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Abstract. It is known that any MV -algebra is a topological MV -algebra. For a locally
finite MV -algebra A with some algebraic and topological conditions the product A× A becomes
a compact Riemann surface (modulo conformal equivalence). Topologically, it is a torus.

1. Introduction

In this paper we consider a relationship between locally finite MV -algebras and
Riemann surfaces understanding MV -algebras as topological MV -algebras. The
idea was motivated by the work of Hoo where he pointed out that a locally finite
MV -algebra may be Hausdorff and connected (one of the three possibities) [4]. This
enables to make A×A first into a surface and, then leading to a compact Riemann
surface A × A (up to a conformal mapping) as follows: Compactness means that
also A ought to be compact. As a matter of fact, assuming A to be algebraically
complete and infinite, we can keep A× A (up to homeomorphism) as a product of
the real unit interval [0, 1]× [0, 1] endowed with the product topology of the relative
usual topology on [0, 1]. Then the interior of the square with vertices at 0, 1, 1+ i, i
in the complex plane is the fundamental domain linked up with the Riemann surface
A× A.

2. Preliminaries

2.1. MV -algebras. An MV -algebra is a system A = (A,⊕,¯, ∗, 0, 1) such
that (A,⊕, 0) is an Abelian monoid, x⊕ 1 = 1, x∗∗ = x, 0∗ = 1, x¯ y = (x∗ ⊕ y∗)∗,
(x∗⊕y)∗⊕y = (y∗⊕x)∗⊕x for all x, y ∈ A. By setting x∨y = (x¯y∗)⊕y, x∧y =
(x⊕y∗)¯y and x ≤ y iff x∧y = x for all x, y ∈ A, the system L(A) = (A,∨,∧,≤, 0, 1)
is a bounded distributive lattice with smallest element 0 and greatest element 1.
Moreover, (x∨ y)∗ = x∗ ∧ y∗, (x∧ y)∗ = x∗ ∨ y∗ [7], p. 23. For MV -algebras we also
refer to [2] and for lattices to [1]. An equivalent reformulation of an MV -algebra A
is obtained by defining a binary operation → and a unary operation ¬ as follows:
(x, y) 7→ x∗ ⊕ y = x → y (implication) and x 7→ x∗ = ¬x (negation) for all x, y ∈ A
[3], pp. 78–79.
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A lattice L is complete iff each of its subsets has a supremum and an infimum in
L [1], p. 6, [3], p. 129. An MV -algebra A is complete iff its underlying lattice L(A)
is complete [3], p. 129. A set X is order-complete relative to an antisymmetric and
transitive relation iff each non-void subset of X which has an upper bound has a
supremum. Equivalently, they have infima [5], p. 14. In this paper, the above order
coincides with the used lattice order. Since L(A) is bounded, A is complete iff A is
order-complete.

Let L be a lattice with smallest element 0. An atom of L is an element a ∈ L
such that a > 0 and whenever x ∈ L and x ≤ a then either x = 0 or x = a [3],
p. 122. By an atom of an MV -algebra we mean an atom of the underlying lattice
L(A). A is atomic iff for every 0 6= x ∈ A there is an atom a ∈ A with a ≤ x. A is
atomless iff no element of A is an atom. [3], p. 132.

An MV -algebra A is linearly ordered iff for every x, y ∈ A either x ≤ y or
y ≤ x [2], p. 477. Let 0 and 1 be smallest and greatest elements in an MV -algebra
A. Then A is locally finite iff every element x ∈ A different from 0 has a finite
order. This means that for every 0 6= x ∈ A there is the least integer m such that
mx = x⊕ x⊕ · · · ⊕ x = 1. Every locally finite MV -algebra is linearly ordered [2],
pp. 476–477. Also, any locally finite MV -algebra is isomorphic to a subalgebra of
the real unit interval [0, 1] [3], p. 70. The relationship between complete and atomic
or atomless locally finite MV -algebras are considered in [3], pp. 132–133.

Endow [0, 1] with the Lukasiewicz structure by setting x ⊕ y = min{1, x + y},
x¯ y = max{0, x+ y− 1} and x∗ = 1−x for all x, y ∈ [0, 1]. Then the lattice order
of an MV -algebra coincides with the natural order and [0, 1] becomes a complete
locally finite MV -algebra [7], p. 23. Binary and unary operations are defined by
(x, y) 7→ min{1, 1− x + y} and x 7→ 1− x [3], p. 78.

2.2. Riemann surfaces. Throughout this section, all the concepts are from
complex analysis, referenced as [6] and [8].

Definition 1. A surface S is a connected Hausdorff space with a countable
base for topology which is locally homeomorphic to the complex plane C (or R2).

