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Abstract. Given a random sequence of holomorphic maps f1, f2, f3, . . . from the unit disk ∆
to a subdomain X, we consider the compositions

Fn = f1 ◦ f2 ◦ . . . ◦ fn−1 ◦ fn.

The sequence {Fn} is called the iterated function system coming from the sequence f1, f2, f3, . . . .

We ask what points in X or ∂X can occur as limits. Our main result is that for a non-relatively
compact Bloch domain X, any finite set of distinct points in X can be realized as the full set of
limits of an IFS.

1. Introduction

Suppose that we are given a random sequence of holomorphic maps f1, f2, f3, . . .
of the unit disk ∆ onto a subdomain X ⊂ ∆. We consider the compositions

Fn = f1 ◦ f2 ◦ . . . ◦ fn−1 ◦ fn.

The sequence {Fn} is called the iterated function system coming from the sequence
f1, f2, f3, . . .; we abbreviate this to IFS. By Montel’s theorem (see for example [3]),
the sequence Fn is a normal family, and every convergent subsequence converges
uniformly on compact subsets of ∆ to a holomorphic function F . The limit functions
F are called accumulation points. Therefore every accumulation point is either an
open self map of ∆ or a constant map. The constant accumulation points may be
located either inside X or on its boundary.

Note that for the iterated systems we consider here, the compositions are taken
in the reverse of the usual order; that is, backwards. There is a theory for forward
iterated function systems that is somewhat simpler and is dealt with in [5]. For
example, for forward iterated function systems, by using constant functions, it is
easy to construct systems with non-unique limits.
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The first results for (backward) iterated function systems were found by Lorentzen
and Gill ([8], [4]) who, independently proved that if X is relatively compact in ∆,
the limit functions are always constant and each IFS has a unique limit.

In [2] the authors considered iterated function systems for which the target
domain is non-relatively compact. Using techniques from hyperbolic geometry, they
defined a hyperbolic generalization of the classical “Bloch condition” for the target
domain and proved that any X satisfying this condition has only constant limit
functions. In [6] we proved that this Bloch condition is also necessary.

In [7] we turned to non-Bloch target domains. Using Blaschke products, we
proved that any holomorphic map from ∆ to X can be realized as the limit function
of some IFS. We also proved that many sets of open maps and constants in X can
be realized as limit functions of an IFS.

In this paper we turn our attention to the possible limit constants for Bloch
target domains. We ask what points in X or ∂X can occur as limits. Our main
result is that for a non-relatively compact Bloch domain X, any finite set of distinct
points in X can be realized as the full set of limits of an IFS.

The Lorentzen Gill theorem says that if the target domain is relatively compact,
the limit function always exists and must lie inside X and not on its boundary.
For non-Bloch domains, we saw in [7] that boundary points may be limit points.
Tavakoli [9] showed that all boundary points can be limit points for arbitrary non-
relatively compact Bloch domains. Here we give two examples of special classes of
non-relatively compact Bloch domains for which any boundary point may be a limit
point.

The paper is organized as follows. In section 2 we state the Lorentzen-Gill
theorem. In section 3 we prove the main result that for a non-relatively compact
Bloch domain any n distinct points can be the limit set of an IFS. Finally, in
section 4 we study boundary points as limit points on two classes of Bloch domains.

2. Relatively compact subdomains

In this section we consider iterated function systems where the target domain
is relatively compact. We remark that if the function f1 of any IFS is a constant
map, then f1 ◦ . . . ◦ fn is the same constant map and this constant is the unique ac-
cumulation point. Similarly, if fk(z) ≡ c, c constant, then the unique accumulation
point of the IFS is the constant f1 ◦ . . . ◦ fk−1(c).

We now make the tacit assumption that the functions in our IFS are non-
constant. We recall the theorem of Lorentzen and Gill on relatively compact sub-
domains.

Theorem 1. (Lorentzen–Gill) If X is a relatively compact subset of the unit
disk, then every IFS has a unique constant limit inside X. Moreover, every constant
in X is the limit of some IFS.
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3. Non-relatively compact subdomains

We turn now to the question of open subdomains X that are not relatively
compact in ∆.

Let us first recall the classical definition of a Bloch subdomain in the the Eu-
clidean plane.

Definition 3.1. An open set E ⊂ C is a Bloch domain if there is an upper
bound on the radius of the largest disk contained in E centered at each point in E.

