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Abstract. Pointwise multipiers from weighted Bergman spaces and Hardy spaces to weighted
Bergman spaces are characterized by using Bloch type spaces, BMOA type spaces, weighted
Bergman spaces and tent spaces.

1. Introduction

Let D = {z : |z| < 1} be the unit disk in the complex plane, and let ∂D =
{z : |z| = 1} be the unit circle. Let H(D) be the space of all analytic functions on
the unit disk D . For 0 < p < ∞ , let Hp denote the Hardy space which contains
f ∈ H(D) such that

‖f‖p
Hp = sup

0<r<1

1

2π

∫ 2π

0

|f(reiθ)|p dθ < ∞.

For 0 < p < ∞ and −1 < α < ∞ , let Lp,α denote the weighted Lebesgue spaces
which contain measurable functions f on D such that

‖f‖p
p,α =

∫

D

|f(z)|p dAα(z) < ∞,

where dAα(z) = (1 − |z|2)α dA(z) = (1 − |z|2)α dx dy/π . We also denote by
Lp,α

a = Lp,α ∩ H(D), the weighted Bergman space on D , with the same norm as
above. If α = 0, we simply write them as Lp and Lp

a , respectively.
Let g be an analytic function on D , let X and Y be two spaces of analytic

functions. We say that g is a pointwise multiplier from X into Y if gf ∈ Y for
any f ∈ X . The space of all pointwise multipliers from the space X into the space
Y will be denoted by M(X, Y ). In this paper we will give complete criteria of the
pointwise multipliers between two weighted Bergman spaces and between a Hardy
space and a weighted Bergman space. Let Mg be the multiplication operator
defined by Mgf = fg . A simple application of the closed graph theorem shows

2000 Mathematics Subject Classification: Primary 47B38.



140 Ruhan Zhao

that g is a pointwise multiplier between two weighted Bergman spaces or between
a Hardy space and a weighted Bergman space if and only if Mg is a bounded
operator between the same spaces.

Pointwise multipliers are closely related to Toeplitz operators and Hankel
operators. They have been studied by many authors. See [Ax1], [Ax2], [At], [F]
and [Vu] for a few examples. In [At], the pointwise multipliers between unweighted
Bergman spaces were characterized. In [F], the pointwise multipliers between the
Hardy space H2 and the unweighted Bergman space L2

a were characterized by
using the Carleson measure. Our results generalize their results.

In order to state our results, we need notation of various other function spaces.

First, for 0 < α < ∞ , we say an analytic function f on D is in the α -Bloch
space Bα , if

sup
z∈D

|f ′(z)|(1 − |z|2)α < ∞.

As α = 1, B1 = B , the well-known Bloch space. As 0 < α < 1, the space
Bα = Lip1−α , the analytic Lipshitz space which contains analytic functions f on
D satisfying

|f(z) − f(w)| ≤ C|z − w|1−α,

for any z and w in D (see [D2]). If α > 1, it is known that f ∈ Bα if and only if

sup
z∈D

|f(z)|(1 − |z|2)α−1 < ∞,

or the antiderivative of f is in Bα−1 .

Next, we define a general family of function spaces. We will use a special
Möbius transformation ϕa(z) = (a − z)/(1 − āz), which exchange 0 and a , and
has derivative ϕ′

a(z) = −(1 − |a|2)/(1 − āz)2 . Let p , q and s be real numbers
such that 0 < p < ∞ , −2 < q < ∞ and 0 < s < ∞ . We say that an analytic
function f on D belongs to the space F (p, q, s), if

‖f‖p
F (p,q,s) = sup

a∈D

∫

D

|f ′(z)|p(1 − |z|2)q
(

1 − |ϕa(z)2|
)s

dA(z) < ∞.

