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SIMPLE GEODESICS ON SURFACES OF GENUS 2
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Abstract. We derive various identities satisfied by the spectrum of lengths of simple
geodesics of a surface of genus 2.

1. Introduction

In previous articles [McS3], [McS2] we demonstrated the existence of several
curious identities satisfied by the lengths of simple geodesics on a punctured torus
T equipped with a hyperbolic structure, i.e., a complete metric of curvature −1.
These identities took the form of infinite series over the collection of all simple
geodesics, namely (cusp identity):
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,

where the sum extends over all closed simple geodesics and (Weierstrass identi-

ties):
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where the sum runs over all closed simple geodesics in the same class Z/2Z -
homology class. Recall that H1(T,Z/2Z) ' Z/2Z + Z/2Z ; each closed simple
geodesic γ on M belongs to one of the three non-trivial Z/2Z -homology classes
and each non-trivial homology class contains infinitely many closed simple geodesic
representatives.

These identities are proved using a description of Birman series set at a
Weierstrass point ω . Let us recall the necessary definitions from [McS2]. The
Birman series set is the point set of all complete simple geodesics on the sur-
face. Every punctured torus admits an order 2 isometry called the elliptic invo-

lution, denoted J , with the property that if a is an element of H1(T,Z), and
J?: H1(T,Z) → H1(T,Z) the induced homomorphism, then J?(a) = −a . The
elliptic involution J has exactly three fixed points; we call these the Weierstrass
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points. Each closed simple geodesic passes through exactly two of the three Weier-
strass points and which pair it passes through depends only on its Z/2Z homology
class.

A natural question is: are there identities for length functions for surfaces of
higher genus surfaces equipped with hyperbolic structures. Here we answer this
question for the surface of genus 2 using a (well-known) trick.

Every surface of genus 2 equipped with a hyperbolic structure does have an
isometry of order 2 called the hyper-elliptic involution; note that the automorphism
group of the generic surface of genus g ≥ 3 is trivial. We examine the relationship
between the fixed points of this involution, which we shall still call Weierstrass
points, and the closed simple geodesics of the surface of genus 2. We note that
Haas and Susskind [SH] have already investigated certain aspects of the hyper-
elliptic involution in genus 2 with respect to simple geodesics.

We develop a picture of the Birmann series set in a neighborhood of a Weier-
strass point analogous to that in [McS1] (actually we will not work with the Bir-
mann series set itself but with the set of vectors in the tangent space at ω—we
think of this as being the “infinitesimal BS set”). As in [McS1] we will see that
each gap (see below the definition) corresponds to a certain geometric object—a

dual class—and that the size of the gap is a function of the lengths of a certain
pair of closed geodesics. Let ω be a Weierstrass point of M ; note that there are
exactly 6 Weierstrass points. Define the Weierstrass class of ω to be the set of
all closed simple geodesics which pass through ω . Define the dual class of ω to
be the collection of pairs (γ, δ) of disjoint simple closed geodesics in M − ω such
that γ is non-separating in M , δ separating and furthermore ω and γ are in the
same component of M − δ .

We shall show how to construct gaps in the infinitesimal Birman series set at
the point ω and how to calculate the size of these gaps in terms of the lengths of
simple geodesics. From this we shall deduce:

Theorem 1.1. Let M be a surface of genus 2 and fix a dual class A then

we have the following identity :

∑

(γ,δ)∈A

tan−1

(

2 cosh(|γ|/2− |δ|/4)

sinh(|γ|) + sinh(|δ|/2)

)

=
π

2
.

Remarks. Identities of this type have recently been proved by a different
method by Ser Tan Peow [ZTW]. Recently Mirzikhani [Mi] has used identities
to compute Weil–Petersson volumes of moduli space. Sakuma et al. [AMS], [S]
following Bowditch [Bo] have used a version of these identities for complex lengths
to study functions on the quasi-Fuchsian deformation space of surface groups.

