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Abstract. We extend the standard Fourier multiplier result to square integrable functions
with values in (possibly nonseparable) Hilbert spaces. As a corollary, we extend the standard
Hardy class boundary trace result to Hp (even Nevanlinna or bounded type) functions whose
values are bounded linear operators between Hilbert spaces.

Both results have been well-known in the case that the Hilbert spaces are separable. Naturally,
the results apply to functions over the unit circle/disc or over the real-line/half-plane or over other
similar domains, even multidimensional in the case of the multiplier result. We briefly treat some
related results, generalizations to Banach spaces and counter-examples.

1. The results

It is well-known that the operators E ∈ B(L2(R)) (bounded and linear L2(R) →
L2(R)) that commute with the time shift (τ tE = E τ t for all t ∈ R, where (τ tf)(s) :=

f(s + t)) correspond one-to-one to functions Ê ∈ L∞(R) through Ê f = Ê f̂ (on R),
where

(1) (Ff)(r) := f̂(r) := (2π)−1/2

∫

R

f(t)e−itr dt (r ∈ R)

(if f ∈ L1∩L2; use density for general f ∈ L2) is the Fourier(–Plancherel) transform
of f and R denotes the real line. (It is well-known that ‖f̂‖2 = ‖f‖2 and that F is
onto.) Due to this, the set L∞(R) is called the set of Fourier multipliers for L2(R).

In this article we shall generalize this to operators on L2 functions with values in
Hilbert spaces, i.e., to TI(X, Y ) (TI for “time-invariant”), the set of bounded linear
operators L2(R; X) → L2(R; Y ) that commute with the time shift. We let X and
Y be arbitrary complex Hilbert spaces. The case where X and Y are separable is
well-known (even for unbounded closed operators, see e.g., [FS55]), but the general
case is much more complicated. The set L∞ must be replaced by L∞strong whenever
X and Y are infinite-dimensional.
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At a first glance, the result may seem like a straightforward extension of the
separable case, but the question was studied in [Tho97], which illustrates the diffi-
culty of establishing the existence of a pointwise-defined B(X,Y )-valued function
whose restriction to each separable subspace of X has the required properties.

As a corollary, we show that for each bounded holomorphic function F̃ : C+ →
B(X, Y ), where C+ := {z ∈ C

∣∣ Im z > 0}, there exists a unique boundary function
(equivalence class) F̂ : R → B(X,Y ) such that F̃ x → F̂ x a.e. nontangentially (in
Y ), for each x ∈ X.

This is a direct generalization of the standard H∞ boundary value function
result and thus solves the problem studied in [Tho97] (where it is shown that “a.e.”
may depend on x). We further extend this to functions in the Nevanlinna class in
Corollary 1.6. Also this result was already known in the case of separable X and Y
[RR85].

An example of a nonseparable Hilbert space is the completion of the space of
almost-periodic functions (it is isomorphic to `2(R)). The definitions and basic
properties of Bochner measurability and Lp and Hp spaces can be found in, e.g.,
[HP57] and [Mik02]. We prove the results of this article independently of [Mik02],
to which we refer further details, extensions etc. (particularly to its Section F.1).

The natural class for our first result is the class of (equivalence classes of) strong
L∞ functions:

Definition 1.1. (L∞strong) A function F : R → B(X, Y ) is said to be strongly
measurable, if Fx is Bochner measurable for each x ∈ X.

We define L∞strong(Q; B(X,Y )) to be the space1 of (equivalence classes of) strongly
measurable functions Q → B(X,Y ) with norm

(2) ‖F‖L∞strong
:= sup

‖x‖≤1

‖Fx‖L∞ < ∞.