Let S be a surface. Then for every point p ∈ S there is an open neighbor-
hood U ⊂ S of p and a homeomorphism h : U → h(U). The mapping h is called
a local parameter at p on S. The pair (U, h) is called a coordinate chart. An
atlas of S is the collection {(Ui, hi) | i is an index} of coordinate charts of S if⋃{Ui | i is an index} = S. Let h1 : U1 → h(U1) and h2 : U2 → h(U2) be two local
parameters on S such that U1 ∩ U2 6= ∅. A homeomorphism h2h

−1
1 : h1(U1 ∩ U2) →

h2(U1 ∩ U2) is called a parameter transformation.
An atlas is said to be complex analytic if all the parameter transformations are

analytic homeomorphisms. The complex analytic atlases U∗ and V ∗ are said to be
equivalent if U∗ ∪ V ∗ is a complex analytic atlas. An equivalence class of complex
analytic atlases is called a conformal (a complex analytic) structure of the surface
S. Let us define Riemann surfaces as follows [6], p. 130:

Definition 2. A surface with a conformal structure is a Riemann surface.
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A smooth covering surface of a surface S is a pair (W, p), where W is a surface
and p : W → S is a local homeomorphism. The mapping p is called a projection [6],
p. 135.

Let S be a surface and (W, p) its smooth covering surface. A cover trans-
formation g : W → W over S is a homeomorphism satisfying pg = p. All such
homeomorphisms g form a covering group G of W over S [6], p. 138. It is known
that for the smooth covering surface of a Riemann surface, cover transformations
are conformal [6], p. 142.

Any surface S may have a universal covering surface D which is a simply con-
nected surface with a projection p : D → S [8], p. 85. Roughly speaking, a surface S
is simply connected if there are no holes on S. According to the Riemann mapping
theorem [6], p. 143, we can normalize any universal covering surface of a Riemann
surface to the unit disc, the complex plane, or the extended plane [6], p. 144. Let
D be a universal covering surface of the Riemann surface S. Being conformal map-
pings, cover transformations g : D → D are Möbius transformations [6], p. 144,
forming a covering group G of D over S.

Let G be a covering group of the universal covering surface D over S. If there
exists g ∈ G such that g(z1) = z2 for some z1, z2 ∈ D, then we say that the points z1

and z2 are equivalent under G. This means that the points z1 and z2 have the same
projection on S. The connection between the Riemann surface S and the quotient
surface D/G is well known [6], p. 144:

Proposition 1. [6]Given an arbitrary Riemann surface S, let D be its universal
covering surface, and G the covering group of D over S. Then S is conformally
equivalent to the Riemann surface D/G.

A subdomain of D is said to be a fundamental domain of G if it contains at
most one point of every equivalence class of D/G and its closure in D meets every
equivalence class [6], p. 149.

3. Topological locally finite MV -algebras

Hoo showed in [4] that any MV -algebra is a topological MV -algebra having
then a topology. For locally finite MV -algebras he proved:

Proposition 2. [4] The topology on a locally finite MV -algebra is one of the
following types:

(i) Hausdorff and connected,
(ii) Hausdorff and totally disconnected,
(iii) the trivial topology.

Let A be a locally finite MV -algebra. Making A × A into a surface, A should
be connected and Hausdorff. Therefore we ignore the cases (ii) and (iii). Suppose
that, in the case (i), A is infinite and complete as a complete lattice. Then it is not
necessary to assume A to be Hausdorff since, by the following lemma, A has the
order topology which implies Hausdorff.
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Lemma 1. Let A be a complete locally finite MV -algebra which is connected.
Then, if A is infinite

(1) A has necessary the order topology,
(2) A has a countable base for the order topology,
(3) there exists an isomorphism f : A → [0, 1] which is a homeomorphism.
(4) By [3], a locally finite MV -algebra A is finite iff A is isomorphic to the

Lukasiewicz chain

Ln = {0, 1

n− 1
,

2

n− 1
, · · · ,

n− 2

n− 1
, 1}

for some integer n ≥ 2.

Proof. In accordance to [3], the fourth assertion is proved, p. 71, A is a locally
finite MV -algebra iff A is isomorphic to a subalgebra of [0, 1], p. 70, and all infinite
subalgebras of [0, 1] are atomless, p. 132. By [3], p. 133, all locally finite, complete
and atomless MV -algebras are isomorphic to [0, 1]. An isomorphism f : A → [0, 1]
carries an MV -structure of A to the Lukasiewicz structure of [0, 1]: Knowning that
any locally finite MV -algebra is isomorphic to a subalgebra of the Lukasiewicz
structure, say B, hence making [0, 1] and B isomorphic, we can endow [0, 1] with
the Lukasiewicz structure.