We remark that there is a simple generalisation of the Weierstrass identities
(which we do not prove here but include for comparison) to a torus with a hole
(that is a (hyperbolic) torus minus an open disc which has a convex core bounded
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by a closed geodesic, δ ):
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γ
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,

where, once again, the sum is over all closed simple geodesics in the same Z/2Z
homology class.

Note that this identity can be used to “recover” the identities for the punc-
tured torus and the 4-punctured sphere in the following way. Fix a Weierstrass
point on M a surface of genus 2. To obtain the identity for the punctured torus
choose a separating simple geodesic δ and consider a sequence of metrics on M
such that the length of δ tends to 0 (one says that δ gets pinched off.) The pointed
metric space (M,ω) converges (after passing to a subsequence if necessary) to a
once punctured torus and, moreover, any hyperbolic punctured torus may be ob-
tained from M by choosing the sequence of metrics suitably. Every separating
simple geodesic δ′ 6= δ meets δ transversely and so by the collar lemma the length
of δ′ tends to infinity as δ gets pinched off. One sees (formally) that all terms in
the above series vanish except for those involving our fixed δ ; since the length of
δ tends to 0 the remaining terms are of the form

tan−1

(

1

sinh(γ/2)

)

,

thus the series for M “converges” to the series for the punctured torus. To ob-
tain the series for a 4-punctured sphere one must choose a pair of disjoint non-
separating geodesics which do not pass through the Weierstrass point and then
pinch these off, the limit space in this case is a 4-punctured sphere. We emphasise
that this process of deduction is formal as we checked convergence of the series
term by term though this process can be made rigorous using estimates on the
size of the Margulis tube round a short geodesic [McS4].

Acknowledgements. I thank Troels Jorgensen, Igor Rivin and Ser Tan Peow
for useful comments and the necessary encouragement to finally publish this result.

2. Preliminaries

We collect some definitions and elementary results from the theory of surfaces
which serve as a basis for the sequel; for details see [CEG]. Throughout M denotes
some surface of genus 2 together with a complete hyperbolic structure which one
can construct as follows. The fundamental group of M has the standard presen-
tation a, b, c, d : aba−1b−1cdc−1c−1 . By the uniformisation theorem the universal
cover of M is the upper half plane H2 . The half plane admits a hyperbolic metric
|dz|/ Im z ; the covering transformations for M are isometries for this metric. This
gives a representation %: π1(M) → Isom(H2) such that the image is a discrete
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subgroup and one identifies M with the quotient H2/% the latter being a surface
with a hyperbolic metric inherited from H2 . The Teichmueller space of a surface
is the space of all marked hyperbolic structures [A]; for M this means that not
only are we given the representation %: π1(M) → Isom(H2) (up to conjugation)
but also the images %(a), %(b), %(c), %(d); a, b, c, d ∈ π1 the standard generators.

There are, up to homeomorphism, two classes of closed simple curve on M .
If the complement of the curve is connected, and in this case it is invariably a
torus minus two disjoint discs, then the geodesic is said to be non-separating. On
the other hand, if the complement of the curve is disconnected, i.e. it consists
of a pair of tori each minus a disc, then the geodesic is said to be separating.
Evidently, by the classification of surfaces, the two classes are inequivalent under
homeomorphism of M .

Construction of the hyperelliptic involution. We now show how to construct
the hyperelliptic involution, J . Choose a separating geodesic δ and cut along it.
Each of the two tori, T1 , T2 , in the complement admits an (elliptic) involution
J1 , J2 respectively. The restriction of J to T1 (T2 , respectively) is J1 (J2 ,
respectively). One checks that on reglueing this defines a map on the whole of
M = T1 ∪T2 ∪ δ . It is easy to see from this construction, that the induced map on
the homology J∗ is [v] 7→ −[v] whatever the choice of δ and so, by Serre’s lemma,
the resulting map J is independent of the choice of δ .

We list the principal properties of J (see [SH]) which concern us here;

– J has six fixed points—the Weierstrass points of the surface of genus 2. The
quotient surface M/J is conformally equivalent to a sphere with six cone
points of angle π .