Note that F and G are identified if ‖F − G‖ = 0, i.e., if Fx = Gx a.e. for
each x ∈ X. If X is finite-dimensional, then, obviously, L∞strong(R; B(X, Y )) =
L∞(R; B(X, Y )), but in general we may have ‖F‖L∞ = ∞, and F need not even
be Bochner measurable, even if F is a representative of [0] ∈ L∞strong (see [Mik05] or
Example 3.1.4 of [Mik02] for this and further anomalies).

Now we can state our equivalence rigorously (with uniqueness in L∞strong, not
pointwise):

Theorem 1.2. For each E ∈ TI(X,Y ) there exists a unique function (equiva-
lence class) Ê ∈ L∞strong(R; B(X, Y )) (called the symbol of E ) such that Ê f̂ = Ê f

1Notes: 1. One could define the multiplication through arbitrary elements to make
L∞strong(R; B(H)) a Banach algebra, as shown in [Mik02], Section F.1, but we do not need this.
2. Obviously, L∞strong is a subspace of B(X, L∞(R;Y )); in Theorem 2.5 we show that they are
actually equal. 3. Strong (operator) measurability does not imply Bochner measurability, not even
Lusin measurability to strong topology.
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a.e. on R for any f ∈ L2(R; X). Moreover, ‖Ê ‖L∞strong
= ‖E ‖B(L2(R;X),L2(R;Y )), and

each Ê ∈ L∞strong is of this form.

(This is actually an isometric B∗-algebra isomorphism; see [Mik05] or Section
3.1 of [Mik02].)

We shall prove Theorem 1.2 in Section 2, using the fact that L∞strong = B(X;
L∞(R; Y )). The rest of this section will be devoted to boundary trace results. We
denote by H∞(C+; B(X, Y )) the space of bounded holomorphic functions C+ →
B(X, Y ) with norm ‖D̃‖H∞ := supz∈C+ ‖D̃(z)‖B(X,Y ). By TIC(X,Y ) we denote
operators D ∈ TI(X, Y ) that are causal: χ(−∞,0)Dχ(0,+∞)u = 0 for all u ∈ L2(R; X)
(i.e., future input does not affect past (or negative-time) output), where χE is the
characteristic function of the set E. We set R+ := [0, +∞). The following is well
known [Wei91]:

Proposition 1.3. (T̃IC = H∞) For any D ∈ TIC(X, Y ) there exists a unique
function D̃ ∈ H∞(C+; B(X,Y )) such that (D̃f)(z) = D̃(z)f̃(z) for all z ∈ C+ and
f ∈ L2(R+; X).

Moreover, this identification is an isometric isomorphism of TIC onto H∞.

(The extension f̃ of f̂ to z ∈ C+ (through (1)) is called the Laplace transform
of f .)

The Fourier transform of a square integrable function is the boundary trace of
its Laplace transform:

Proposition 1.4. Assume that g ∈ L2(R+; X). Then ĝ is the nontangential
boundary function of g̃ a.e. on R.

This means that for a.e. r ∈ R and every θ > 0 we have g̃(z) → ĝ(r) as z → r
in the sector {z ∈ C+

∣∣ |Re z − r|/ Im z < θ}. In particular, g̃(r + is) → ĝ(r), as
s → 0+, for a.e. r ∈ R.

Proof. If X is separable, then this follows from pp. 81, 85 and 90 of [RR85].
In general, the range of g is contained in a closed separable subspace of X (after
redefinition on a null set, and that does not affect g̃ nor ĝ). ¤

From standard results (e.g., [RR85]) we shall derive that D̂ is the (unique)
boundary function of D̃ and thus obtain the following result:

Theorem 1.5. (H∞ Boundary function) Let F ∈ H∞(C+; B(X,Y )). Then
there exists a unique F0 ∈ L∞strong(C

+; B(X,Y )) (the boundary function of F ) for
which the following holds: for each x ∈ X, there exists a null set N ⊂ R such that
F (r + is)x → F0(r)x, as s → 0+, for all r ∈ R \N .