The spaces F (p, q, s) were introduced in [Z2]. They contain, as special cases, many
classical function spaces. See [Z2] for the details. It was proved in [Z1] that, for
−1 < α < ∞ , F (p, pα − 2, s) = Bα for any p > 0 and any s > 1 (see also [Z2,
Theorem 1.3]). When s = 1, we define BMOA type spaces as follows: BMOAα

p =
F (p, pα − 2, 1). Unlike the α -Bloch spaces, the spaces BMOAα

p are different for

different values of p ([Z2, Theorem 6.5]). It is known that, BMOA1
2 = BMOA,

the classical space of analytic functions of bounded mean oscillation.
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We also need a version of tent spaces. Let µ be a Borel measure on D ; we
say that an analytic function f is in the tent space T p

q (dµ) if

‖f‖T q

p (dµ) =

(
∫ 2π

0

(
∫

Γ(θ)

|f(z)|q
dµ(z)

(1 − |z|2)

)p/q

dθ

)1/p

< ∞,

where Γ(θ) is the Stolz angle at θ , which is defined for real θ as the convex hull
of the set {eiθ} ∪

{

z : |z| <
√

1/2
}

. The tent spaces were introduced in [CMS].
The above version of tent spaces was introduced in [L4].

Our main results are the following two theorems.

Theorem 1. Let g be an analytic function on D , let −1 < α, β < ∞ and

let γ = (β + 2)/q − (α + 2)/p .

(i) If 0 < p ≤ q < ∞ and γ > 0 then M(Lp,α
a , Lq,β

a ) = B1+γ .

(ii) If 0 < p ≤ q < ∞ and γ = 0 then M(Lp,α
a , Lq,β

a ) = H∞ .

(iii) If 0 < p ≤ q < ∞ , and γ < 0 then M(Lp,α
a , Lq,β

a ) = {0} .

(iv) If 0 < q < p < ∞ , then M(Lp,α
a , Lq,β

a ) = Ls,δ
a , where 1/s = 1/q − 1/p and

δ/s = β/q − α/p .

Theorem 2. Let g be an analytic function on D , let −1 < β < ∞ and

γ = (β + 2)/q − 1/p .

(i) If 0 < p < q < ∞ , and γ > 0 , then M(Hp, Lq,β
a ) = B1+γ .

(ii) If 0 < p < q < ∞ , and γ = 0 , then M(Hp, Lq,β
a ) = H∞ .

(iii) If 0 < p < q < ∞ , and γ < 0 , then M(Hp, Lq,β
a ) = {0} .

(iv) If 0 < q < p < ∞ , then M(Hp, Lq,β
a ) = T q

s (dAβ) , where 1/s = 1/q − 1/p .

(v) If 0 < p = q < ∞ then M(Hp, Lq,β
a ) = BMOA1+(β+1)/p

p .

Remark. The results of Theorem 1 for the unweighted cases (i.e., α = β = 0)
were obtained by Attele in [At]. Note that, when α = β = 0, the case (i) in
Theorem 1 will never happen since two restrictions about p and q there contradict
to each other. However, if α and β are not zeros, then the case (i) in Theorem 1
may happen if α < β .

2. Carleson type measures

Carleson type measures are the main tools of our investigation. Let X be
a space of analytic functions on D . Following the notations in [AFP], we say a
Borel measure dµ on D is an (X, q)-Carleson measure if

∫

D

|f |q dµ(z) ≤ C‖f‖q
X

for any function f ∈ X .
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Let I ⊂ ∂D be an arc. Denote by |I| the normalized arc length of I so that
|∂D| = 1. Let S(I) be the Carleson box defined by

S(I) = {z : 1 − |I| < |z| < 1, z/|z| ∈ I}.

There are many different versions of Carleson type theorems. Here we collect those
results we need later.

The first result is the classical result due to L. Carleson [C] for the case p = q
and P. Duren [D1] for the case p < q . A proof of the equivalence of (ii) and (iii)
can be found in [ASX].

Theorem A. For µ a positive Borel measure on D and 0 < p ≤ q < ∞ , the

following statements are equivalent:

(i) The measure µ is an (Hp, q) -Carleson measure.