– No separating simple geodesic meets a Weierstrass point, whereas every non-
separating simple geodesic passes through exactly two Weierstrass points.

– Every unoriented closed simple geodesic is mapped to itself by J . More
precisely, each oriented separating geodesic is mapped to itself, whilst each
oriented non-separating geodesic, γ , is mapped to −γ .

Finally, let γ be a complete simple geodesic, which passes through some
Weierstrass point, ω , but which is not closed; since ω is a Weierstrass point the
hyperelliptic involution leaves γ invariant as a pointset but swaps its ends.

3. Closest approach to the boundary

Consider a torus with a hole T . One knows from elementary hyperbolic
geometry that the convex core of such a surface is bounded by a single simple
closed geodesic, the boundary geodesic, denoted δ . Evidently no closed geodesic
may cross δ though there are closed geodesics which approach arbitrarily close.
This second observation is no longer true if we restrict to simple geodesics. That
is, as was observed by Haas [H], there is a collar (i.e. a regular neighborhood)
around δ which meets no other closed simple geodesic; we call the complement of
this collar the Haas core of the torus.
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To see that such a collar exists take the convex core, choose a simple geodesic
γ and cut along it—the resulting surface is a pair of pants with two boundary
components of equal length (= |γ|) and another of length |δ| . One can cut this
pants into four congruent right angled pentagons (see Figure 1) (see Buser [Bu]).
The minimal distance between γ and δ is just the length of the common per-
pendicular, which is the length of the side marked CP lying between the side of
length δ/4 and γ/2. The trigonometry of the right angled pentagon yields that:

coshCP = coth(δ/4) coth(γ/2).

So the minimum distance between γ and δ is bounded below by cosh−1 coth(δ/4).

γ/2

δ/4 C

P

Figure 1.

4. Finding gaps

Finding gaps in the infinitesimal BS-set on a surface of genus 2 is a little more
problematic than in the cases previously treated (compare [McS3], [McS2]). We
give a construction as follows (we prove below that this is a genuine gap): choose
a Weierstrass point ω and a separating geodesic δ . The separating geodesic does
not go through ω and when we cut along it we find that the component containing
ω is a torus with a hole. Choose any closed simple geodesic γ in this component
which does not pass through our Weierstrass point. There are exactly two complete
geodesics, γ+ , γ− , which pass through ω and which spiral to γ . We note that,
as in [McS2], the geodesics γ+ , γ− are each tangent to the boundary of the Haas
core. There are also exactly two complete geodesics δ−, δ+ through ω which spiral
to δ and are disjoint from γ . Our gap is bounded by γ+ and δ+ . Formally:

Theorem 4.1. Let ω be a Weierstrass point on a surface of genus 2 and v
a unit tangent vector at ω . If the geodesic tangent to v is not simple then there

exists a pair of simple geodesics γ+ , δ+ such that for every simple geodesic µ
which passes through ω the unit tangent vector of µ at ω is separated from v by

the tangent vectors to γ+ , δ+ . Furthermore

(1) γ+ spirals to a closed simple geodesic non-separating geodesic γ .

(2) δ+ spirals to a closed simple separating geodesic δ .

(3) γ, δ are disjoint.



36 Greg McShane

We present below a short argument which shows that this is indeed a gap; that
these are the only gaps can be seen by modifying the methods described in [McS3]
as follows. The key step is to show that a version of Theorem 13 is true. Let γ be
a complete simple geodesic passing through ω and suppose that the ω -limit set
of γ is an irrational lamination λ (that is λ is not a closed simple geodesic). To
show that the gaps described above are the only gaps one must show that for each
such lamination λ the corresponding geodesic γ can be approximated from both

sides by closed simple geodesics passing through ω . The version of Theorem 13
that we require can be stated formally:

Theorem 13′. If v is tangent to γ at ω then it is not isolated nor a boundary

point in the infinitesimal BS-set.

