire function. Then the set

$$
N P(f)=\{a \mid a \in \mathbf{C}, f(z)+a z \text { is not prime }\}
$$

is at most countable
2000 Mathematics Subject Classification: Primary 30D35.

As a further study on the cardinality of $N P(f)$, which is denoted by $|N P(f)|$, Ozawa and Sawada [9] posed the following interesting question:

Question. Is there any f for which the exceptional set $N P(f)$ in Theorem A is really infinitely countable? Or what is the maximal cardinal number of the exceptional set $N P(f)$?

Theorem B (Ozawa and Sawada [9]). Let $G(w)$ be an entire function satisfying

$$
M(R, G(w)) \leq \exp (K R)
$$

for $R \geq R_{0}>0$ and for some constant $K>0$. Then either $G\left(e^{z}\right)+a z$ or $G\left(e^{z}\right)+b z$ is prime if $a b(a-b) \neq 0$.

This shows that the cardinality of $N P\left(G\left(e^{z}\right)\right)$ is at most 2 if $M(R, G(w)) \leq$ $\exp (K R)$ for $R \geq R_{0}>0$ and for some constant $K>0$. As a study of the above question, Liao-Yang [6] proved the following result.

Theorem C. Let f be a transcendental entire function of finite order in S. Then for any constant $a \neq 0, f(z)+a z$ is prime, i.e. $|N P(f)| \leq 1$.

Recently, Wang-Yang [13] proved the following theorem.
Theorem D. Let P, Q be nonconstant polynomials, $\alpha \in B, h$ a periodic entire function of order one and mean type, $G(z)=P \circ h \circ \alpha(z)$. If $F(z)=$ $G^{n}(z)+Q(z)$ has a factorization $F(z)=f(g(z))$, then $g(z)$ must be a common right factor of $\alpha(z)$ and $Q(z)$.

Remark 1. The original statement of Theorem D only requires that h is of order one. Here we would like to point out that h should be at most order one of mean type, as it is needed in the proof of Theorem D, Lemma 5 in [13]. However, f in Lemma 5 should be an entire function of exponential type, i.e. f has order less than one or order one and mean type; see p. 27 in [4].

Remark 2. Let G be defined in Theorem D. Then $G^{n}(z)+a z$ is prime for any constant $a \neq 0$.

As a continuation of the study of our previous work [6], we are able to extend Theorem C to a large class of functions, namely, functions of bounded type. The following is our main result.

Theorem. Let f be a transcendental entire function in B, then for any nonconstant polynomial $P(z), f(z)+P(z)$ is prime unless $f(z)$ and $P(z)$ has a nonlinear common right factor.

2. Some lemmas

Lemma 1 (Rippon and Stallard [11]). Let f be a meromorphic function with a bounded set of all finite critical and asymptotic values. Then there exists $K>0$ such that if $|z|>K$ and $|f(z)|>K$, then

$$
\left|f^{\prime}(z)\right| \geq \frac{|f(z)| \log |f(z)|}{16 \pi|z|}
$$

Lemma 2 ([5]). Let f be a transcendental entire function, and $0<\delta<\frac{1}{4}$. Suppose that at the point z with $|z|=r$ the inequality

$$
\begin{equation*}
|f(z)|>M(r, f) \nu(r, f)^{-(1 / 4)+\delta} \tag{1}
\end{equation*}
$$

holds. Then there exists a set F in R^{+}and of finite logarithmic measure, i.e.,

$$
\int_{F} \frac{d t}{t}<+\infty
$$

such that

$$
\begin{equation*}
f^{(m)}(z)=\left(\frac{\nu(r, f)}{z}\right)^{m}(1+o(1)) f(z) \tag{2}
\end{equation*}
$$

holds whenever m is a fixed nonnegative integer and $r \notin F$.
Lemma 3 (Baker and Singh [1], also see [2]). Let f and g be two entire functions. Then

$$
\operatorname{sing}\left((f \circ g)^{-1}\right) \subset \operatorname{sing}\left(f^{-1}\right) \cup f\left(\operatorname{sing}\left(g^{-1}\right)\right)
$$

Lemma 4 (Polya [10]). Let f and g be two transcendental entire functions. Then

$$
\lim _{r \rightarrow \infty} \frac{M(r, f \circ g)}{M(r, g)}=\infty
$$

Lemma 5. Let f be a transcendental entire function. Then

$$
M\left(r, f^{\prime}\right) \leq M(r, f)^{2}
$$

for a sufficiently large r.
Remark 3. This follows easily from a result of Valiron ([12]):

$$
\lim _{r \rightarrow \infty} \frac{\log M\left(r, f^{\prime}\right)}{\log M(r, f)}=1
$$