(ii) There is a constant C1 > 0 such that, for any arc I ⊂ ∂D ,

µ
(

S(I)
)

≤ C1|I|
q/p.

(iii) There is a constant C2 > 0 such that, for every a ∈ D ,
∫

D

|ϕ′
a(z)|q/p dµ(z) ≤ C2.

For the case 0 < q < p < ∞ , the following result is due to I. V. Videnskii
([Vi]) and D. Leucking ([L3]).

Theorem B. For µ a positive Borel measure on D and 0 < q < p < ∞ , the

following statements are equivalent:

(i) The measure µ is an (Hp, q) -Carleson measure.

(ii) The function θ →
∫

Γ(θ)
dµ/(1 − |z|2) belongs to Lp/(p−q) , where Γ(θ) is the

Stolz angle at θ .

For the weighted Bergman spaces Lp,α
a , the following result was obtained by

several authors and can be found in [L1]. The equivalence of (ii) and (iii) is the
same as the equivalence of (ii) and (iii) in Theorem A.

Theorem C. For µ a positive Borel measure on D , 0 < p ≤ q < ∞ , and

−1 < α < ∞ , the following statements are equivalent:

(i) The measure µ is an (Lp,α
a , q) -Carleson measure.

(ii) There is a constant C1 > 0 such that, for any arc I ⊂ ∂D ,

µ
(

S(I)
)

≤ C1|I|
(2+α)q/p.

(iii) There is a constant C2 > 0 such that, for every a ∈ D ,
∫

D

|ϕ′
a(z)|(2+α)q/p dµ(z) ≤ C2.

We denote by D(z) = D
(

z, 1
4

)

=
{

w : |ϕz(w)| < 1
4

}

. For the case 0 < q <
p < ∞ , the following result is due to D. Luecking ([L2] and [L4]), for the case
α = 0. For −1 < α < ∞ , the result can be similarly proved as in [L4].
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Theorem D. For µ a positive Borel measure on D , 0 < q < p < ∞ and

−1 < α < ∞ , the following statements are equivalent:

(i) The measure µ is an (Lp,α
a , q) -Carleson measure.

(ii) The function z → µ
(

D(z)
)

(1 − |z|2)−2−α ∈ Lp/(p−q),α .

3. Proofs of the theorems

In order to give a unified proof of (i), (ii) and (iii) of Theorem 1, we first give
a simple integral criterion for H∞ which seems not to be seen in literature.

Lemma 1. Let p > 0 and let f ∈ H(D) . Then the following conditions are

equivalent:

(i) f ∈ H∞ .

(ii) {f ◦ ϕa} is a bounded subset of Lp,α
a for some α > −1 .

(iii) {f ◦ ϕa} is a bounded subset of Lp,α
a for all α > −1 .

(iv) supa∈D

∫

D
|f(z)|p(1 − |z|)−2

(

1 − |ϕa(z)|2
)s

dA(z) < ∞ for some s > 1 .

(v) supa∈D

∫

D
|f(z)|p(1 − |z|)−2

(

1 − |ϕa(z)|2
)s

dA(z) < ∞ for all s > 1 .

Proof. Let f ∈ H∞ . Then

sup
a∈D

∫

D

|f ◦ ϕa(z)|p(1 − |z|)α dA(z) ≤ ‖f‖p
H∞

∫

D

(1 − |z|2)α dA(z) < ∞

for any α > −1. Thus (i) implies (iii). It is trivial that (iii) implies (ii).
Let {f ◦ ϕa} be a bounded subset of Lp,α

a for α > −1. If α ≥ 0, we fix an
r ∈ (0, 1). By subharmonicity of |f ◦ ϕa|

p , we get

(1)

|f(a)|p = |f ◦ ϕa(0)|p ≤
1

r2

∫

D(0,r)

|f ◦ ϕa(z)|p dA(z)

≤
1

r2(1 − r2)α

∫

D(0,r)

|f ◦ ϕa(z)|p(1 − |z|2)α dA(z).