In fact, Fx → F0x nontangentially a.e., for each x ∈ X, and ‖F0‖L∞strong
=

‖F‖H∞ .
If f ∈ Hp(C+; X) and G ∈ H∞(C+; B(Y, Z)) (1 ≤ p ≤ ∞), where also Z is a

Hilbert space, with boundary functions f0 and G0, respectively, then the boundary
functions of Ff and GF equal F0f0 and G0F0, respectively.
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(We have Ff → F0f0 also in Lp(R; Y ) if p < ∞; see p. 101 of [Mik02] for this
and further equivalent conditions for F0 being the boundary function of F .)

Recall that f ∈ Hp(C+; B) means that f : C+ → B is holomorphic and ‖f‖Hp :=
sups>0 ‖f(·+ is)‖Lp < ∞.

Proof of Theorem 1.5. 1◦ By Proposition 1.3, we have F = D̃ for some D ∈
TIC(X, Y ). Choose D̂ =: F0 as in Theorem 1.2. Then

(3) ‖F0‖L∞strong
= ‖D‖B = ‖F‖H∞ .

For any g1 ∈ L2(R+; X), we have g := Dg1 ∈ L2(R+; Y ). By Proposition 1.4,
the function

(4) ĝ = D̂g1 = F0ĝ1 ∈ L2(R; Y )

is the boundary function of

(5) g̃ = D̃g1 = F g̃1 ∈ H2(C+; Y ).

Let φ := χ[0,1]. Then φ̂(z) = (1 − e−iz)/iz
√

2π; in particular, φ̂ 6= 0 on C+

and φ̂ 6= 0 a.e. on R. Let x ∈ X be arbitrary and take g1 := φx ∈ L2(R+; X).
By the above, the boundary function of Fφ̂x ∈ H2(C+; Y ) equals F0φ̂x ∈ L2(R; Y )

a.e., hence (divide by φ̂) the boundary function of Fx ∈ H∞(C+; Y ) equals F0x ∈
L∞(C+; Y ) a.e. (nontangentially). Thus, we have proved the first two paragraphs
of the theorem.

2◦ The claim on Ff : (The existence of f0 follows as in Proposition 1.4.) We may
replace X by the (separable) closed span of f [C+]. Since F (z)[X] is then separable
for each z ∈ C+, we may replace Y by the (separable) closed span of

⋃
z∈S F (z)[X],

where S is a separable subset of C+ (and F by PY FP ∗
X , where PY and PX are the

orthogonal projections from the old to the new Y and X, respectively); this does
not affect the convergence.

Now that X and Y are separable, there exists a null set N ⊂ R such that
F → F0 and f → f0 strongly and nontangentially outside N , hence

(6)
‖(Ff)(z)− (F0f0)(r)‖Y

≤ ‖F‖‖f(z)− f0(r)‖X + ‖F (z)f0(r)− F0(r)f0(r)‖Y → 0,

as z → r nontangentially, for every r ∈ R \N .
3◦ By the above, we have (GF )0f0 = (GFf)0 = G0(Ff)0 = G0F0f0 for each

f ∈ Hp(C+; X). Take p = ∞ and let f vary over the constants f ≡ x ∈ X to
observe that (GF )0 = G0F0 (in L∞strong). ¤

As shown on p. 92 of [RR85], D̃ = F need not converge to D̂ = F0 in the operator
norm (and D̂ 6∈ L∞ is possible) even if X and Y are separable. Nevertheless, in the
separable case D̃ converges to D̂ strongly a.e., that is, a single N applies to every
x ∈ X (take a union of N ’s for a dense, countable subset).

However, Thomas has shown that if X and Y are nonseparable (and X = Y ),
then D̃ need not converge strongly anywhere and D̂ need not be Lusin measurable
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to the strong topology [Tho97]. Thomas notes that D̂ can be defined as F−1DF ∈
B(L2(R; X)), and that “This seems to be about as far as one can go in the way of
transfer functions in nonseparable Hilbert spaces” (p. 133). As Theorems 1.2 and 1.5
show, one can go further and obtain a pointwise-defined function even though one
cannot obtain strong convergence nor measurability with respect to strong topology
(which is stronger than the strong measurability of Definition 1.1).