In [2], Beardon, Carne, Minda, Ng generalized this condition to subdomains of
hyperbolic space.

Definition 3.2. An open subset X ⊂ ∆ is a hyperbolic Bloch domain if there
is an upper bound on the radii, measured with respect to the hyperbolic metric in
∆, of the largest disk contained in X centered at every point in X.

Since the domains we consider in this paper are always subdomains of ∆, we
refer to the hyperbolic Bloch condition as the Bloch condition. Although most of
the arguments work for non-Bloch domains, we are most interested in the case when
they are Bloch.

In [5], in addition to our discussion of forward iterated systems, we showed that
if X is any non relatively compact subset of ∆, we could find a (backward) IFS that
had two limit functions. Here we generalize this construction to show that for every
integer n, we can find iterated function systems with any given set of n distinct
points as the full set of accumulation points. A key to the construction is

Lemma 3.1. Let X be any non relatively compact subset of ∆, and for any
fixed n, let a1, . . . , an be any distinct points in ∆\{0}. Then there exists a function
f : ∆ → ∆ and points x1, . . . , xn ∈ X such that for all i = 1, . . . , n, f(xi) = ai/xi.

Proof. We use the notation:

A(a, z) =
z − a

1− āz

and note that A(a,A(−a, z)) = z.

Step 1. Since X is not relatively compact we choose an x1 ∈ X such that
|x1| > |a1|. Let g1(z) be a self map of the unit disk to be determined. Define

f(z) =
A(x1, z)g1(A(x1, z)) + a1

x1

1 + ā1

x̄1
A(x1, z)g1(A(x1, z))

.

It follows that f(x1) = a1/x1 as required. Because we want to work inductively we
rewrite this definition implicitly as follows

(1) A(x1, z)g1(A(x1, z)) = A
(a1

x1

, f(z)
)
.

If n = 1 we set g1(z) ≡ 0 and we are done. From now on we assume that n > 1 and
that we have chosen x1.
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Step 2. Before we proceed, we set up some further notation: For 1 ≤ j ≤ k ≤ n
set ajk = A(xj, xk). Next, for k = 2, . . . , n set

(2) b1k = A
(a1

x1

,
ak

xk

)
.

For j = 2, . . . , n− 1 and k = j, j + 1, . . . , n set

(3) bjk = A
( b(j−1)j

a(j−1)j

,
b(j−1)k

a(j−1)k

)
.

In order that our construction work we need to choose the xi so that the following
inequalities hold:

(4)
∣∣∣ai

xi

∣∣∣ < 1, i = 1, . . . n.

In step 1 we chose x1 so this holds for i = 1.
For all j, k such that j < k we also need to have

(5)
∣∣∣ bjk

ajk

∣∣∣ < 1.

To see that we can satisfy these inequalities note first that for fixed j, and all
k > j, |xk| → 1 implies |ajk| → 1.

Next
lim sup
|xj |→1

|b1j| ≤
∣∣∣A

(a1

x1

, aje
θj

)∣∣∣ = B1j < 1

where θj is chosen so that arg aje
θj = arg a1

x1
+ π and B1j is maximal.

Since X is not relatively compact we get conditions on xi, i = 2, . . . , n, so that
all the inequalities (4) and all the inequalities (5) with j = 1 hold.

Now fix x2 so that (4) and (5) with j = 1 hold, assuming the remaining |xi| are
close enough to 1.

We now find bounds

lim sup
|xj |→1

|b2j| ≤
∣∣∣A

( b12

a12

, B1je
θj

)∣∣∣ = B2j < 1

where again θj is chosen to maximize.
We repeat this process, choosing x3, . . . xn−1, xn, in turn so that all the inequal-

ities above hold.
Step 3. Define the functions gk(z) : ∆ → ∆, k = 2, . . . , n recursively by

(6) A(xk, z)gk(A(xk, z)) = A
( b(k−1)k

a(k−1)k

, g(k−1)(A(x(k−1), z))
)
.

Now take gn(z) to be any holomorphic function of the disk to itself; in particular, we
can take the function gn(z) ≡ 0. Then work back through equations (6) to obtain
the functions g1 and f .

We check that f(xi) = ai/xi for i = 1, . . . , n, so that we have the required points
xi and the function f . ¤
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Now we show that we may construct an iterated function system that has n
arbitrarily chosen distinct accumulation points for any integer n > 1. We construct
it inductively.