Thus

sup
a∈D

|f(a)|p ≤ c(r) sup
a∈D

∫

D

|f ◦ ϕa(z)|p(1 − |z|2)α dA(z) < ∞.

So f ∈ H∞ . For the case −1 < α < 0, we notice that

∫

D

|f ◦ ϕa(z)|p dA(z) ≤

∫

D

|f ◦ ϕa(z)|p(1 − |z|2)α dA(z).

Thus this reduces the problem to the case α = 0. Thus (ii) implies (i).
If we change the variable ϕa(z) by w and let s = α+2, then it is easy to see

that (iv) is equivalent to (ii), and (v) is equivalent to (iii). The proof is complete.
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Replacing f by f ′ , we immediately have an integral criterion for the space
B0 = {f ∈ H(D), f ′ ∈ H∞} .

Lemma 2. Let p > 0 and let f ∈ H(D) . Then the following conditions are

equivalent:

(i) f ∈ B0 .

(ii) {f ′ ◦ ϕa} is a bounded subset of Lp,α
a for some α > −1 .

(iii) {f ′ ◦ ϕa} is a bounded subset of Lp,α
a for all α > −1 .

(iv) f ∈ F (p,−2, s) for some s > 1 .

(v) f ∈ F (p,−2, s) for all s > 1 .

We also need the following lemma.

Lemma 3. Let 0 < p < ∞ , q < −2 and s > 0 . Let f ∈ H(D) . If

(2) sup
a∈D

∫

D

|f(z)|p(1 − |z|)q
(

1 − |ϕa(z)|2
)s

dA(z) < ∞,

then f = 0 .

Proof. Let 0 < p < ∞ , q < −2 and s > 0. Let f ∈ H(D) and satisfy (2). Fix
r ∈ (0, 1). Similarly as in the proof of Lemma 1, by subharmonicity of |f ◦ ϕa|

p ,
we get

|f(a)|p = |f ◦ ϕa(0)|p ≤
1

r2

∫

D(0,r)

|f ◦ ϕa(w)|p dA(w)

=
1

r2

∫

D(a,r)

|f(z)|p|ϕ′
a(z)|2 dA(z)

≤
16

r2(1 − |a|2)2

∫

D(a,r)

|f(z)|p dA(z),

where D(a, r) = {z : |ϕa(z)| < r} . It is known that, for z ∈ D(a, r), 1 − |z|2 ∼
1 − |a|2 (see [Zhu, p. 61]). Thus

|f(a)|p(1 − |a|2)q+2 ≤
16C

r2

∫

D(a,r)

|f(z)|p(1 − |z|2)q dA(z)

≤
16C

r2(1 − r2)s

∫

D(a,r)

|f(z)|p(1 − |z|2)q(1 − |ϕa(z)|2)s dA(z).

Thus, if (2) holds then

sup
a∈D

|f(a)|(1− |a|2)q+2 ≤ M < ∞,

where M is an absolute constant. Thus |f(a)| ≤ M(1−|a|2)−q−2 . When q < −2,
−q − 2 > 0. Letting |a| → 1 we see that lim|a|→1 |f(a)| = 0. By the maximal
principle, we get that f(z) = 0 for any z ∈ D .

Now we are ready to prove Theorem 1.
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Proof of Theorem 1. By definition, an analytic function g ∈ M(Lp,α
a , Lq,β

a ) if
and only if, for any f ∈ Lp,α

a ,

(3)

∫

D

|f(z)g(z)|q dAβ(z) ≤ C‖f‖q
p,α.

Let dµg(z) = |g(z)|q dAβ(z). Then (3) means that dµg is an (Lp,α
a , q)-Carleson

measure.
Now we will prove (i), (ii) and (iii) at the same time. By Theorem C, if

0 < p ≤ q < ∞ , (3) is equivalent to the fact that

sup
a∈D

∫

D

|ϕ′
a(z)|(2+α)q/p dµg(z) < ∞,

which is the same as

(4) sup
a∈D

∫

D

|g(z)|q(1 − |z|2)β−(2+α)q/p
(

1 − |ϕa(z)|2
)(2+α)q/p

dA(z) < ∞.