Next we extend Theorem 1.5 to functions of bounded type. If X is a Banach
space and Ω ⊂ C is open, then a holomorphic function f : Ω → X is said to be of
bounded type if log+ ‖f‖X has a harmonic majorant on Ω. The (Nevanlinna) class
of such functions is denoted by N(C+; X) [RR85]. From Theorem 1.5 we conclude
that any Nevanlinna function has a (unique) boundary function:

Corollary 1.6. If F ∈ N(C+; B(X, Y )), then there exists a strongly measur-
able boundary function F0 : R → B(X, Y ) such that Fx → F0x nontangentially
a.e. for each x ∈ X.

Obviously, the function F0 is unique if F0 and G0 are again identified when
F0x = G0x a.e. for all x ∈ X. The same result (and proof) holds with any simply
connected region in place of C+.

Proof of Corollary 1.6. By p. 76 of [RR85], any N(C+; B(X, Y )) function can be
written as F = g/v, where 0 < |v| ≤ 1 (scalar) and and g, v ∈ H∞. Let g0 ∈ L∞strong

and v0 ∈ L∞ denote the corresponding boundary functions (hence |v0| > 0 a.e. on
R [Rud87, Theorem 17.18]).

Obviously, the function F0 := v−1
0 g0 is strongly measurable. By Theorem 1.5,

we conclude that F0x is the boundary function of Fx a.e., for any x ∈ X: we have
gx → g0x and 1/v → 1/v0 a.e., hence

(7) Fx = (1/v)gx → (1/v0)g0x = F0x

a.e. on R, nontangentially. ¤
Finally, from Corollary 1.6 it follows that any Hp function has a (unique) Lp

strong

boundary function:

Corollary 1.7. If F ∈ Hp(C+; B(X,Y )) and 1 ≤ p < ∞, then F ∈ N, and we
have F (·+ is)x → F0x in Lp(R; Y ), as s → 0+, for any x ∈ X.

Proof. By p. 81 of [RR85], any Hp function is a N function, hence F0 exists. By
Theorem 4.8B, p. 90 of [RR85], Fx is the Poisson integral of F0x for any x ∈ X,
hence Fx → F0x in Lp (by the same proof as in the scalar case; see, e.g., [Gar81],
pp. 12–17). ¤

However, the boundary function of an arbitrary F ∈ Hp
strong(C

+; B(X, Y )) need
not have values in B(X, Y ), not even when X = Y is separable and p = 2 (Example
3.3.6 of [Mik02]).

By F ∈ Hp
strong(C

+, B(X, Y )) we mean that F : C+ → B(X,Y ) is holomorphic
and Fx ∈ Hp(C+; Y ) for every x ∈ X. From the Closed Graph Theorem (as in
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the proof of Lemma 2.1) it follows that then ‖x 7→ Fx‖B(X,Hp) < ∞. In particular,
H∞

strong = H∞.
Except for Corollaries 1.6 and 1.7, the results of this article are from [Mik02],

which also contains further properties, extensions, proofs, examples and details, on
L∞strong and other strongly (or weakly) measurable functions, and on Hp and Hp

strong,
and a direct (hence longer) proof of Theorem 1.5 (see the index and Sections 3.1,
D.1, F.1 and 3.3 of [Mik02]).

All above results (with essentially the same proofs) also hold with the unit disc
(resp. the unit circle T) in place of the half-plane C+ (resp. R); part of them are
explicitly given in [Mik05] and [Mik02] (e.g., Theorem 3.3.1(e) and Lemmata 13.1.5
and 13.1.6 of [Mik02]). The proofs can easily be modified to cover further similar
domains, such as Rn or Tn (cf. [FS55]).