3. Proof of the theorem

Let $F(z)=f(z)+P(z), P(z)$ is a nonconstant polynomial. We first prove that F is pseudo-prime. Assume that

$$
F(z)=g(h(z))
$$

where g is a transcendental meromorphic function with at most one pole and h is a transcendental entire function. Thus

$$
\begin{equation*}
f(z)=g(h(z))-P(z), \quad f^{\prime}(z)=g^{\prime}(h(z)) h^{\prime}(z)-P^{\prime}(z) \tag{3}
\end{equation*}
$$

First we consider the case that g is a transcendental entire function, and then we discuss two situations.

Case 1: g^{\prime} has at least two zeros. Then there exists a zero c of g^{\prime} such that $h(z)=c$ has infinitely many roots $\left\{z_{k}\right\}_{k=1}^{\infty}$. Thus we have

$$
f\left(z_{k}\right)=-P\left(z_{k}\right)+g(c), \quad f^{\prime}\left(z_{k}\right)=-P^{\prime}\left(z_{k}\right)
$$

By Lemma 1, we would have

$$
\left|P^{\prime}\left(z_{k}\right)\right| \geq \frac{\left|P\left(z_{k}\right)-g(c)\right| \log \left|P\left(z_{k}\right)-g(c)\right|}{16 \pi\left|z_{k}\right|}
$$

which leads to a contradiction.
Case 2: g^{\prime} has at most one zero. Thus

$$
g^{\prime}(w)=\left(w-w_{0}\right)^{n} e^{\alpha(w)}, \quad f^{\prime}(z)=\left(h(z)-w_{0}\right)^{n} e^{\alpha(h(z))} h^{\prime}(z)-P^{\prime}(z)
$$

where n is a non-negative integer. Let $K(z)=e^{-\alpha(h(z)) /(n+3)}$, and assume that Γ is a simple curve tending to infinity such that if $z \in \Gamma$ and $|z|=r$, then $|K(z)|=M(r, K)$. By Lemmas 4 and 5, we have, if $z \in \Gamma$ and $|z|=r$ is sufficiently large,

$$
\begin{align*}
\left|g^{\prime}(h(z)) h^{\prime}(z)\right| & =\left|\left(h(z)-w_{0}\right)^{n} e^{\alpha(h(z))} h^{\prime}(z)\right| \\
& =\frac{\left|\left(h(z)-w_{0}\right)^{n} h^{\prime}(z)\right|}{M(r, K)^{n+3}} \leq \frac{1}{M(r, K)} \rightarrow 0 . \tag{4}
\end{align*}
$$

Let $L(z)=-\alpha(h(z)) /(n+3)$ and $A(r, L)=\max _{|z|=r} \operatorname{Re} L(z)$. Thus if $z \in \Gamma$, $|K(z)|=M(r, K)=e^{A(r, L)}, \operatorname{Re} L(z)=A(r, L)$. By Hadamard's three-circle theorem, we have, for $r_{1}<r_{2}<r_{3}$,

$$
\begin{equation*}
A\left(r_{2}, L\right) \leq \frac{\log r_{2}-\log r_{1}}{\log r_{3}-\log r_{1}} A\left(r_{3}, L\right)+\frac{\log r_{3}-\log r_{2}}{\log r_{3}-\log r_{1}} A\left(r_{1}, L\right) \tag{5}
\end{equation*}
$$

For $z_{0} \in \Gamma$, we have
(6) $\left|L^{\prime}\left(z_{0}\right)\right|=\lim _{z \rightarrow z_{0}, z \in \Gamma} \frac{\left|L(z)-L\left(z_{0}\right)\right|}{\left|z-z_{0}\right|} \geq \lim _{z \rightarrow z_{0}, z \in \Gamma} \frac{\left|\operatorname{Re} L(z)-\operatorname{Re} L\left(z_{0}\right)\right|}{\left|z-z_{0}\right|}$.

