Annales Academiæ Scientiarum Fennicæ Mathematica Volumen 33, 2008, 131–141

AN EXTENSION THEOREM FOR SUPERTEMPERATURES

Neil A. Watson

University of Canterbury, Department of Mathematics and Statistics Private Bag, Christchurch, New Zealand; n.watson@math.canterbury.ac.nz

Abstract. We present an analogue for supertemperatures of a well-known extension theorem on superharmonic functions.

1. Introduction

We call solutions of the heat equation *temperatures*, and the corresponding supersolutions *supertemperatures*. See [4] and [5] for details. The purpose of this paper is to present an analogue for supertemperatures of the following superharmonic function extension theorem.

Let K be a compact subset of \mathbf{R}^n such that $\mathbf{R}^n \setminus K$ is connected. If u is superharmonic on some open superset of K, then there exists a superharmonic function \bar{u} on \mathbf{R}^n such that $\bar{u} = u$ on a neighbourhood of K.

This result can be found in [1], p. 192.

For the case of supertemperatures on open subsets of \mathbf{R}^{n+1} , the condition that the complement of K be connected is still necessary, but is no longer sufficient, as the following example shows.

We need some notation. If p = (x, t) and $p_0 = (x_0, t_0)$ are two points in $\mathbb{R}^n \times \mathbb{R}$, we put

$$W(p_0, p) = (4\pi(t_0 - t))^{-\frac{n}{2}} \exp\left(-\frac{\|x_0 - x\|^2}{4(t_0 - t)}\right)$$

if $t_0 > t$, and $W(p_0, p) = 0$ if $t_0 \le t$.

Example. Let

 $K = \{ (x,t) \in \mathbf{R}^n \times \mathbf{R} : ||x||^2 + t^2 = 1, t \le 1/2 \}$

be the part of boundary of the unit ball (centred at the origin) where $t \leq 1/2$. Put

$$u(p) = -W(p,0)$$
 for all $p \in \mathbf{R}^{n+1}$.

Then u is a temperature on $\mathbb{R}^{n+1} \setminus \{0\}$, which is an open superset of K. Suppose that there is a supertemperature \bar{u} on \mathbb{R}^{n+1} such that $\bar{u} = u$ on an open superset D

 $^{2000 \ {\}rm Mathematics \ Subject \ Classification: \ Primary \ 31B05, \ 35K05; \ Secondary \ 31K10.}$

Key words: Supertemperature, temperature.

Neil A. Watson

of K. Then the function $v = \bar{u} - u$ is a supertemperature on \mathbb{R}^{n+1} , and is identically zero on D. Consider v on the set

$$E = \{(x,t) \in \mathbf{R}^{n+1} : ||x||^2 + t^2 < 1, \ t < 1/2\}$$

Since $v \equiv 0$ on K, the boundary minimum principle shows that $v \geq 0$ on E. Since D is an open superset of K, we can find a point $p_0 = (x_0, t_0) \in E$ such that $v(p_0) = 0$ and $t_0 > 0$. Now the strong minimum principle implies that $v \equiv 0$ on $E_0 = \{(x, t) \in E : t < t_0\}$, an open set containing the origin. So $\bar{u} = u$ on E_0 . But \bar{u} is bounded below on E_0 , whereas u is unbounded below, so we have a contradiction.

Before describing our theorem, we collect together the various pieces of notation needed for the remainder of this note. See [4] and [5] for details of these concepts.

The heat ball $\Omega(p_0; c)$ is defined for c > 0 by

$$\Omega(p_0; c) = \{ p \in \mathbf{R}^{n+1} : W(p_0, p) > (4\pi c)^{-\frac{n}{2}} \}.$$

We shall write $\tau(c)$ for $(4\pi c)^{-\frac{n}{2}}$. We shall use the characteristic surface mean values of supertemperatures. For each $x \in \mathbf{R}^n$ and t > 0, we put

$$Q(x,t) = ||x||^2 (4||x||^2 t^2 + (||x||^2 - 2nt)^2)^{-1/2}.$$

Then the mean value is defined by

$$\mathscr{M}(u; x_0, t_0; c) = \tau(c) \int_{\partial \Omega(x_0, t_0; c)} Q(x_0 - x, t_0 - t) u(x, t) \, d\sigma$$

for any function u such that the integral exists. Here σ denotes surface area measure.

If E is an open set in \mathbb{R}^{n+1} and $p_0 \in E$, we denote by $\Lambda(p_0, E)$ (respectively $\Lambda^*(p_0, E)$) the set of all points $p \in E \setminus \{p_0\}$ that can be joined to p_0 by a polygonal line in E along which the temporal variable t is strictly increasing (respectively decreasing) as the line is described from p to p_0 . In particular, if $B = B(p_0, r)$ is an open ball with centre $p_0 = (x_0, t_0)$ and radius r > 0, then $\Lambda(p_0, B)$ is the open half-ball

{
$$(x,t) : ||x - x_0||^2 + (t - t_0)^2 < r^2, t < t_0$$
}.