We finish this section by commenting briefly the extensions of the above results
to Banach spaces. Allow, for a while, X and Y to be arbitrary complex Banach
spaces. Then, still, any TIC(X,Y ) operator is represented by a H∞(C+; B(X, Y ))
function, by [Wei91], but this mapping TIC → H∞ is no longer isometric, nor onto
(by Example 3.3.4 of [Mik02]). Moreover, for such X and Y (e.g., for X = C, Y =
`∞(N)) Theorem 1.5 does not hold, i.e., some H∞ functions do not have L∞strong

boundary functions, by Example 3.3.5 of [Mik02].
A weaker form of the necessity part of Theorem 1.2 for Banach spaces X and

Y is presented in Section 3.2 of [Mik02]. In Theorem 3.1.7 it is applied to show
that a time-invariant operator over both ea·L2 and eb·L2 corresponds to a bounded
holomorphic function {z ∈ C

∣∣ a < Im z < b} → B(X,Y ). If X and Y are Hilbert
spaces, then also the converse holds and this correspondence becomes an isometric
isomorphism onto, by Theorem 3.1.6.

However, sufficiency results are much more popular in (Banach space) operator-
valued multiplier theorems. E.g., a generalization to Lp(X) → Lp(Y ) of the Mihlin
multiplier theorem is given in [Wei01], assuming that X is an UMD space. For a
survey on further results, see, e.g., [Hyt03].

Some applications of Theorem 1.5 to system theory are given in [Mik02] (e.g.,
Lemma 6.3.6 and its numerous applications to Riccati equations in Chapters 9
and 10, including 9.2.14–9.2.19 and 10.3.2).

2. The proof of Theorem 1.2

We start with a simple observation:

Lemma 2.1. A strongly measurable F : R → B(X, Y ) is in L∞strong iff Fx ∈ L∞

for all x ∈ X.

Proof. “Only if” is obvious. If xn → 0 in X and Fxn → f in L∞(R; Y ), as
n → ∞, then Fxnk

→ f a.e. for some subsequence (n1 < n2 < · · · ), hence then
f = 0 a.e. Thus, by the Closed Graph Theorem, F : X → L∞ is continuous, i.e.,
F ∈ L∞strong. ¤
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Next we do the easy part, by showing that L∞strong can be identified with a
subspace of B(Lp(R; X), Lp(R; Y )) (isometrically):

Lemma 2.2. Let F ∈ L∞strong(R; B(X,Y )) and f ∈ Lp(R; X). Then Ff ∈
Lp(R; Y ) and ‖Ff‖p ≤ ‖F‖L∞strong

‖f‖p. Moreover, ‖f 7→ Ff‖Lp(R;X)→Lp(R;Y ) =

‖F‖L∞strong
.

Proof. If f is simple, then the claims are rather obvious. In the general case,
there exists a series {fn} of simple functions converging to f in Lp(R; X). It follows
that also {Ffn} is a Cauchy-sequence, in Lp(R; Y ); let g be its limit. Then

(8) ‖g‖p ≤ lim sup
n

‖F‖L∞strong
‖fn‖p = ‖F‖L∞strong

‖f‖p.

Replace {fn} by a subsequence twice to have fn → f a.e. and Ffn → g a.e. and
thus observe that Ff = g a.e., hence ‖Ff‖p = ‖g‖p ≤ ‖F‖L∞strong

‖f‖p. Since
f ∈ Lp(R; X) was arbitrary, we have ‖f 7→ Ff‖ ≤ ‖F‖L∞strong

.
But if 0 < M < ‖F‖L∞strong

, then ‖Fx‖∞ > M‖x‖ for some x ∈ X, hence then
there exists E ⊂ R such that 0 < m(E) < ∞ and ‖F (t)x‖ > M‖x‖ for all t ∈ E.
Set f := χEx to have ‖Ff‖p > M‖f‖p. Since M ∈ (0, ‖F‖L∞strong

) was arbitrary, we
have ‖f 7→ Ff‖ ≥ ‖F‖L∞strong

. ¤
From Lemma 2.2 we conclude that L∞strong is closed under pointwise multiplica-

tion:

Corollary 2.3. If F ∈ L∞strong(R; B(X, Y )) and G ∈ L∞strong(R; B(Y, Z)), then
GF ∈ L∞strong(R; B(X, Z)) and ‖GF‖ ≤ ‖G‖‖F‖.