Let $\left|z_{0}\right|=r_{0}$ and $|z|=r_{0}+h, h>0$, then as $z \rightarrow z_{0}, h \rightarrow 0$. Thus, by (5) and (6), we have, for sufficiently large r_{0},

$$
\begin{align*}
\left|L^{\prime}\left(z_{0}\right)\right| & \geq \lim _{z \rightarrow z_{0}, z \in \Gamma} \frac{A\left(r_{0}+h, L\right)-A\left(r_{0}, L\right)}{\left|z-z_{0}\right|} \\
& =\lim _{z \rightarrow z_{0}, z \in \Gamma} \frac{h}{\left|z-z_{0}\right|} \frac{A\left(r_{0}+h, L\right)-A\left(r_{0}, L\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{A\left(r_{0}+h, L\right)-A\left(r_{0}, L\right)}{h} \tag{7}\\
& \geq \lim _{h \rightarrow 0} \frac{\frac{\log \left(1+h / r_{0}\right)}{\log r_{0}}\left(A\left(r_{0}, L\right)-A(1, L)\right)}{h} \\
& =\frac{A\left(r_{0}, L\right)-A(1, L)}{r_{0} \log r_{o}}>1
\end{align*}
$$

Let $w=G(z)=e^{\alpha(h(z)) /(n+3)}=e^{-L(z)}$. Thus 0 is an asymptotic value of G and Γ is the corresponding asymptotic curve, $\gamma=G(\Gamma)$ is a simple curve connecting $G(0)$ and 0 . Let B be the length of γ, which is a finite number. And $d w=e^{-L(z)} L^{\prime}(z) d z$. By this, (4) and (7), if $z \in \Gamma$, we have

$$
\begin{aligned}
|g(h(z))| & =\left|\int_{z_{0} \text { along } \Gamma}^{z} g^{\prime}(h(z)) h^{\prime}(z) d z+g\left(h\left(z_{0}\right)\right)\right| \\
& \leq \int_{z_{0} \text { along } \Gamma}^{z}\left|g^{\prime}(h(z)) h^{\prime}(z)\right||d z|+\left|g\left(h\left(z_{0}\right)\right)\right| \\
& \leq \int_{w_{0} \text { along } \gamma}^{w} \frac{1}{\left|L^{\prime}(z)\right|}|d w|+\left|g\left(h\left(z_{0}\right)\right)\right| \\
& \leq \int_{w_{0} \text { along } \gamma}^{w}|d w|+\left|g\left(h\left(z_{0}\right)\right)\right| \\
& \leq B+\left|g\left(h\left(z_{0}\right)\right)\right|
\end{aligned}
$$

Thus we can find a sequence of $\left\{z_{k}\right\}_{k=1}^{\infty}$ such that $z_{k} \rightarrow \infty$ as $k \rightarrow \infty$, and

$$
f\left(z_{k}\right) \sim-P\left(z_{k}\right), \quad f^{\prime}\left(z_{k}\right) \sim-P^{\prime}\left(z_{k}\right)
$$

A contradiction follows from this and Lemma 1.

If g^{\prime} has just one pole w_{1}, so does g, then $h(z)$ does not assume w_{1}, i.e., $h(z)=e^{\beta(z)}+w_{1}$. Moreover, if g^{\prime} has a zero c, then $h(z)=c$ has infinitely many roots. One can derive a contradiction by arguing similarly as in Case 1. Hence g^{\prime} has no zeros, i.e.,

$$
g^{\prime}(w)=\frac{1}{\left(w-w_{1}\right)^{n}} e^{\alpha(w)}
$$

and

$$
g^{\prime}(h(z)) h^{\prime}(z)=\beta^{\prime}(z) \exp \left(\alpha\left(e^{\beta(z)+w_{1}}\right)+(1-n) \beta(z)\right) .
$$

By the same argument as that in Case 2 above, we can get a contradiction. Thus $F(z)=f(z)+P(z)$ is pseudo-prime. Now we assume that $F(z)$ has the following factorization:

$$
F(z)=f(z)+P(z)=Q(g(z))
$$

where Q is rational, g is a transcendental meromorphic function. If Q is a polynomial, then g is entire. If Q has a pole w_{1}, then $g(z)$ does not assume w_{1}. Thus $h(z)=1 /\left(g(z)-w_{1}\right)$ is an entire function and $F(z)=Q_{1}(h(z))$, where Q_{1} is a rational function. Without loss of generality, we may assume that $g(z)$ is entire, and $Q(w)$ has at most one pole. Now we discuss the following two sub-cases.