Furthermore, $\Lambda^*(p_0, \mathbf{R}^{n+1}) = \mathbf{R}^n \times]t_0, \infty[$.

If $q \in \partial E$, and there is an open ball $B = B(q, \epsilon)$ such that $\Lambda(q, B) \subseteq E$, we call q an abnormal boundary point of E, and write $q \in ab(\partial E)$. If ϵ can be chosen so that $\Lambda(q, B) = B \cap E$, then we call q an abnormal boundary point of the first kind, and write $q \in ab_1(\partial E)$. Otherwise, we call q an abnormal boundary point of the first of the second kind, and write $q \in ab_2(\partial E)$. We also put $n(\partial E) = (\partial E) \setminus ab(\partial E)$, and call its elements normal boundary points of E. The set $ess(\partial E)$, defined by $ess(\partial E) = n(\partial E) \cup ab_2(\partial E)$, is called the essential boundary of E, and is the part of the boundary that is relevant when using the minimum principle, or when considering the Dirichlet problem.

The definition of $\Lambda(p_0, E)$ can be extended in an obvious way to the case where $p_0 \in ab(\partial E)$. The definition of $\Lambda^*(p_0, E)$ can be extended in a similar way.

If E is a bounded open set, and f is a continuous real-valued function on $ess(\partial E)$, then there is a unique temperature on E that is associated to f by the PWB method.

It is denoted by H_f^E , and is called the *Dirichlet solution for* f on E. We use the concept of Dirichlet solution in [5] because we need it to be aligned with the strongest form of the boundary minimum principle, also given in [5].

2. The theorem

So a stronger condition than the connectedness of $\mathbf{R}^{n+1} \setminus K$ is required in the present case. To motivate our condition, we first re-write the condition of connectedness of $\mathbf{R}^n \setminus K$ for the superharmonic case. Given x_0 in an open set D, let $\Gamma(x_0, D)$ denote the component of D that contains x_0 . Then obviously $K \subseteq \mathbf{R}^n = \Gamma(x_0, \mathbf{R}^n)$, and $\mathbf{R}^n \setminus K$ is connected if and only if there is a point $x_0 \in \mathbf{R}^n \setminus K$ such that $\Gamma(x_0, \mathbf{R}^n \setminus K) = \Gamma(x_0, \mathbf{R}^n) \setminus K$.

Replacing Γ by Λ^* (introduced above), we get the required condition.

Definition. Let K be a compact subset of \mathbf{R}^{n+1} . If there is a point p_0 in $\mathbf{R}^{n+1} \setminus K$ such that $K \subseteq \Lambda^*(p_0, \mathbf{R}^{n+1})$ and $\Lambda^*(p_0, \mathbf{R}^{n+1} \setminus K) = \Lambda^*(p_0, \mathbf{R}^{n+1}) \setminus K$, then we say that $\mathbf{R}^{n+1} \setminus K$ is monotonically connected to p_0 .

In general, if $p \in \Lambda^*(p_0, \mathbf{R}^{n+1} \setminus K)$, then $p \in \mathbf{R}^{n+1} \setminus K$ and can be joined to p_0 by a polygonal path in $\mathbf{R}^{n+1} \setminus K$ along which the temporal variable is strictly decreasing. So $p \in \Lambda^*(p_0, \mathbf{R}^{n+1}) \setminus K$, and we have the inclusion

$$\Lambda^*(p_0, \mathbf{R}^{n+1} \setminus K) \subseteq \Lambda^*(p_0, \mathbf{R}^{n+1}) \setminus K.$$

Equality may fail to hold. If K is as in the above Example, and p_0 is any point such that $K \subseteq \Lambda^*(p_0, \mathbf{R}^{n+1})$, then

$$\Lambda^*(p_0, \mathbf{R}^{n+1} \backslash K) = \Lambda^*(p_0, \mathbf{R}^{n+1}) \backslash \bar{E} \subset \Lambda^*(p_0, \mathbf{R}^{n+1}) \backslash K.$$

Hence $\mathbf{R}^{n+1} \setminus K$ is not monotonically connected to any point p_0 .

Theorem. Let K be a compact subset of an open set E.

- (a) If $\mathbf{R}^{n+1} \setminus K$ is monotonically connected to some point, then for each supertemperature u on E there is a lower bounded supertemperature \bar{u} on \mathbf{R}^{n+1} such that $\bar{u} = u$ on a neighbourhood U of K. Furthermore, \bar{u} can be chosen to be the potential of a measure supported in \bar{U} , plus a constant.
- (b) If Rⁿ⁺¹\K is not monotonically connected to any point, then there exists a temperature u on E for which there is no supertemperature ū on Rⁿ⁺¹ that coincides with u on a neighburhood of K.