Theorem 2. Let X be any subdomain of ∆ that is not relatively compact
and let n > 1 be a given integer. There is an IFS that has exactly n distinct
accumulation points. These accumulation points are constant and the IFS has no
other accumulation points.

Proof. With no loss of generality we may assume that 0 ∈ X. The idea of the
proof is to construct functions fk such that the set S = {c0 = 0, c1 = f1(0), c2 =
f1 ◦ f2(0), . . . , cn−1 = f1 ◦ f2 ◦ . . . ◦ fn−1(0)} consists of distinct points and such that
the cycle relation

(7) fi ◦ fi+1 ◦ . . . ◦ fi+n−1(0) = 0

holds for all integers i.
Suppose we have such a system and we consider any subsequence Fnk

= f1 ◦f2 ◦
. . . ◦ fnk

. By the cycle relation we see that Fnk
(0) ∈ S for all k. It follows that any

limit function must map 0 to a point in S. Choosing subsequences appropriately,
we can find n distinct limit functions Gi such that Gi(0) = ci, i = 0, . . . , n− 1.

If X is Bloch, these limit functions must be constant so there are at most n
such functions and hence exactly n of them.

Suppose first that n = 2 and we are given two distinct points c0 and c1 in X. In
this construction, all maps fi will be different universal covering maps from ∆ onto
X. We may assume without loss of generality that c0 = 0. We can find a covering
map f1 such that f1(0) = c1. Then because f1 is defined up to a rotation about 0
and X is not relatively compact we can find x1 ∈ X with f1(x1) = 0.

By the same reasoning we let f2 be a covering map from ∆ onto X such that
f2(0) = x1 and such that there is an x2 ∈ X with f2(x2) = 0. Again there is such
an x2 because X is not relatively compact in ∆. Continuing this process we obtain
a sequence of covering maps fk and a sequence of points xk in X such that

(8) fk(0) = xk−1 and fk(xk) = 0

for all k. Choosing odd or even subsequences we obtain two distinct limit functions
G1, G2 such that G1(0) = c1 and G2(0) = 0.

For n > 2, the maps fi are not covering maps. We need to apply Lemma 3.1
repeatedly. This part of the construction comes in two parts. First we construct
the maps f1, . . . , fn−1 and then construct the rest of the maps, fn+j, j = 0, 1, . . ..
We obtain two collections of points: those that are labeled x∗ and belong to the
cycles {fi+n−1(0), fi+n−2◦fi+n−1(0), fi+n−3◦fi+n−2◦fi+n−1(0), . . . , fi+1◦ . . .◦fi+n−2◦
fi+n−1(0), 0} and and those that are labeled b∗ and don’t belong to the cycles.

We assume we are given the n distinct points c0 = 0, c1, . . . , cn−1 ∈ X. We
apply Lemma 3.1 to obtain n− 1 new distinct points

x1, b2, b23, . . . , b2...(n−1) ∈ X
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and a function f1 such that f1(x1) = 0 and

f1(0) = c1, f1(b2) = c2, . . . , f1(b2...(n−1)) = cn−1.

Recall that in the construction of Lemma 3.1, we obtain a function f such
that for the given point ai we have a new point xi with xif(xi) = ai. Therefore
to obtain f1 we first apply a covering map π : ∆ → X with π(0) = c1. We use
the lemma to find a map f and points in X. We set f1(z) = π(zf(z)). The new
points x1, b2, b23, . . . , b2...(n−1) are the preimages of the points we get from the lemma.
Because X is not compact, we can take these preimages in X.

We repeat this process for the n new points x1, b2, . . . , b2...(n−1) and obtain a
second set of n − 1 distinct points x2, x21 and b3, b3...(n−1) and a function f2 such
that f2(x2) = 0, f2(x21) = x1 and

f2(0) = b2, . . . f2(b3) = b23, . . . , f2(b3...(n−1)) = b2...(n−1).

We continue in this way. For i = 3, . . . , n− 1 start with the n− 1 points

xi−1, x(i−1)(i−2), . . . , x(i−1)...1, bi, bi(i+1), bi...(n−1)

and obtain a function fi and n− 1 new points

xi, xi(i−1), . . . , xi(i−1)...1, bi+1, b(i+1)(i+2), . . . , b(i+1)...(n−1)

such that

fi(xi) = 0, fi(xi(i−1)) = xi−1, . . . , fi(xi(i−1)...1) = x(i−1)...1

and

fi(0) = bi, fi(bi+1) = bi(i+1), . . . , fi(b(i+1)...(n−1)) = bi...(n−1).