Notice that, as q ≥ p , (2 + α)q/p > 1. Let G be an antiderivative of g .
If (β + 2)/q − (α + 2)/p > 0, then β − (2 + α)q/p > −2. By Theorem 1

of [Z1] (see also Theorem 1.3 of [Z2]), (4) means G ∈ B(β−(2+α)q/p+2)/q =
B(β+2)/q−(α+2)/p , which is equivalent to the fact that g = G′ ∈ B1+(β+2)/q−(α+2)/p .
Thus (i) is proved.

If (β + 2)/q − (α + 2)/p = 0 then β − (α + 2)q/p = −2. By Lemma 1, (4) is
equivalent to that g ∈ H∞ , which proves (ii).

If (β + 2)/q − (α + 2)/p < 0, then β − (α + 2)q/p < −2. By Lemma 3, (4)
implies g = 0, which proves (iii).

For proving (iv), we use Theorem D. Let 0 < q < p < ∞ . By Theorem D,
(3) is equivalent to the fact that

∫

D

(

µg

(

D
(

z, 1
4

))

(1 − |z|2)−2−α
)p/(p−q)

dAα(z) < ∞,

where dµg is given above. Thus

(5)

∫

D

(

1

(1 − |z|2)2+α

∫

D(z,1/4)

|g(w)|q dAβ(w)

)p/(p−q)

dAα(z) < ∞.

By subharmonicity of |g|q , it is easy to see that (see the proof of Lemma 3 above),

|g(z)|q(1 − |z|2)β+2 ≤ C

∫

D(z,1/4)

|g(w)|q dAβ(w).
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Thus (5) implies that

(6)

∫

D

(

|g(z)|q(1 − |z|2)β−α
)p/(p−q)

dAα(z)

=

∫

D

|g(z)|pq/(p−q)(1 − |z|2)(βp−αq)/(p−q) dA(z) < ∞.

Let 1/s = 1/q − 1/p and δ/s = β/q − α/p . Then s = pq/(p − q) and δ =
(βp − αq)/(p − q). Thus (6) means g ∈ Ls,δ

a .

Conversely, if g ∈ Ls,δ
a , then an easy application of Hölder’s inequality shows

that g ∈ M(Lp,α
a , Lq,β

a ). The proof is complete.

We need some preliminary results for proving Theorem 2(v).

Proposition 1. Let f ∈ H(D) and let 0 < p < ∞ . Then f ∈ Lp,α
a if and

only if f (n)(z)(1 − |z|2)n ∈ Lp,α , and ‖f‖p,α is comparable to

n−1
∑

k=1

|f (k)(0)| + ‖f (n)(z)(1 − |z|2)n‖p,α.

For the case 1 ≤ p < ∞ , a proof is given in [HKZ, pp. 12–13]. When
0 < p < 1, the unweighted case (α = 0) was proved by J. Shi in [S, Theorem 3]
(in fact, Shi’s proof was given for the unit ball of Cn ). The proof of the weighted
case is similar to that in [S]. We sketch the proof here for completion.

Denote by Tnf(z) = f (n)(z)(1 − |z|2)n and

Mp
p (r, f) =

1

2π

∫ 2π

0

|f(reiθ)|p dθ.

We need the following lemma.

Lemma 4. Let f ∈ H(D) and 0 < p < ∞ . Then, for any integer n > 0 ,

(i) if Tnf ∈ Lp,α then
∫ 1

0
Mp

p (r, Tnf) dr ≤ K‖Tnf‖p
p,α;

(ii) if
∫ 1

0
Mp

p (r, Tnf)(1 − r2)α dr < ∞ then Tnf ∈ Lp,α and

‖Tnf‖p
p,α ≤ K

∫ 1

0

Mp
p (r, Tnf)(1 − r2)α dr.