Proof. We begin with (b). Suppose that $\mathbf{R}^{n+1} \setminus K$ is not monotonically connected to any point. Choose a point p_0 such that $K \subseteq \Lambda^*(p_0, \mathbf{R}^{n+1})$. There is some point $p_1 \in \Lambda^*(p_0, \mathbf{R}^{n+1}) \setminus K$ that does not belong to $\Lambda^*(p_0, \mathbf{R}^{n+1} \setminus K)$, and so the same is true of every point in the set $S = \Lambda(p_1, \mathbf{R}^{n+1} \setminus K)$. Choose a point $p^* \in S$, and put $u = -W(., p^*)$ on \mathbf{R}^{n+1} . Then, in particular, u is a temperature on the open superset $\mathbf{R}^{n+1} \setminus \{p^*\}$ of K. Suppose that there is a supertemperature \bar{u} on \mathbf{R}^{n+1} such that $\bar{u} = u$ on an open superset D of K. Note that, by [5] Lemma 1, $\operatorname{ess}(\partial S) \subseteq \operatorname{ess}(\partial(\mathbf{R}^{n+1} \setminus K)) \subseteq \partial(\mathbf{R}^{n+1} \setminus K) = \partial K \subseteq D$. The function $v = \bar{u} - u$ is a supertemperature on \mathbb{R}^{n+1} and identically zero on D. Since $\operatorname{ess}(\partial S) \subseteq D$, it follows from the minimum principle that $v \ge 0$ on S. Since D is an open superset of K, for each point $p \in S$ there is a point $p' \in \Lambda^*(p, S) \cap D$. Since v(p') = 0, the strong minimum principle shows that v(p) = 0 also. So $\bar{u} = u$ on S, which is impossible because u is unbounded below on any neighbourhood of p^* , and the supertemperature \bar{u} is locally bounded below on \mathbb{R}^{n+1} . So such a function \bar{u} cannot exist if $\mathbb{R}^{n+1} \setminus K$ is not monotonically connected to any point.

The proof of part (a) of the Theorem requires several lemmas. The first of these requires the concept of a *block set*.

3. Block sets

Definition. An open set B in \mathbb{R}^{n+1} will be called a *block set* if it can be written as a union

$$B = \bigcup_{i=1}^{m} R_i$$

of finitely many open rectangles. (By a *rectangle* we mean an (n + 1)-dimensional interval.)

Note that, if B is a block set and R is a rectangle, then $B \setminus R$ is also a block set. To see this, first choose an open rectangle X which contains $B \cup \overline{R}$. Then $X \setminus \overline{R}$ is a block set, because

$$X = \prod_{i=1}^{n+1} [x_i, y_i], \quad \bar{R} = \prod_{i=1}^{n+1} [a_i, b_i], \quad x_i < a_i < b_i < y_i$$

implies that (with a slight abuse of notation)

$$X \setminus \bar{R} = \bigcup_{k=1}^{n+1} \left(\left(\left(\prod_{i \neq k}]x_i, y_i[\right) \times]x_k, a_k[\right) \bigcup \left(\left(\prod_{i \neq k}]x_i, y_i[\right) \times]b_k, y_k[\right) \right).$$

Now $B \setminus \overline{R} = B \cap (X \setminus \overline{R})$ is an intersection of two block sets, which is itself a block set; because if

$$B = \bigcup_{i=1}^{m} R_i$$
 and $X \setminus \overline{R} = \bigcup_{j=1}^{q} S_j$,

then

$$B \setminus \bar{R} = \left(\bigcup_{i=1}^{m} R_i\right) \bigcap \left(\bigcup_{j=1}^{q} S_j\right) = \bigcup_{i=1}^{m} \bigcup_{j=1}^{q} (R_i \cap S_j),$$

and $R_i \cap S_j$ is a rectangle (or empty) for every *i* and *j*.

It follows that, if B and C are both block sets, then $B \setminus \overline{C}$ is also a block set.

In the proof of the superharmonic case given in [1], the relative complement $E \setminus K$ of a compact set K in an open set E, is approximated from within by Dirichlet regular sets. This technique is not available in the present case, and instead we approximate K from without by the closures of block sets. We need to be able to

do this in such a way that, if $\mathbf{R}^{n+1} \setminus K$ is monotonically connected to a point p_0 , then the approximating block sets are too. This is the purpose of our first lemma.

Lemma 1. Let E be an open set in \mathbb{R}^{n+1} , and let K be a compact subset of E. Then there is a block set B such that $K \subseteq B$ and $\overline{B} \subseteq E$. Furthermore, if $\mathbb{R}^{n+1} \setminus K$ is monotonically connected to some point $p_0 \in \mathbb{R}^{n+1} \setminus K$, then B can be chosen so that $\mathbb{R}^{n+1} \setminus \overline{B}$ is also monotonically connected to p_0 .