Next the notation a < b means that a ≤ b and a 6= b. The order in a locally
finite MV -algebra A (as a linearly ordered MV -algebra) is said to have a gap if
there are points a, b ∈ A so that a < b and there is no point c ∈ A such that
a < c < b [5], p. 58. Since A is atomless as infinite, for a < b, a, b ∈ A, there
exists c ∈ A such that a < c < b, concluding with [2], p. 480. Hence there are no
gaps on A. Summarizing, A is connected, infinite, complete (as a complete lattice)
and there are no gaps on A. In fact, it is known that A is connected relative to
the order topology iff A is complete (order-complete) and there are no gaps on A
[5], p. 58. Being connected, A has necessary the order topology (the first assertion)
with a subbase consisting of all sets of the form {x | 0 ≤ x < a} or {x | a < x ≤ 1}
for some a ∈ A where 0 and 1 are smallest and greatest elements in A.

Next we show that the isomorphism f : A → [0, 1] is a homeomorphism: As
an isomorphism, f is an order-preserving bijection [1], p. 3. For the subbase of A,
image sets {f(x) | 0 ≤ f(x) < f(a)} and {f(x) | f(a) < f(x) ≤ 1} form a subbase
of [0, 1] for the order topology. Then f maps a subbase of A to a subbase of [0, 1]
and consequently, a base to a base. Being a bijection, f is a homeomorphism. The
third assertion is proved.

Sets of the form {y | 0 ≤ y < b} and {y | b < y ≤ 1} for some b ∈ [0, 1] ∩ Q,
constitute a countable subbase of [0, 1] meaning that [0, 1] has a countable base for
the order topology. Consequently, A has such a base. This completes the second
assertion. ¤

The following example illustrates the necessity of completeness of A:

Example 1. By [2], pp. 473–474, rational numbers of [0, 1] form a subalgebra
of the Lukasiewicz structure which is not complete but, as (denumerably) infinite,
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atomless. In general, a locally finite MV -algebra A has only two MV -ideals, namely
{0} and A itself. By the proof of Proposition 2, given in [4], pp. 107–108, every
connected component C of 0 is a closed ideal of A meaning that C = {0} or C = A.
In the first case, the component of any point x is a singleton, i.e. {x}, making
A totally disconnected. In our example, we ignore this. In the second case, A is
connected (however, not assume to have the trivial topology). As conclusion, since
[0, 1]∩Q is not isomorphic to the interval [0, 1], the assertion (3) of Lemma 1 is not
satisfied due to A is not complete.

4. Product of two topological locally finite
MV -algebras as a Riemann surface

4.1. The Riemann surface A× A. Suppose that A is any topological MV -
algebra. Let p1 : A × A → A, p1(a, b) = a and p2 : A × A → A, p2(a, b) = b be
projections for a topology on A. If W1 and W2 are open neighborhoods of the
points a and b, then W = p−1

1 (W1)∩ p−1
2 (W2) is an open neighborhood of the point

(a, b) for the product topology on A× A.
Let A be a complete locally finite and infinite MV -algebra which is connected.

According to Lemma 1, there is a homeomorphism f : A → [0, 1].

Lemma 2. Mapping h : A× A → [0, 1]× [0, 1]

h(a, b) = (f(a), f(b))

is a homeomorphism.

Proof. Let f : A → [0, 1] be a homeomorphism. Since f is bijective, h is bijective
and since f is continuous, h is continuous (the components of h are continuous).
Further, f−1 : [0, 1] → A is a homeomorphism and so continuous. Hence h−1 : [0, 1]×
[0, 1] → A× A, h−1(x, y) = (f−1(x), f−1(y)) is continuous. ¤

Remark 1. The Lukasiewicz operations [0, 1]×[0, 1] → [0, 1], (x, y) 7→ min{1, 1−
x + y) and [0, 1] → [0, 1], x 7→ 1 − x are continuous in the order topology. Since
A × A and [0, 1] × [0, 1] while A and [0, 1] are homeomorphic, the corresponding
operations A × A → A, (x, y) 7→ x∗ ⊕ y and A → A, x 7→ x∗ are also continuous
making A a topological MV -algebra for the order topology.

Remark 2. The order topology in the Lukasiewicz structure on [0, 1] generated
by half-open sets of the form [0, a) and (a, 1] for some a ∈ [0, 1] coinsides with the
relative usual topology on [0, 1]. Accordingly, the corresponding product topologies
are the same. In the next proof of Proposition 3, this enables to pass from the
Lukasiewicz structure to the ordinary algebra of the real axis without changing the
topology.

Proposition 3. Let A be a complete locally finite MV -algebra which is infinite
and topologically connected. Then A× A is a Riemann surface.

Proof. The following conditions are satisfied:
(i) Since A is Hausdorff and connected, A× A is Hausdorff and connected.
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(ii) The product topology on A × A has a countable base concluding with
Lemma 1.