Subcase 1: Q has one pole, say w_{0}, i.e., $Q(w)=Q_{1}(w) /\left(w-w_{0}\right)^{n}$, where $Q_{1}(w)$ is a polynomial with degree m and $Q_{1}\left(w_{0}\right) \neq 0$. Then $g(z)=w_{0}+e^{h(z)}$, where $h(z)$ is a nonconstant entire function. Thus we have

$$
\begin{aligned}
f(z) & =Q_{1}\left(w_{0}+e^{h(z)}\right) e^{-n h(z)}-P(z) \\
& =a_{0} e^{-n h(z)}+a_{1} e^{-(n-1) h(z)}+\cdots+a_{m} e^{(m-n) h(z)}-P(z)
\end{aligned}
$$

where $a_{0}, a_{1}, \ldots, a_{m}$ are constants and $a_{m} \neq 0, a_{0}=Q_{1}\left(w_{0}\right) \neq 0$. Thus

$$
\begin{aligned}
f^{\prime}(z)= & \left(-n a_{0} e^{-n h(z)}-(n-1) a_{1} e^{-(n-1) h(z)}+\cdots\right. \\
& \left.\quad+(m-n) a_{m} e^{(m-n) h(z)}\right) h^{\prime}(z)-P^{\prime}(z) \\
= & {\left[-n a_{0}-(n-1) a_{1} e^{h(z)}+\cdots\right.} \\
& \left.\quad+(m-n) a_{m} e^{m h(z)}\right] e^{-n h(z)} h^{\prime}(z)-P^{\prime}(z) \\
= & P_{1}\left(e^{h(z)}\right) e^{-n h(z)} h^{\prime}(z)-P^{\prime}(z),
\end{aligned}
$$

where $P_{1}(w)$ is a polynomial and $P_{1}(0)=-n a_{0} \neq 0$. If $P_{1}(w)$ is a nonconstant polynomial, then $P_{1}(w)$ has a zero $c \neq 0$ and $e^{h(z)}=c$ has infinitely many roots. Let $\left\{z_{k}\right\}_{k=1}^{+\infty}$ be zeros of $e^{h(z)}-c$, then $f^{\prime}\left(z_{k}\right)=-P^{\prime}\left(z_{k}\right)$ and

$$
f\left(z_{k}\right)=\frac{Q_{1}\left(w_{0}+c\right)}{c^{n}}-P\left(z_{k}\right)
$$

Again, by Lemma 1, we have a contradiction. If $P_{1}(w)$ is a constant polynomial, then

$$
f(z)=a_{0} e^{-n h(z)}+a_{m}-P(z), \quad f^{\prime}(z)=-n a_{0} e^{-n h(z)} h^{\prime}(z)-P^{\prime}(z)
$$

Let $K(z)=e^{n h(z)}$ and $\left|z^{\prime}\right|=r,\left|K\left(z^{\prime}\right)\right|=M(r, K)$. Then by Lemma 2, we have, for $r \notin F$,

$$
\begin{aligned}
\left|-n a_{0} e^{-n h\left(z^{\prime}\right)} h^{\prime}\left(z^{\prime}\right)\right| & =\left|a_{0} \frac{1}{K\left(z^{\prime}\right)} \frac{K^{\prime}\left(z^{\prime}\right)}{K\left(z^{\prime}\right)}\right|=\left|a_{0}\right| \frac{1}{M(r, K)} \frac{\nu(r, K)}{r}(1+o(1)), \\
\left|a_{0} e^{-n h\left(z^{\prime}\right)}\right| & =\frac{\left|a_{0}\right|}{M(r, K)} .
\end{aligned}
$$

Noting $\lim _{r \rightarrow \infty}(\nu(r, K) / M(r, K))=0$ for a transcendental entire function K, we can find a sequence of $\left\{z_{k}\right\}_{k=1}^{+\infty}$ such that $\left|f\left(z_{k}\right)\right| \sim\left|P\left(z_{k}\right)\right|,\left|f^{\prime}\left(z_{k}\right)\right| \sim\left|P^{\prime}\left(z_{k}\right)\right|$. A contradiction follows from this and Lemma 1.