Proof. Since K is a compact subset of the open set E, we can cover it with finitely many open rectangles whose closures lie in E. The union B of these rectangles is a block set such that $K \subseteq B$ and $\overline{B} \subseteq E$.

If $\mathbf{R}^{n+1} \setminus K$ is monotonically connected to p_0 , then the above choice of B may not suffice to make $\mathbf{R}^{n+1} \setminus \overline{B}$ monotonically connected to p_0 . Suppose that there are points p_{α} in $\Lambda^*(p_0, \mathbf{R}^{n+1}) \setminus \overline{B}$ that do not belong to $\Lambda^*(p_0, \mathbf{R}^{n+1} \setminus \overline{B})$. Since $\mathbf{R}^{n+1} \setminus K$ is monotonically connected to p_0 , we have $p_{\alpha} \in \Lambda^*(p_0, \mathbf{R}^{n+1}) \setminus K = \Lambda^*(p_0, \mathbf{R}^{n+1} \setminus K)$, so that there is a polygonal path from p_{α} to p_0 in $\mathbf{R}^{n+1} \setminus K$ along which time is strictly decreasing. But p_{α} does not belong to $\Lambda^*(p_0, \mathbf{R}^{n+1} \setminus \overline{B})$, so any such path must meet \overline{B} . Let $\Gamma(p_{\alpha}, p_0)$ denote the family of all such paths from p_{α} to p_0 . Then every $\gamma \in \Gamma(p_{\alpha}, p_0)$ meets \overline{B} , and there exists

$$t_{\alpha,\gamma} = \max\{t : (x,t) \in \gamma \cap B\}.$$

Put

$$t_{\alpha} = \inf\{t_{\alpha,\gamma} : \gamma \in \Gamma(p_{\alpha}, p_0)\}.$$

Because B is a block set, the infimum is attained. Choose a path $\delta \in \Gamma(p_{\alpha}, p_0)$ such that $t_{\alpha,\delta} = t_{\alpha}$ and the point $q_{\alpha} = (y_{\alpha}, t_{\alpha}) \in \delta \cap \overline{B}$ is in the relative interior of $(\mathbf{R}^n \times \{t_{\alpha}\}) \cap \partial B$. Then $\Lambda^*(q_{\alpha}, \mathbf{R}^{n+1} \setminus \overline{B})$ is defined and contains p_{α} . Put

$$I(q_{\alpha}) = \Lambda^*(q_{\alpha}, \mathbf{R}^{n+1} \setminus \bar{B}) \setminus \Lambda^*(p_0, \mathbf{R}^{n+1} \setminus \bar{B}),$$

which is nonempty because it contains p_{α} .

Take another point q_{β} , chosen in the same way relative to another point p_{β} in $\Lambda^*(p_0, \mathbf{R}^{n+1}) \setminus \overline{B}$ that does not belong to $\Lambda^*(p_0, \mathbf{R}^{n+1} \setminus \overline{B})$. If q_{α} and q_{β} belong to the same component of $(\mathbf{R}^n \times \{t\}) \cap \partial B$ for some t, then $I(q_{\alpha}) = I(q_{\beta})$. Since B is a block set, there are only finitely many different values of t for which $\mathbf{R}^n \times \{t\}$ contains some q_{α} , and each $(\mathbf{R}^n \times \{t\}) \cap \partial B$ has only finitely many components. So there are only finitely many distinct sets $I(q_{\alpha})$. We choose a unique point q_k to represent each distinct set $I(q_k)$, and thus obtain a finite set $\{q_1, \ldots, q_m\}$ such that

$$\left(\Lambda^*(p_0, \mathbf{R}^{n+1}) \setminus \bar{B}\right) \setminus \Lambda^*(p_0, \mathbf{R}^{n+1} \setminus \bar{B}) \subseteq \bigcup_{k=1}^m \Lambda^*(q_k, \mathbf{R}^{n+1} \setminus \bar{B}).$$

Since $q_k \in \mathbf{R}^{n+1} \setminus K$ for $k \in \{1, \ldots, m\}$, and $\mathbf{R}^{n+1} \setminus K$ is monotonically connected to p_0 , we can choose a polygonal path γ_k that connects q_k to p_0 along which the temporal variable is strictly decreasing. Since $\bigcup_{k=1}^m \gamma_k$ is compact, we can cover it with finitely many open rectangles whose closures do not intersect K. Let U denote the union of the closures of these rectangles. Now $B \setminus U$ is a block set containing K, and $\mathbf{R}^{n+1} \setminus (B \setminus U)$ is monotonically connected to p_0 .

4. Preliminary extension lemmas

The remaining lemmas are all relatively minor extension results. The first is the direct analogue of a result in [1], p. 66.