(Indeed, GF is a function R → B(X,Z) and GFx = G(Fx) ∈ L∞(R; Z),
‖GFx‖∞ ≤ ‖G‖‖Fx‖ ≤ ‖G‖‖F‖‖x‖ for each x ∈ X.)

By the (infinite-dimensional) Plancherel Theorem, the Fourier transform (1) is
an isometric isomorphism of L2(R; X) onto L2(R; X). Since, obviously, τ̂ tf(r) =
eitrf(r) for any f ∈ L2, we observe from Lemma 2.2 that given a function F ∈
L∞strong(R; B(X, Y )), we have E ∈ TI(X, Y ) and ‖E ‖ = ‖F‖L∞strong

if we define E by
Ê f := F f̂ for any f ∈ L2(R; X). Thus, to prove Theorem 1.2, it only remains to
be shown that each E ∈ TI(X, Y ) is of this form. To this end we need Lemma 2.4
below.

Given a measurable function f , we denote its equivalence class by [f ] (or by f
when there is no risk of misinterpretation). Let B be a Banach space. By L1

loc(R; B)
we denote the (equivalence classes of) Bochner-measurable functions f : R → B
whose restrictions to compact sets are integrable.

Our proof is based on choosing in a uniquely-determinated way representa-
tives (“Lf ”) for L1

loc(R; B) “functions” so that these representatives have all possible
Lebesgue points:
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Lemma 2.4. (Lebesgue representative) Let [f ] ∈ L1
loc(R; B). For each t ∈ R

such that

(9) lim
r→0+

1

2r

∫ t+r

t−r

‖f(s)− xt‖B ds = 0

for some xt ∈ B, we set (Lf)(t) := xt (if, in addition, xt = f(t), then t is called
a Lebesgue point of f and we write t ∈ Leb(f)). For other values of t, we set
(Lf)(t) := 0.

It follows that (Lf)(t) = f(t) for all t ∈ Leb(f), hence Lf = f a.e. and Leb(f) ⊂
Leb(Lf). Moreover, ‖(Lf)(t)‖ ≤ ‖f‖∞ for all t ∈ R, and Lf depends on [f ] only.

(By Theorem 3.8.5 of [HP57], t ∈ Leb(f) for a.e. t ∈ R; the rest is obvious.)
We warn that f 7→ Lf and [f ] 7→ Lf are not linear, nor f 7→ (Lf)(t) for any t ∈ R
(but f 7→ [Lf ] and [f ] 7→ [Lf ] are linear, since [Lf ] = [f ]).

Using the above lemma, we shall show that any element of B(X, L∞(R; Y )) is
determined by an element of L∞strong(R; B(X, Y )) and that any member (represen-
tative function) of an element of L∞strong(R; B(X, Y )) can be redefined so as not to
exceed its norm:

Theorem 2.5. We have L∞strong(R; B(X, Y )) = B(X, L∞(R; Y )), isometrically.
In addition, for each T ∈ B(X, L∞(R; Y )), there exists a representative F : R →
B(X, Y ) such that supR ‖F‖ = ‖T‖.

(We mention that Lp
strong(R; B(X, Y )) ( B(X, Lp(R; Y )) and that the normed

space Lp
strong(R; B(X,Y )) is incomplete when p < ∞ and X and Y are infinite-

dimensional [Mik06, Example 4.3], [Mik02, Example F.1.10] (the case p 6= 2 requires
a slight modification). Here R can be replaced, e.g., by an interval.)