The proof is the same as the proof of Lemma 9 in [S], and so is omitted here.
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Proof of Proposition 1. Let Tnf(z) = f (n)(z)(1− |z|2)n . Let f ∈ Lp,α
a . Then

by [S, Theorem 1] and Lemma 4,

‖Tnf‖p
p,α ≤ K

∫ 1

0

Mp
p (r, Tnf)(1 − r2)α dr = K

∫ 1

0

Mp
p (r, f (n))(1 − r2)np+α dr

≤ K

∫ 1

0

Mp
p (r, f)(1− r2)α dr ≤ K‖f‖p

p,α.

This proved that Tnf ∈ Lp,α and ‖Tnf‖p,α ≤ K‖f‖p,α . On the other hand, by
Proposition 1.1 in [HKZ, p. 2], we see that

|f (n)(0)| ≤ K‖f‖p,α.

Thus
n−1
∑

k=1

|f (k)(0)| + ‖Tnf‖p,α ≤ K‖f‖p,α.

Conversely, let Tnf ∈ Lp,α . Then by [S, Theorem 2] and Lemma 4, we get

‖f‖p
p,α ≤ K

∫ 1

0

Mp
p (r, Tnf)(1 − r2)α dr

≤ K

(n−1
∑

k=1

|f (n)(0)|p +

∫ 1

0

Mp
p (r, Tnf)(1 − r2)α dr

)

≤ K

(n−1
∑

k=1

|f (n)(0)|p + ‖Tnf‖p
p,α

)

,

which implies that

‖f‖p,α ≤ K

(n−1
∑

k=1

|f (k)(0)| + ‖Tnf‖p,α

)

.

The proof is complete.

Proposition 2. Let f ∈ H(D) . Let 0 < p < ∞ , −2 < q < ∞ and n ∈ N .

Then f ∈ F (p, q, 1) if and only if

sup
a∈D

∫

D

|f (n)(z)|p(1 − |z|2)(n−1)p+q
(

1 − |ϕa(z)|2
)

dA(z) < ∞.

Remark. Since BMOAα
p = F (p, pα − 2, 1), Proposition 2 says that, for

0 < p < ∞ and 0 < α < ∞ , f ∈ BMOAα
p if and only if

sup
a∈D

∫

D

|f (n)(z)|p(1 − |z|2)(n−1+α)p−2
(

1 − |ϕa(z)|2
)

dA(z) < ∞.

Using Proposition 1, the proof of Proposition 2 is exactly the same as the
proof of Theorem 4.2.1 in [R], and so is omitted here. Note that, however, the
proof cannot go through for the general space F (p, q, s) when 0 < s < 1 and
0 < p < 1, even with Proposition 1.
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Proof of Theorem 2. We will prove (i), (ii), (iii) and (v) at the same time,
by using Theorem A. The proof is similar to the proof of Theorem 1. Let g ∈
M(Hp, Lq,β

a ). This means, for any f ∈ Hp ,

(7)

∫

D

|f(z)g(z)|q dAβ(z) ≤ C‖f‖q
Hp .

Let dµg(z) = |g(z)|q dAβ(z). Then (7) says that µg is an (Hp, q)-Carleson mea-
sure. If 0 < p ≤ q < ∞ , by Theorem A, this is equivalent to the fact that

sup
a∈D

∫

D

|ϕ′
a(z)|q/p dµg(z) < ∞,

which is the same as

(8) sup
a∈D

∫

D

|g(z)|q(1 − |z|2)β−q/p
(

1 − |ϕa(z)|2
)q/p

dA(z) < ∞.

If q > p then q/p > 1. Let G be an antiderivative of g . By Theorem 1 of [Z1], if
(β + 2)/q − 1/p > 0, then β − q/p > −2 and so (8) means G ∈ B(β−q/p+2)/q =
B(β+2)/q−1/p , which is equivalent to the fact that g = G′ ∈ B1+(β+2)/q−1/p . Thus
(i) is proved.

If (β + 2)/q − 1/p = 0 then β − q/p = −2. By Lemma 1, (8) is equivalent to
that g ∈ H∞ , which proves (ii).