Lemma 2. Let v be a supertemperature on an open set E, and let h be a supertemperature on an open subset D of E. If

(1)
$$\liminf_{p \to q, p \in D} h(p) \ge v(q) \quad \text{for all} \quad q \in E \cap \partial D,$$

and w is defined on E by

$$w(p) = \begin{cases} (h \wedge v)(p) & \text{if } p \in D, \\ v(p) & \text{if } p \in E \backslash D, \end{cases}$$

then w is a supertemperature on E.

Proof. It is clear that w is a supertemperature on $E \setminus \partial D$, that $w(p) > -\infty$ for all $p \in E$, and that $w < +\infty$ on a dense subset of E. Condition (1) ensures that, for each point $q \in E \cap \partial D$,

$$\liminf_{p \to q} w(p) = \min \left\{ \liminf_{p \to q, \, p \in D} h(p), \, \liminf_{p \to q} v(p) \right\} \ge v(q) = w(q),$$

so that w is lower semicontinuous on E. It remains to check that the supertemperature mean value inequality is satisfied at points of $E \cap \partial D$. If $q \in E \cap \partial D$ and $\overline{\Omega}(q;c) \subseteq E$, then

$$w(q) = v(q) \ge \mathscr{M}(v;q,c) \ge \mathscr{M}(w;q,c).$$

Hence w is a supertemperature on E, by [4] Theorem 15.

In practice, condition (1) is rarely satisfied when $q \in ab(\partial D)$, and this limits the usefulness of Lemma 2. We need a substitute result for the case where $D = E \setminus \overline{T}$ with T a block set such that $\overline{T} \subseteq E$. In this case, the set of all horizontal edges of T contains $E \cap ab_2(\partial D)$, and is a closed polar set, in view of [5], p. 280.

Lemma 3. Let E be an open set, let T be a block set such that $\overline{T} \subseteq E$, and let $D = E \setminus \overline{T}$. Let v be a supertemperature on E, and let h be a supertemperature on D. If

(2)
$$\liminf_{p \to q, \, p \in D} h(p) \ge v(q) \quad \text{for all} \quad q \in E \cap \mathbf{n}(\partial D),$$

(3)
$$\liminf_{p \to q, p \in D} h(p) > -\infty \quad \text{for all} \quad q \in E \cap \operatorname{ab}(\partial D),$$

and

(4)
$$\liminf_{p \to q, \, p \in D} h(p) \le v(q) \quad \text{for all} \quad q \in E \cap \mathrm{ab}_1(\partial D),$$

then the function w, defined on $E \setminus ab_2(\partial D)$ by

$$w(q) = \begin{cases} (h \wedge v)(q) & \text{if } q \in D, \\ \liminf_{p \to q, \, p \in D} h(p) & \text{if } q \in E \cap \operatorname{ab}_1(\partial D), \\ v(q) & \text{if } q \in E \backslash (D \cup \operatorname{ab}(\partial D)), \end{cases}$$

has a unique extension to a supertemperature on E.

Proof. Let Z denote the closed set of all horizontal edges of T. Then $E \cap ab_2(\partial D) \subseteq Z$. Clearly w is a supertemperature on $E \setminus \partial D$, and $w > -\infty$ on $E \setminus ab_2(\partial D)$, which contains $E \setminus Z$. Furthermore, because T is a block set, $E \cap ab(\partial D)$ is contained in the union of a finite set of hyperplanes of the form $\mathbf{R}^n \times \{t\}$, and so $w < +\infty$ on a dense subset of E.

Next we check the lower semicontinuity. If $q \in E \cap n(\partial D)$, then

$$\liminf_{p \to q} w(p) = \min\left\{\liminf_{p \to q, \, p \in D} h(p), \, \liminf_{p \to q} v(p)\right\} \ge v(q) = w(q).$$

in view of (2). If $q \in E \cap ab_1(\partial D)$, then condition (4) and [5] Lemma 12 imply that

$$\liminf_{p \to q, \, p \in D} h(p) \le \liminf_{p \to q} v(p),$$

so that

$$\liminf_{p \to q} w(p) = \min\left\{\liminf_{p \to q, \ p \in D} h(p), \ \liminf_{p \to q} v(p)\right\} = \liminf_{p \to q, \ p \in D} h(p) = w(q).$$

Hence w is lower semicontinuous on $E \setminus ab_2(\partial D)$, and in particular on $E \setminus Z$.