Proof. It is obvious from Definition 1.1 that the space L∞strong(R; B(X, Y ))
is a subspace of B(X, L∞(R; Y )), with the same norm. Assume then that T ∈
B(X, L∞(R; Y )), and set M := ‖T‖. We shall construct F ∈ L∞strong such that
Fx = Tx a.e. for each x ∈ X and supR ‖F‖ ≤ M ; this completes the proof.

For any t ∈ R, the set

(10) Xt := {x ∈ X
∣∣ t ∈ Leb(LTx)}

is a subspace of X, and ‖(LTx)(t)‖ ≤ ‖Tx‖∞ ≤ M‖x‖ for all t ∈ R, x ∈ X, by
Lemma 2.4.

For each t ∈ R, the map x 7→ (LTx)(t) is obviously linear on Xt, hence it has
a norm-preserving extension F (t) ∈ B(X,Y ) (e.g., extend to Xt by density and by
zero on X⊥

t ). Thus, ‖F (t)‖ ≤ M .
Let x ∈ X. Then for a.e. t ∈ R we have x ∈ Xt and hence (LTx)(t) = F (t)x.

But LTx = Tx a.e., hence Tx = Fx a.e. Consequently, F : R → B(X, Y ) is
strongly measurable. ¤

As one observes from the proof, in Theorem 2.5 the set R may be replaced by
any measurable subset of Rn (or Tn) and Y may be any Banach space (or X may
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be any Banach space if Y is finite-dimensional, see Lemma F.1.5(b) of [Mik02]). See
also Theorem F.1.9 of [Mik02] for related results.

Now we are ready to prove the main result:

Proof of Theorem 1.2. Let x ∈ X. Then E x ∈ TI(C, Y ) (by E x we refer to the
map E x : f 7→ E fx). Choose a dense countable subset {fn} of L2(R;C). Given n,
we have gn := E fnx ∈ L2(R; Y ), hence there exists a separable set Yn ⊂ Y such
that gn(t) ⊂ Kn for a.e. t ∈ R. Let Yx be the closed span of the union of all these
sets Yn.

Obviously, Yx is separable and E x ∈ TI(C; Yx) (because E fx ∈ L2(R; Yx) for
all f ∈ {fn}∞n=1, hence for all f ∈ L2(R;C)). By the separable case of Theorem 1.2
[FS55], there exists a unique

(11) T̃x ∈ L∞strong(R; B(C, Yx)) = L∞(R; Yx)

such that Ê fx = T̃xf̂ for all f̂ ∈ L2(R;C). Define Tx ∈ L∞(R; Y ) by Tx(t) := T̃x(t)
for all t ∈ R. Then ‖Tx‖∞ = ‖T̃x‖∞ ≤ ‖E ‖B‖x‖X .

This way we obtain Tx ∈ L∞(R; Y ) for any x ∈ X. Obviously, the function
T : x 7→ Tx is linear and ‖T‖B(X,L∞(R;Y )) ≤ ‖E ‖.

By Theorem 2.5, there exists F ∈ L∞strong(R; B(X,Y )) such that

(12) F f̂x = T f̂x = Ê fx ∈ L2(R; Y )

for every f ∈ L2(R;C) and x ∈ X. By linearity, F ĝ = Ê g for every simple g, hence
for every g ∈ L2(R; X), by density and continuity (Theorem B.3.11 of [Mik02] and
Lemma 2.2). ¤

The alternative proof in [Mik02] (of its Theorem 3.1.3)2 is based on the scalar
version of Theorem 1.2 only, but it is much more difficult to follow. There the
function Ê is constructed from the formula Ê x = φ−1F (E φx) (for a fixed φ ∈
L2(R;C) such that φ̂ 6= 0 on R).
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