Subcase 2: $Q(w)$ has no pole, i.e., $Q(w)$ is a polynomial with degree ≥ 2. If $Q^{\prime}(w)$ has at least two distinct zeros, then there exists a zero w_{1} of $Q^{\prime}(w)$ such that $g(z)=w_{1}$ has infinitely many zeros $\left\{z_{n}\right\}_{n=1}^{+\infty}$. Then

$$
f^{\prime}\left(z_{n}\right)=Q^{\prime}\left(g\left(z_{n}\right)\right)-P^{\prime}\left(z_{n}\right)=-P^{\prime}\left(z_{n}\right), \quad f\left(z_{n}\right)=Q\left(w_{1}\right)+P\left(z_{n}\right)
$$

However, by Lemma 1,

$$
\left|f^{\prime}\left(z_{n}\right)\right| \geq \frac{\left|f\left(z_{n}\right)\right| \log \left|f\left(z_{n}\right)\right|}{16 \pi\left|z_{n}\right|}
$$

which will lead to a contradiction. Therefore, we only need to treat the case that $Q^{\prime}(w)$ has only one zero w_{0}. If $g(z)-w_{0}$ has infinitely many zeros, again a contradiction follows from Lemma 1. Hence, we have

$$
g(z)=w_{0}+p_{1}(z) e^{h(z)} \quad \text { and } \quad Q^{\prime}(z)=A\left(w-w_{0}\right)^{n-1}
$$

where $p_{1}(z)$ is a polynomial, $h(z)$ a nonconstant entire function. Thus

$$
\begin{aligned}
Q(w) & =\frac{A}{n}\left(w-w_{0}\right)^{n}+B, \\
f(z) & =\frac{A}{n} p_{1}(z)^{n} e^{n h(z)}+B-P(z), \\
f^{\prime}(z) & =\frac{A}{n}\left(p_{1}^{\prime}(z)+p_{1}(z) n h^{\prime}(z)\right) e^{n h(z)}-P^{\prime}(z) .
\end{aligned}
$$

Set $K(z)=e^{-n h(z)}$ and let $\left|z^{\prime}\right|=r, K\left(z^{\prime}\right)=M(r, K)$. Then it follows from Lemma 2, for $r \notin F$, that

$$
\begin{aligned}
\left|\frac{A}{n}\left(p_{1}^{\prime}\left(z^{\prime}\right)+p_{1}\left(z^{\prime}\right) n h^{\prime}\left(z^{\prime}\right)\right) e^{n h\left(z^{\prime}\right)}\right| & =\left|\frac{A}{n}\left(\frac{p_{1}^{\prime}\left(z^{\prime}\right)}{K\left(z^{\prime}\right)}-\frac{p_{1}\left(z^{\prime}\right)}{K\left(z^{\prime}\right)} \frac{K^{\prime}\left(z^{\prime}\right)}{K\left(z^{\prime}\right)}\right)\right| \\
& \leq \frac{c r^{t}}{M(r, K)}+\frac{d r^{t} \nu(r, K)}{M(r, K)}
\end{aligned}
$$

where c, d are positive constants, $t=\operatorname{deg} p_{1}-1$. Noting

$$
\lim _{r \rightarrow \infty} \frac{r^{t} \nu(r, K)}{M(r, K)}=0
$$

for a transcendental entire function K, there exists a sequence of $\left\{z_{n}\right\}_{n=1}^{+\infty}$ such that

$$
f\left(z_{n}\right) \sim-P\left(z_{n}\right), \quad f^{\prime}\left(z_{n}\right) \sim-P\left(z_{n}\right)
$$

Again by Lemma 1, we get a contradiction. Thus we have proved that $F(z)=$ $f(z)+P(z)$ is left-prime. Next we show that F is right-prime. Let

$$
F(z)=g(q(z))
$$

where g is a transcendental entire function and $q(z)$ a polynomial with degree ≥ 2. Thus

$$
f(z)=g(q(z))-P(z)
$$

and hence

$$
f^{\prime}(z)=g^{\prime}(q(z)) q^{\prime}(z)-P^{\prime}(z)
$$

First, we prove that $g^{\prime}(w)$ has infinitely many zeros. In fact, if $g^{\prime}(w)$ has only finitely many zeros, then $g^{\prime}(w)=s(w) e^{h(w)}$, where $s(w)$ is a polynomial and $h(w)$ is a nonconstant entire function. Let $K(z)=e^{-h(z) / 3}$. There exists a curve Γ tending to infinity such that if $z \in \Gamma$, then $|K(z)|=M(|z|, K)$. Noting that K is a transcendental entire function, we have that $M(r, K) \geq r^{2 m+2}$ for $r \geq r_{0}$, where $m=\operatorname{deg} s$. Let $w=G(z)=e^{h(z) / 3}$ and $\lambda=G(\Gamma)$. Then $d w=\frac{1}{3} h^{\prime}(z) e^{h(z) / 3}$. If $h(z)$ is nonconstant polynomial, then there exists a positive constant c such that $\left|h^{\prime}(z)\right| \geq c$ for sufficiently large $|z|=r$. If $h(z)$ is transcendental, then $\left|\frac{1}{3} h^{\prime}(z)\right|>1$ for $z \in \Gamma$ and sufficiently large $|z|=r$, by (7). Hence, we have, for $z \in \Gamma$ and $|z| \geq r_{0}$,