As before the difficulty is in showing the v is not a boundary point: this can
be proved by modifying the proof of Theorem 13 [McS3] appropriately. We list
the key points:

– Replace β′ by a small geodesic segment leaving ω and perpendicular to γ .
– For each intersection point y ∈ γ ∩ β′ define the quantity ψ(y) to be the

distance from ω to y along β′ .
– Define closest approach, joins and doublejoins using ψ . One must modify

the “tortuous path” used in Theorem 13 by replacing the horocyclic segment
(β′, γ′ in Figure 13) by a suitable short arc.

Once this is done the argument used in Theorem 13 proceeds as before.
Now we explain why the construction presented earlier yields gaps. We define

a wedge to be a positive cone in the tangent space at some Weierstrass point ω .
We say a wedge lies between two geodesics which meet at ω if and only if the
tangent vectors to these geodesics are extremal vectors in the wedge. Note that
we only have to verify that the wedge between γ+ and δ+ contains no vectors
tangent to closed simple geodesics as the closed simple geodesics are dense in the
BS-set.

Consider a closed simple geodesic, µ , passing through ω ; there are just two
ways in which this geodesic might behave. Firstly, if µ does not meet δ then it
stays inside the torus with a hole bounded by δ and containing ω . Arguments
similar to those in [McS2] apply and we see that µ never meets some wedge,
denoted A , between γ+ , γ− . Secondly, if µ is a simple closed geodesic passing
through ω and with a tangent vector inside this wedge then it must meet δ (since
γ+ , γ− are tangent to the boundary of the Haas core and any closed geodesic
entering the Haas collar either crosses δ or has a self intersection). Since γ is
simple it must initially lie in a subwedge, B , contained in A and bounded by
δ+ , δ− . In summary: if a geodesic is closed simple ( 6= γ ) and furthermore does
not meet the chosen separating geodesic δ then it must meet γ and so is disjoint
from A ; if a geodesic is closed simple and does not meet γ then it meets δ and
furthermore initially it lies in A , therefore in the subwedge B .
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The complement of this B in A consists of the union of two of the gaps
described in the construction above.

It remains to calculate the size of the two gaps in B − A in terms of the
lengths of δ and γ :

Lemma 4.2 (size of a gap). The angle of each of the gaps appearing in the

statement of Theorem 4.1 is

tan−1

(

2 cosh(γ/2 − δ/4)

sinh(γ) + sinh(δ/2)

)

,

where γ , δ are as in the statement of Theorem 4.1 .

Proof. We will first calculate the size of the wedge A . One cuts along δ
and decomposes the resulting torus into four congruent right angled pentagons
as before; we embed the pentagon in H2 . The sides are labelled clockwise by
their lengths δ/4, x , γ/2, a , a′ ; the Weierstrass point ω lies between a and a′ .
One can represent γ+ (respectively δ+ ) on this diagram by a semi-infinite line
leaving ω crossing the pentagon and then approaching the extension of the side
labelled γ/2 (respectively δ/4) asymptotically.

The extension of the side γ/2, the geodesic γ+ and the side a form a right
angled triangle so one has:

tan θ = 1/ sinh a,

where θ denotes the angle between γ+ and a . Similarly, the extension of the side
δ/4, the geodesic δ+ and the side a′ form a right-angled triangle for which:

tan θ′ = 1/ sinh a′,

where θ′ denotes the angle between δ+ and a′ . It is worth noting at this point
that the size of the wedge B (see above) is π − 2θ and that the size of A is 2θ′ .
Since B−A in fact consists of two gaps we need to calculate half the size of B−A
that is π/2 − θ − θ′ .

One has
sinh(γ/2) sinh(a) = cosh(δ/4)

and
sinh(δ/4) sinh(a′) = cosh(γ/2);

thus

tan(π/2 − θ) =
cosh(δ/4)

sinh(γ/2)
tan(π/2 − θ′) =

cosh(γ/2)

sinh(δ/4)
.

Recall that

tan
(

(π/2 − θ) + (π/2 − θ′)
)

= tan(π − θ − θ′) = cot(π/2 − θ − θ′)

so finally one has:

tan(π/2− θ − θ′) =
2 cosh(γ/2− δ/4)

sinh(γ) + sinh(δ/2)
.
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