We now check that the supertemperature mean value inequality is satisfied at every point of $E \cap (\partial D \setminus ab_2(\partial D))$. Because T is a block set, $E \cap ab(\partial D)$ is contained in the union of a *finite* collection of hyperplanes of the form $\mathbf{R}^n \times \{t\}$. Therefore, if $q \in E \cap n(\partial D)$ we have $\overline{\Omega}(q; c) \subseteq E \setminus ab(\partial D)$ for all sufficiently small values of c. For those values,

$$w(q) = v(q) \ge \mathscr{M}(v; q, c) \ge \mathscr{M}(w; q, c).$$

On the other hand, if $q \in E \cap ab_1(\partial D)$, then condition (3) implies that w is bounded below on some open rectangle R such that $q \in ab(\partial R)$. Therefore we can use condition (4), Fatou's Lemma, and the lower semicontinuity of $h \wedge v$, to obtain

$$w(q) = \liminf_{p \to q, \, p \in D} h(p) \ge \liminf_{p \to q, \, p \in D} (h \wedge v)(p) \ge \liminf_{p \to q, \, p \in D} \mathscr{M}(h \wedge v; p, c)$$
$$\ge \mathscr{M}(h \wedge v; q, c) = \mathscr{M}(w; q, c)$$

for all sufficiently small values of c. It follows from [4], Theorem 15, that w is a supertemperature on $E \setminus Z$.

Since Z is a closed polar subset of E, we have only to show that w is locally bounded below on E and apply [5], Theorem 29, to complete the proof. Clearly w is bounded below on compact subsets of $E \setminus \partial D$. Condition (3) (along with the lower finiteness of v) implies that w is bounded below on some neighbourhood of any $q \in E \cap ab(\partial D)$, and condition (2) has a similar implication for $q \in E \cap n(\partial D)$. So w is locally bounded below on E, and the result follows.

In the proof of our theorem, we first extend the given supertemperature to a set of the form

$$\Omega^*(p_0; c) = \{ p \in \mathbf{R}^{n+1} : W(p, p_0) > \tau(c) \},\$$

which is the reflection of $\Omega(p_0; c)$ in the hyperplane $\mathbf{R}^n \times \{t_0\}$, if $p_0 = (x_0, t_0)$. The following lemma then gives an extension to the whole of \mathbf{R}^{n+1} .

Lemma 4. Let u be a supertemperature on $\Omega^* = \Omega^*(p^*; c^*)$, and let S be an open set such that $\overline{S} \subseteq \Omega^*$. Then there is a supertemperature \overline{u} on \mathbb{R}^{n+1} , such that $\overline{u} = u$ on S and \overline{u} is lower bounded on \mathbb{R}^{n+1} .

Proof. Let $p^* = (x^*, t^*)$, and choose $t_1 > t^*$ such that $\overline{S} \subseteq \mathbf{R}^n \times]t_1, \infty[$. Choose $\gamma < c^*$ such that $\overline{S} \subseteq \Omega^*(p^*; \gamma)$, and put $\Omega_1^*(\gamma) = \Omega^*(p^*; \gamma) \cap (\mathbf{R}^n \times]t_1, \infty[)$. Then $\overline{\Omega}_1^*(\gamma)$ is a compact subset of Ω^* , so that we can find $k \in \mathbf{R}$ such that u > k on $\Omega_1^*(\gamma)$. Let R_{u-k}^S be the reduction of u - k relative to S in $\Omega_1^*(\gamma)$ (see [2] for details about reductions), and put

$$u_1 = R_{u-k}^S + k$$
 on $\Omega_1^*(\gamma)$.

Then u_1 is a supertemperature on $\Omega_1^*(\gamma)$, u_1 is a temperature on $\Omega_1^*(\gamma) \setminus \overline{S}$, $k \leq u_1 \leq u$ on $\Omega_1^*(\gamma)$, and $u_1 = u$ on S.

Choose α and β such that $0 < \alpha < \beta < \gamma$ and $\overline{S} \subseteq \Omega^*(p^*; \alpha)$. Put $\Omega^*(\alpha) = \Omega^*(p^*; \alpha)$, and $\Omega_1^*(\alpha) = \Omega^*(\alpha) \cap (\mathbf{R}^n \times]t_1, \infty[)$; similarly for β . Since u_1 is continuous on $\Omega_1^*(\gamma) \setminus \overline{S}$, it has a maximum value $M(\alpha) \ge k$ on $\partial \Omega^*(\alpha) \cap (\mathbf{R}^n \times [t_1, \infty[))$. Define u_2 on \mathbf{R}^{n+1} by putting

$$u_2(p) = \frac{M(\alpha) - k}{\tau(\alpha) - \tau(\beta)} (W(p, p^*) - \tau(\beta)) + k.$$

Then u_2 is a supertemperature, $u_2 = M(\alpha)$ on $\partial \Omega^*(\alpha) \setminus \{p^*\}$, and $u_2 = k$ on $\partial \Omega^*(\beta) \setminus \{p^*\}$. Now define u_3 on $\mathbf{R}^n \times]t_1, \infty[$ by

$$u_3 = \begin{cases} u_1 & \text{on} \quad \bar{\Omega}^*(\alpha) \cap (\mathbf{R}^n \times]t_1, \infty[), \\ u_1 \wedge u_2 & \text{on} \quad \Omega_1^*(\beta) \setminus \bar{\Omega}_1^*(\alpha), \\ u_2 & \text{on} \quad (\mathbf{R}^n \times]t_1, \infty[) \setminus \Omega_1^*(\beta). \end{cases}$$