We thus obtain the first n − 1 maps and check that they satisfy f1(0) = c1,
f1 ◦ f2(0) = c2, . . . , f1 ◦ . . . ◦ fn−1(0) = cn−1. Moreover, we have the points of the
cycles such that

• x1, . . . , xn−1 ∈ X satisfying fi(xi) = 0, i = 1, . . . , n− 1;
• x21, x32, . . . , x(n−1)(n−2) ∈ X satisfying fi(xi(i−1)) = xi−1, i = 2, . . . , n− 1;
• x321, x432, . . . , xn(n−1)(n−2) ∈ X satisfying fi(xi(i−1)(i−2)) = x(i−1)(i−2), i =

2, . . . , n− 1;
• . . . ;
• x(n−1)...21 ∈ X satisfying fn−1(x(n−1)...21) = x(n−2)...21.

We now have n − 1 points of the first cycle, n − 2 points of the second and so
forth. The next step is the general step; we need to complete the cycles.

We construct a holomorphic map fn from ∆ to X to complete the first cycle;
that is, so that fn(0) = x(n−1)...21 and f1 ◦ . . .◦fn(0) = 0. We also obtain new points
xn(n−1), . . . , xn(n−1)...32 in X \ {0} in each of the second through n− 1-st cycles and
start a new cycle with a new point xn. That is,
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fn(0) = x(n−1)...21,(9)
fn(xn(n−1)...32) = x(n−1)(n−2)...32,(10)
fn(xn(n−1)...43) = x(n−1)(n−2)...43,(11)

...
fn(xn(n−1)) = x(n−1),(12)

and

(13) fn(xn) = 0.

For the construction of fn, we again begin with a covering map. Let π1 be a
holomorphic covering map from ∆ onto X such that π1(0) = x(n−1)...21. We now
choose any n− 1 points in ∆ that are preimages under π1 of the dangling points of
the cycles we are constructing as follows:

y(n−1)...2 such that π1(y(n−1)...2) = x(n−1)...2,

y(n−1)...3 such that π1(y(n−1)...3) = x(n−1)...3,

...
yn−1 such that π1(y(n−1)) = x(n−1),

yn such that π1(yn) = 0.

These n− 1 points together with 0 form a set of n distinct points in ∆. Using
Lemma 3.1 we can find n − 1 points xn, xn(n−1), . . . , xn(n−1)...32 in X \ {0} and a
function g such that

g(xn(n−1)...2) =
y(n−1)...2

xn(n−1)...2

,

g(xn(n−1)...3) =
y(n−1)...3

xn(n−1)...3

,

...

g(xn(n−1)) =
yn−1

xn(n−1)

,

and
g(xn) =

yn

xn

.

Finally, let fn(z) = π1(zg(z)). We have completed the first cycle so that the
composition f1◦f2◦ . . .◦fn fixes zero. We now repeat this construction ad infinitum
to obtain fn+1, fn+2, . . .. At each stage we complete one cycle and add points to the
next n−1 cycles. Thus, the cycle relation, (7), holds for each i. Let Fk = f1◦. . .◦fk.
Then, Fk(0) = cr where r = k mod n. The accumulation points are limits of
subsequences {Fnk

}. For any such limit F , F (0) = cr for some r = 0, . . . , n − 1.
Because the cr are distinct, we have at least n distinct accumulation points.
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If X is Bloch, all the limit functions of this IFS are constant. Since F (0) = ck

for some k for every limit function there are exactly n possible constant functions. If
X is non-Bloch, let N be a lattice in X, not containng the ci’s, such that Y = X \N
is Bloch, and apply the proof to Y . ¤

4. Boundary points as limiting values

As we saw in section 2, if X is relatively compact, all limit functions lie inside
X. As we mentioned in the introduction, in [7] we proved that if X is non-Bloch,
we can find an IFS whose limit functions take on any or all boundary points.

In this section we exhibit two special classes of subdomains that do admit an
IFS whose limit point does lie on the boundary. This gives an affirmative answer to
our question for those non-relatively compact Bloch domains in these classes.