If (β + 2)/q − 1/p < 0, then β − q/p < −2, by Lemma 3, (8) implies g = 0,
which proves (iii).

If q = p , then (8) is the same as

(9) sup
a∈D

∫

D

|g(z)|p(1 − |z|2)β−1
(

1 − |ϕa(z)|2
)

dA(z) < ∞.

Applying Proposition 2 to the antiderivative G of g with n = 2 and q = β − 1 >
−2, we see that (9) is equivalent to

sup
a∈D

∫

D

|g′(z)|p(1 − |z|2)p+β−1
(

1 − |ϕa(z)|2
)

dA(z) < ∞.

Thus, g ∈ F (p, p + β − 1, 1) = F
(

p, p
(

1 + (β + 1)/p
)

− 2, 1
)

= BMOA1+(β+1)/p
p .

This proves (v).

For proving (iv), we use Theorem B. By Theorem B, the fact that µg is an
(Hp, q)-Carleson measure is equivalent to that the function

θ →

∫

Γ(θ)

dµg(z)

1 − |z|2
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belongs to Lp/(p−q) , where Γ(θ) is the Stolz angle at θ , and dµg is given above.
Thus

∫ 2π

0

(
∫

Γ(θ)

dµg(z)

1 − |z|2

)p/(p−q)

dθ < ∞,

or
∫ 2π

0

(
∫

Γ(θ)

|g(z)|q dAβ(z)

1 − |z|2

)p/(p−q)

dθ < ∞,

which means g ∈ T q
s (dAβ), where 1/s = 1/q− 1/p . Thus (iv) holds and the proof

is completed.
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Angew. Math. 363, 1985, 110–145.

[ASX] Aulaskari, R., D.A. Stegenga, and J. Xiao: Some subclasses of BMOA and their
characterization in terms of Carleson measures. - Rocky Mountain J. Math. 26, 1996,
485–506.

[At] Attele, K.R.M.: Analytic multipliers of Bergman spaces. - Michigan Math. J. 31, 1984,
307–319.

[Ax1] Axler, S.: Multiplication operators on Bergman spaces. - J. Reine Angew. Math. 336,
1982, 26–44.

[Ax2] Axler, S.: Zero-multipliers of Bergman spaces. - Canad. Math. Bull. 28, 1985, 237–242.

[C] Carleson, L.: Interpolation by bounded analytic functions and the corona problem. -
Ann. of Math. 76, 1962, 547–559.

[CMS] Coifman, R.R., Y. Meyer, and E.M. Stein: Some new function spaces and their
applications to harmonic analysis. - J. Funct. Anal. 62, 1985, 304–335.

[D1] Duren, P.: Extension of a theorem of Carleson. - Bull. Amer. Math. Soc. 75, 1969, 143–
146.

[D2] Duren, P.: Theory of Hp Spaces. - Pure and Applied Mathematics 38, Academic Press,
New York–London, 1970.

[F] Feldman, N. S.: Pointwise multipliers from the Hardy space to the Bergman space. -
Illinois J. Math. 43, 1999, 211–221.

[HKZ] Hedenmalm, H., B. Korenblum, and K. Zhu: Theory of Bergman Spaces. - Grad.
Texts in Math. 199, Springer-Verlag, 2000.

[L1] Luecking, D.H.: Forward and reverse Carleson inequalities for functions in Bergman
spaces and their derivatives. - Amer. J. Math. 107, 1985, 85–111.

[L2] Luecking, D.H.: Multipliers of Bergman spaces into Lebesgue spaces. - Proc. Edinburgh
Math. Soc. (2) 29, 1986, 125–131.

[L3] Luecking, D.H.: Embedding derivatives of Hardy spaces into Lebesgue spaces. - Proc.
London Math. Soc. (3) 63, 1991, 595–619.

[L4] Luecking, D.H.: Embedding theorems for spaces of analytic functions via Khinchine’s
inequality. - Michigan Math. J. 40, 1993, 333–358.
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