$$
\begin{aligned}
\left|g^{\prime}(z)\right| & \leq \frac{1}{M(r, K)^{2}} \\
|g(z)| & =\left|\int_{z_{0} \text { along } \Gamma}^{z} g^{\prime}(z) d z+g\left(z_{0}\right)\right| \leq\left|\int_{w_{0} \text { along } \lambda}^{w}\right| d w| | \leq A
\end{aligned}
$$

where $w_{0}=G\left(z_{0}\right), w=G(z)$ and A is a positive constant. Let γ be a component of $q^{-1}(\Gamma)$, and denote $R=|q(z)|$ for $z \in \gamma$. Then for $z \in \gamma$, we have

$$
|g(q(z))| \leq A, \quad\left|g^{\prime}(z) q^{\prime}(z)\right| \leq \frac{B R^{m+1}}{M(R, K)^{2}} \rightarrow 0, \quad \text { as } z \rightarrow \infty
$$

where A and B are constants. Hence, for $z \in \gamma$, we have

$$
|f(z)| \sim|P(z)|, \quad\left|f^{\prime}(z)\right| \sim\left|P^{\prime}(z)\right|
$$

Again, by Lemma 1, the above estimates will lead to a contradiction as before. Thus g^{\prime} has infinitely many zeros. Now let $n=\operatorname{deg} q$ and $m=\operatorname{deg} P$. Next we will prove that $n \mid m$, i.e., there is a positive integer r such that $m=n r$. Let $\left\{w_{k}\right\}_{k=1}^{\infty}$ denote the zeros of $g^{\prime}(w)$ and set

$$
q(z)=a_{n} z^{n}+a_{n-1} z^{n-1}+\cdots+a_{1} z+a_{0}
$$

We consider the roots of the equation

$$
q(z)=w_{k},
$$

which implies

$$
\begin{equation*}
a_{n} z^{n}(1+o(1))=w_{k} \tag{8}
\end{equation*}
$$

On the other hand, the roots of the above equation can be expressed as

$$
z_{k}^{(j)}=\left|\frac{w_{k}}{a_{n}}\right|^{1 / n} e^{i\left(2 j \pi+\phi_{k}\right) / n}(1+o(1))
$$

where

$$
\phi_{k}=\arg \frac{w_{k}}{a_{n}}, \quad j=0,1,2, \ldots, n-1
$$

Thus

$$
\begin{aligned}
P\left(z_{k}^{(0)}\right) & \sim A\left|w_{k}\right|^{m / n} \\
P\left(z_{k}^{(1)}\right) & \sim e^{2 m \pi i / n} A\left|w_{k}\right|^{m / n} \\
P^{\prime}\left(z_{k}^{(0)}\right) & \sim B\left|w_{k}\right|^{(m-1) / n} \\
P^{\prime}\left(z_{k}^{(1)}\right) & \sim e^{2(m-1) \pi i / n} B\left|w_{k}\right|^{(m-1) / n}
\end{aligned}
$$

where A, B are constants depending on $q(z)$ and $P(z)$ only. Thus we have sequences $\left\{w_{k}\right\}_{k=1}^{\infty}$, with $w_{k} \rightarrow \infty$ as $k \rightarrow \infty,\left\{z_{k}^{(0)}\right\}_{k=1}^{\infty}$ and $\left\{z_{k}^{(1)}\right\}_{k=1}^{\infty}$ such that