We apply Lemma 2 with $E = \Omega_1^*(\beta)$, $v = u_1$, $D = \Omega_1^*(\beta) \setminus \overline{\Omega}_1^*(\alpha)$, and $h = u_2$, noting that for all $q \in E \cap \partial D = \Omega_1^*(\beta) \cap \partial \Omega_1^*(\alpha)$ we have

$$\liminf_{p \to q, \, p \in D} h(p) \ge u_2(q) = M(\alpha) \ge u_1(q) = v(q).$$

Thus u_3 is a supertemperature on $\Omega_1^*(\beta)$.

A second application of Lemma 2, this time with $E = (\mathbf{R}^n \times]t_1, \infty[) \setminus \overline{\Omega}_1^*(\alpha)$, $v = u_2, D = \Omega_1^*(\beta) \setminus \overline{\Omega}_1^*(\alpha)$, and $h = u_1$, so that for all $q \in E \cap \partial D = (\mathbf{R}^n \times]t_1, \infty[) \cap \partial \Omega_1^*(\beta)$ we have

$$\liminf_{p \to q, p \in D} h(p) \ge u_1(q) \ge k = u_2(q) = v(q),$$

shows that u_3 is also a supertemperature on $(\mathbf{R}^n \times]t_1, \infty[) \setminus \Omega_1^*(\alpha)$, and therefore on the whole of $(\mathbf{R}^n \times]t_1, \infty[)$.

Since $u_1 \ge k$ on $\Omega_1^*(\gamma)$, and

$$u_2 \ge \frac{M(\alpha) - k}{\tau(\alpha) - \tau(\beta)} (-\tau(\beta)) + k = \frac{-\tau(\beta)M(\alpha) + \tau(\alpha)k}{\tau(\alpha) - \tau(\beta)}$$

on \mathbf{R}^{n+1} , u_3 is lower bounded. Putting

$$\bar{u} = \begin{cases} u_3 & \text{on} \quad \mathbf{R}^n \times]t_1, \infty[,\\ \inf u_3 & \text{on} \quad \mathbf{R}^n \times] - \infty, t_1], \end{cases}$$

we obtain a lower bounded supertemperature \bar{u} on \mathbb{R}^{n+1} such that $\bar{u} = u_3 = u_1 = u$ on S.

5. Proof of part (a) of the theorem

Let K be a compact subset of an open set E. We must prove the following statement:

If $\mathbf{R}^{n+1} \setminus K$ is monotonically connected to some point p_0 , then for each supertemperature u on E there is a lower bounded supertemperature \bar{u} on \mathbf{R}^{n+1} such that $\bar{u} = u$ on a neighbourhood U of K. Furthermore, \bar{u} can be chosen to be the potential of a measure supported in \bar{U} , plus a constant.

Proof. We may suppose that E is bounded, and that u > 0 on E.

By Lemma 1, we can find an open (block) set S such that $K \subseteq S, \overline{S} \subseteq E$, and $\mathbf{R}^{n+1} \setminus \overline{S}$ is monotonically connected to p_0 . Let $v = R_u^S$, the reduction of u relative to S in E. Then v is a supertemperature on E, v is a temperature on $E \setminus \overline{S}, 0 \leq v \leq u$ on E, and v = u on S. Using Lemma 1 again, we can find a block set T such that $\overline{S} \subseteq T, \overline{T} \subseteq E$, and $\mathbf{R}^{n+1} \setminus \overline{T}$ is monotonically connected to p_0 . Choose $p^* \in \mathbf{R}^{n+1}$ and $c^* > 0$ such that $\overline{E} \cup \{p_0\} \subseteq \Omega^*(p^*; c^*)$, and put $\Omega^* = \Omega^*(p^*; c^*), A = \Omega^* \setminus \overline{T}$. We shall extend u to a supertemperature on Ω^* , then use Lemma 4 to further extend u to \mathbf{R}^{n+1} .