Theorem 3. Let X be a subdomain of ∆ formed by removing an infinite
collection of isolated points from ∆. For any boundary point b ∈ ∂X, there is an
IFS with a limit function that takes the value b.

Proof. Choose some b ∈ ∂X; either b is one of the isolated boundary points of
X or b ∈ ∂∆. Let c1, c2, . . . be a sequence of points in X that tend to b. Assume,
without loss of generality that the origin belongs to X. The idea of the proof is
similar to the one above, and works because, although the arguments in the proof
of Lemma 3.1 do not extend to an infinte number of points, we can use the special
nature of X to obtain an infinite point version of Lemma 3.1.

Let g1 : ∆ → X be a covering map such that g1(0) = c1. It is uniquely deter-
mined up to pre-composition by a rotation about the origin. Since X is not simply
connected, we may pick points a2, a3, . . . in ∆ such that g1(aj) = cj and |aj| < |aj+1|.
The sets

Aθ = {e−iθaj : j = 2, 3, . . .}

are disjoint for 0 < θ < 2π. Since ∆ \ X is countable, there exists θ such that
Aθ ⊂ X. Let c1j = e−iθaj and let f1(z) = g1(e

iθz). Then f1(0) = c1, and f1(c1j) = cj

for j > 1.
We next construct f2 in the same way. We choose a covering map f2 so that

f2(0) = c12; then f1 ◦ f2(0) = c2. We choose preimages c2j, j = 3, 4, . . . such that
f2(c2j) = c1j. We use the same argument as above to adjust f2 so that all these
preimages lie in X.

We repeat the construction for each n. We take fn as a covering map such that
fn(0) = c(n−1)n and adjust so that we can find points cnj, j = n + 1, n + 2, . . . ,∈ X
with fn(cnj) = c(n−1)j. Then f1 ◦ . . . ◦ fn(0) = cn.

Set Fn(z) = f1 ◦ . . . ◦ fn(z). Since cn → b, if G is a limit function of Fn, then
G(0) = b.

Note that if X is Bloch, then G must be constant, G(z) ≡ b. ¤
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Theorem 4. Suppose Y is non relatively compact subdomain of ∆ with locally
connected boundary. Then, for any boundary point c ∈ ∂Y , there is an IFS with a
limit function that takes the value c.

Proof. Let c ∈ ∂∆
⋂

∂Y. We will construct an IFS whose accumulation point is
c. All our maps fi will map the unit disk conformally onto Y. Let f be a Riemann
map from the unit disk onto Y. By Carathéodory’s theorem f extends continuously
to the boundary of the unit disk (see Theorem 2.1 in [3]). The preimage of c under
this extension is a point on the unit circle, and precomposing by a Möbius map if
necessary, we may assume that the continuous extension of f, which we will still call
f, fixes c. Take a sequence zn of points in Y such that zn converges to c. Then f(zn)
converges to c. Therefore there exists a point zn1 such that |f(zn1) − c| < 1/2. Let
A1 be a hyperbolic isometry of the unit disk such that A1(c) = c and A1(0) = zn1 .
Let f1 = f ◦ A1. Then

|f1(0)− c| < 1

2
and

lim
z→c

f1(z) = c.

Therefore f1(f(zn)) converges to c, and we may choose zn2 such that |f1f(zn2)−c| <
1/4. Now we take a hyperbolic isometry A2 of the unit disk such that A2(c) = c
and A2(0) = zn2 . Let f2 = f ◦ A2. Then

|f1f2(0)− c| < 1

4

and
lim
z→c

f2(z) = c.

In this way, we obtain a sequence of maps fn from ∆ onto Y ⊂ X such that
|f1f2 . . . fn(0)− c| ≤ 1

2n . Therefore c is the accumulation point of the IFS f1f2 . . . fn.
Suppose now that c is any point on the boundary of Y and let f be a Riemann
map from the unit disk onto Y. Then there exists a point c0 on the unit circle such
that f(c0) = c. Precomposing f by a rotation if necessary, we may assume that
c0 ∈ ∂∆

⋂
∂Y. By the above, there exists an IFS Fn whose accumulation functions

all map 0 to c0. Then every accumulation function of the IFS Gn = f ◦ Fn maps 0
to c. ¤

Examples of domains satisfying conditions in Theorem 4 are those that meet
the boundary in a Stolz angle and polygons with ideal boundary.
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