$$
\begin{align*}
q\left(z_{k}^{(0)}\right) & =q\left(z_{k}^{(1)}\right)=w_{k} \tag{9}\\
P\left(z_{k}^{(0)}\right)-P\left(z_{k}^{(1)}\right) & \sim\left(1-e^{2 m \pi i / n}\right) A\left|w_{k}\right|^{m / n}, \tag{10}\\
f^{\prime}\left(z_{k}^{(0)}\right) & =-P^{\prime}\left(z_{k}^{(0)}\right) \sim-B\left|w_{k}\right|^{(m-1) / n}, \tag{11}\\
f^{\prime}\left(z_{k}^{(1)}\right) & =-P^{\prime}\left(z_{k}^{(1)}\right) \sim-e^{2(m-1) \pi i / n} B\left|w_{k}\right|^{(m-1) / n}, \tag{12}\\
f\left(z_{k}^{(0)}\right) & =g\left(w_{k}\right)-P\left(z_{k}^{(0)}\right), \tag{13}\\
f\left(z_{k}^{(1)}\right) & =g\left(w_{k}\right)-P\left(z_{k}^{(1)}\right), \tag{14}\\
f\left(z_{k}^{(1)}\right)-f\left(z_{k}^{(0)}\right) & =P\left(z_{k}^{(0)}\right)-P\left(z_{k}^{(1)}\right) \tag{15}
\end{align*}
$$

If $n \nmid m$, then $1-e^{2 m \pi i / n} \neq 0$. Now we discuss two subcases.
Subcase 1: $\left\{f\left(z_{k}^{(0)}\right)\right\}_{k=1}^{\infty}$ is bounded. We have, by (10)-(15),

$$
\begin{equation*}
\left|f\left(z_{k}^{(1)}\right)\right| \sim\left|\left(1-e^{2 m \pi i / n}\right) A\right|\left|w_{k}\right|^{m / n} . \tag{16}
\end{equation*}
$$

By this and Lemma 1, we obtain that

$$
\begin{aligned}
|B|\left|w_{k}\right|^{(m-1) / n} & \sim \left\lvert\, f^{\prime}\left(z_{k}^{(1)} \left\lvert\, \geq \frac{\left|f\left(z_{k}^{(1)}\right)\right| \log \left|f\left(z_{k}^{(1)}\right)\right|}{16 \pi\left|z_{k}^{(1)}\right|}\right.\right.\right. \\
& \sim C\left|w_{k}\right|^{(m-1) / n} \log \left(\left|\left(1-e^{2 m \pi i / n}\right) A\right|\left|w_{k}\right|^{m / n}\right)
\end{aligned}
$$

where

$$
C=\frac{\left|\left(1-e^{2 m \pi i / n}\right) A\right|\left|a_{n}\right|^{1 / n}}{16 \pi}
$$

which is a contradiction.
Subcase 2: $\left\{f\left(z_{k}^{(0)}\right)\right\}_{k=1}^{\infty}$ is unbounded. Then there exists a sub-sequence of $\left\{f\left(z_{k}^{(0)}\right)\right\}_{k=1}^{\infty}$ tending to infinity, which we may, without confusing, denote by the original sequence: $\left\{f\left(z_{k}^{(0)}\right)\right\}_{k=1}^{\infty}$. Thus by Lemma 1, we have

$$
\begin{aligned}
|B|\left|w_{k}\right|^{(m-1) / n} & \sim \left\lvert\, f^{\prime}\left(z_{k}^{(0)} \left\lvert\, \geq \frac{\left|f\left(z_{k}^{(0)}\right)\right| \log \left|f\left(z_{k}^{(0)}\right)\right|}{16 \pi\left|z_{k}^{(0)}\right|}\right.\right.\right. \\
& \sim \frac{\left|a_{n}\right|^{1 / n}\left|f\left(z_{k}^{(0)}\right)\right| \log \left|f\left(z_{k}^{(0)}\right)\right|}{16 \pi\left|w_{k}\right|^{1 / n}}
\end{aligned}
$$

Hence,

$$
\left|f\left(z_{k}^{(0)}\right)\right|=o\left(\left|w_{k}^{(m / n)}\right|\right)
$$

Thus

$$
\left|f\left(z_{k}^{(1)}\right)\right| \sim\left|\left(1-e^{2 m \pi i / n}\right) A\right|\left|w_{k}^{m / n}\right| .
$$

By arguing similarly as in Subcase 1, we will arrive at a contradiction. Hence $n \mid m$. Finally, we will prove that $q(z)$ is a common right factor of $f(z)$ and $P(z)$. If $q(z)$ is not a right factor of $P(z)$, then there exist polynomials Q and P_{1} with $0<\operatorname{deg} P_{1}<n=\operatorname{deg} q$ such that

$$
P(z)=Q(q(z))+P_{1}(z)
$$

Thus

$$
G(z)=f(z)+P_{1}(z)=g(q(z))-Q(q(z))=g_{1}(q(z)),
$$

where $g_{1}(w)=g(w)-Q(w)$ is a transcendental entire function. By arguing similarly as in the subcase above, it follows that $n \mid \operatorname{deg} P_{1}$, which is a contradiction. Thus, $P(z)=Q(q(z))$ and $f(z)=g(q(z))-Q(q(z))$. The conclusion follows.