(iii) Let G = 〈z 7→ z+1, z 7→ z+i〉 be a group generated by translations z 7→ z+1
and z 7→ z+ i. The quotient space C/G consists of equivalence classes in the
complex plane obtained by setting a relation z1 ∼ z2 iff there exists g ∈ G
such that g(z1) = z2. The topology on C/G is the quotient topology:

V ∈ C/G is open iff f̂−1(V ) is open in C

where f̂ : C → C/G is a canonical projection and C is equipped with the
order topology on the plane. Identifying the square [0, 1]× [0, 1] in the plane
R2 and the square P with vertices at 0, 1, 1 + i, i in the complex plane, the
relative topology on P yields also a projection

f̂ | P : P → C/G,

the opposite sides of the square having the same image. As conclusion, by
Lemma 2, there is a local homeomorphism

ĥ : A× A → C/G.

Let w ∈ A × A and W an open neighborhood of w. Then ĥ(W ) is an open
neighborhood of ĥ(w) in C/G, equivalently, f̂−1(ĥ(W )) is open in C. We conclude
that there is a local homeomorphism

(f̂−1ĥ) : A× A → C, W 7→ (f̂−1ĥ)(W )

for every open neighborhood W of w meaning that A×A is locally homeomorphic
to C.

It follows from (i), (ii) and (iii) that A× A is a surface. We still show that the
surface A× A has a conformal structure:

(iv) Since ĥ : A × A → C/G is a local homeomorphism, A × A is a smooth
covering surface of the Riemann surface C/G. By [6], p. 142, A × A has
a unique conformal structure obtained by lifting the conformal structure of
C/G. ¤

4.2. Geometric interpretation of the Riemann surface A×A. According
to the Riemann mapping theorem [6], p. 143–144, every Riemann surface admits
as its universal covering surface the unit disc, the complex plane, or the extended
plane. In our case, we obtain

Lemma 3. The complex plane C is the normalized universal covering surface
of the Riemann surface A× A.

Proof. By the proof of Proposition 3, there is a continuous mapping ĥ : A×A →
C/G (as a local homeomorphism). By [6], p. 145, based on the Riemann mapping
theorem, it is possible to choose a common universal covering surface D of the
Riemann surfaces A×A and C/G such that D is the unit disc, the complex plane,
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or the extended plane. Therefore, as the universal covering surface of C/G, C is
conformally equivalent to D. Necessary, D = C. ¤

Lemma 4. The group G =< z 7→ z + 1, z 7→ z + i > generated by mappings
z 7→ z +1 and z 7→ z + i is a covering group of the universal covering surface C over
A× A.

Proof. Denote by Amn the square in the complex plane with vertices at (m, ni),
(m + 1, ni), (m + 1, (n + 1)i) and (m, (n + 1)i) for any m,n ∈ Z. Let us define

ḡklmn : Amn → A(m+k)(n+l), ḡklmn = wk
1w

l
2

for some k, l ∈ Z and any m, n ∈ Z, where w1(z) = z+1 and w2(z) = z+ i. Further,
let

ḡkl : C → C, ḡkl | Amn = ḡklmn

Clearly, ḡkl is a continuous bijection with a continuous inverse ḡ−1
kl = w−l

2 w−k
1 .

Hence ḡkl is a homeomorphism. In another way, being Möbius transformations, w1

and w2 as homeomorphisms implies ḡkl to be a homeomorphism. For z ∈ Amn ⊂ C
and the projection p = ĥ−1f̂ : C → A× A we obtain

p(ḡkl(z)) = (ĥ−1f̂)(ḡkl(z)) = (ĥ−1f̂)(ḡklmn(z)) = ĥ−1(f̂(ḡklmn(z)))

= ĥ−1(f̂(z + k + li)) = ĥ−1(f̂(z)) = (ĥ−1f̂)(z) = p(z).

The mappings ḡkl : C → C are cover transformations and form the covering
group G of C over A× A. ¤

Proposition 4. Let us assume

(i) A is a complete locally finite MV -algebra,
(ii) A is infinite,
(iii) A is connected as a topological MV -algebra.

Then A × A is a Riemann surface which is conformally equivalent to a compact
Riemann surface. Topologically, it is a torus.

Proof. The structure of the proof is partly based on [6], p. 150. By Proposition
3, and Lemmas 3 and 4, A × A is a Riemann surface having C as its normalized
universal covering surface with the covering group G =< z 7→ z + 1, z 7→ z + i >.
It follows from Proposition 1 that A× A is conformally equivalent to the Riemann
surface C/G. A fundamental domain is the interior of the square P with vertices
at 0, 1, 1 + i, i. The canonical projection C → C/G maps the compact closure of
P onto C/G. As the image of this continuous mapping, C/G is compact making
A×A conformally equivalent to a compact Riemann surface. The opposite sides of
the closure clP are equivalent under G. Identifying them, C/G becomes a torus. ¤

Corollary 1. A× A is compact Hausdorff.
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