4. Concluding remarks

Corollary. Let f be a transcendental entire function in B, then for any constant $a \neq 0, f(z)+a z$ is prime.

Remark 4. This corollary shows that if $f(z)-a z \in B$ for some constant a, then $|N P(f)| \leq 1$.

Remark 5. If h is a periodic entire function of order one and mean type, then $h \in B$. Thus if $G(z)$ is as stated in Theorem D , then $G^{n} \in B$.

Remark 6. The condition $f \in B$ in the above theorem and corollary is not removable. For example, $f(z)=e^{z} e^{e^{z}}+e^{z}$, then $f(z)=\left(w e^{w}+w\right) \circ e^{z}$, and $f(z)+z=\left(e^{w}+w\right) \circ\left(e^{z}+z\right)$. This example shows the cardinality of $N P(f)$ may be greater than one if $f \notin B$.

Remark 7. If f is an entire function such that $\operatorname{sing}\left(f^{-1}\right) \subset \mathbf{R}$, then, by Lemma 3, $\sin (f(z)) \in B$ and $\cos (f(z)) \in B$. Thus, for any constant $a \neq 0$, $\sin (f(z))+a z$ and $\cos (f(z))+a z$ are prime. It was mentioned in [2] that the Pólya-Laguerre class $L P$ consists of all entire functions f which have a representation

$$
f(z)=\exp \left(-a z^{2}+b z+c\right) z^{n} \prod\left(1-\frac{z}{z_{k}}\right) \exp \left(\frac{z}{z_{k}}\right)
$$

where $a, b, c \in \mathbf{R}, a \geq 0, n \in \mathbf{N}_{0}, z_{k} \in \mathbf{R} \backslash\{0\}$ for all $k \in \mathbf{N}$, and $\sum_{k=1}^{\infty}\left|z_{k}\right|^{-2}<$ ∞. Furthermore, if $f_{1}, f_{2}, \ldots, f_{n} \in L P$, and $f=f_{1} \circ f_{2} \circ \cdots \circ f_{n}$, then $\operatorname{sing}\left(f^{-1}\right) \subset$ \mathbf{R}. Thus, for example, $\sin (f(z))+a z$ is prime for $a \neq 0$, when $f \in L P$.

References

[1] BAKER, I. N., and A. Singh: Wandering domains in the iteration of compositions of entire functions. - Ann. Acad. Sci. Fenn. Math. 20, 1995, 149-153.
[2] Bergweiler, W., and Y.F. Wang: On the dynamics of composite entire functions. Ark. Mat. 36, 1998, 31-39.
[3] Chuang, Chi-Tai, and Chuang-Chun Yang: Fix-Points and Factorization of Meromorphic Functions. - World Scientific, Singapore-New Jersey-London-Hong Kong, 1990.
[4] Gross, F.: Factorization of Meromorphic Functions. - U. S. Government Printing Office, 1972.
[5] Laine, I.: Nevanlinna Theory and Complex Differential Equations. - Walter de Gruyter, Berlin-New York, 1993.
[6] Liao, L. W., and C. C. Yang: On factorizations of entire functions of finite type. Preprint.
[7] Nevanlinna, R.: Eindeutige analytische Funktionen. - Springer-Verlag, Berlin-Göttin-gen-Heidelberg, 1953.
[8] Noda, Y.: On factorization of entire functions. - Kodai Math. J. 4, 1981, 480-494.
[9] Ozawa, M., and K. Sawada: A theorem on factorization of certain entire functions. Complex Variables Theory Appl. 34, 1997, 181-185.
[10] Polya, G.: On an integral of an integral function. - J. London Math. Soc. 1, 1926, 12-15.
[11] Rippon, P. J., and G. M. Stallard: Iteration of a class of hyperbolic meromorphic functions. - Proc. Amer. Math. Soc. 127, 1999, 3251-3258.
[12] Valiron, G.: Lecture on the general theory of integral functions. -Toulous, Edouard privat, 1923.
[13] WANG, X. L., and C. C. Yang: On the factorization of a certain class of entire functions. - Indian J. Pure Appl. Math. 33, 2002, 1727-1741.