Put $g_1 = v$ on ∂T , $g_1 = 0$ on $\partial \Omega^*$, $g_2 = 0$ on ∂T , and $g_2 = 1$ on $\partial \Omega^*$. Define

$$h_k = H_{g_1}^A - k H_{g_2}^A \quad \text{for all} \quad k \in \mathbf{N}.$$

Note that v is continuous on ∂T , because v is a temperature on $E \setminus \overline{S}$. For each point $(x,t) \in A$ such that $t < \min\{s : (y,s) \in \overline{T}\}$, we have $H_{g_2}^A(x,t) = 1$ because $g_2 = 1$ on $\partial \Omega^*$. In particular, $H_{g_2}^A(p_0) = 1$. Since $\mathbf{R}^{n+1} \setminus \overline{T}$ is monotonically connected to p_0 , for all $p \in \Lambda^*(p_0, \mathbf{R}^{n+1}) \setminus \overline{T}$ we have $p_0 \in \Lambda(p, \mathbf{R}^{n+1} \setminus \overline{T})$, and therefore $p_0 \in \Lambda(p, A)$ if $p \in A$. Therefore, by the strong minimum principle, $H_{g_2}^A > 0$ on A, so that $\{h_k\}$ decreases to $-\infty$ on A as $k \to \infty$.

Our method of extending u to Ω^* requires that $h_j \leq v$ on $E \setminus \overline{T}$ for some j. Because $\{h_k\}$ decreases to $-\infty$ on A, we can find j such that $h_j \leq 0$ on ∂E . Neil A. Watson

Therefore, for all $q \in \partial E$ we have

$$\liminf_{p \to q, p \in E} v(p) \ge h_j(q) = \lim_{p \to q} h_j(p).$$

Consider the points of ∂T as boundary points in the Dirichlet problem on A. Because T is a block set, all points of $\partial T \cap n(\partial A)$ are regular, by the parabolic tusk test in [3]. All points of $\partial T \cap ab_1(\partial A)$ can be ignored, because they are irrelevant to both the Dirichlet problem on A and the use of the minimum principle on A. Again because T is a block set, all points of $\partial T \cap ab_2(\partial A)$ are contained in the union of finitely many sets of the form $\{(x_1, \ldots, x_n, t) : t = a, x_j = b \text{ for some } j\}$, each of which is polar by [5], p. 280. So $\partial T \cap ab_2(\partial A)$ is also polar. It follows that

$$\lim_{p \to q, p \in A} h_j(p) = v(q) = \lim_{p \to q, p \in E \setminus \bar{T}} v(p),$$

for all $q \in \partial T \cap \operatorname{ess}(\partial A) \setminus Z$ for some polar set Z. Furthermore, because $g_1 \leq \max_{\partial T} v$ and $g_2 \geq 0$ on ∂A , we have $h_j \leq \max_{\partial T} v$ on A, so that $v - h_j$ is lower bounded on $E \setminus \overline{T}$. Applying the minimum principle in [5], p. 284, to $v - h_j$ on $E \setminus \overline{T}$, we obtain $v \geq h_j$.

We now put $D = E \setminus \overline{T}$ and apply Lemma 3 with $h = h_j$, noting that

$$\lim_{p \to q, p \in D} h_j(p) = v(q) \quad \text{for all} \quad q \in E \cap \mathbf{n}(\partial D),$$

because $E \cap n(\partial D) = \partial T \cap n(\partial A)$ and all such points are regular;

$$\liminf_{p \to q, p \in D} h_j(p) > -\infty \quad \text{for all} \quad q \in E \cap \operatorname{ab}(\partial D)$$

because $h_j \ge -j$ on A; and

$$\liminf_{p \to q, p \in D} h_j(p) \le v(q) \quad \text{for all} \quad q \in E \cap ab_1(\partial D)$$

because $h_j \leq v$ on D, v is continuous on ∂T , and $ab_1(\partial D) \cap E = ab_1(\partial D) \cap \partial T$. Thus we see that the function w, defined by

$$w = \begin{cases} h_j = h_j \wedge v & \text{on} \quad D = E \setminus \bar{T} \\ v & \text{on} \quad T, \end{cases}$$

can be extended to a supertemperature \bar{w} on E. Since h_j is a temperature on A, the function \bar{w} can be extended by h_j to a supertemperature on Ω^* .

Next, by Lemma 4, there is a lower bounded supertemperature u_0 on \mathbb{R}^{n+1} such that $u_0 = w = v = u$ on the neighbourhood S of K. Now let U be any open set such that $K \subseteq U \subseteq S$. To show that u_0 can be taken to be the potential of a measure supported in \overline{U} , plus a constant, we first put $m = \inf u_0$ and $u_1 = R_{u_0-m}^U$, the reduction of $u_0 - m$ relative to U in \mathbb{R}^{n+1} . Since U is open, u_1 is a nonnegative supertemperature on \mathbb{R}^{n+1} , and $u_1 = u_0 - m$ on U. In fact, because \overline{U} is compact, u_1 is a potential by [2], p. 319,(m). Furthermore, u_1 is a temperature on $\mathbb{R}^{n+1} \setminus \overline{U}$, and so its Riesz measure is supported in \overline{U} , by [5] Theorem 20. The function $\overline{u} = u_1 + m$ has the required form.

References

- [1] ARMITAGE, D. H., and S. J. GARDINER: Classical potential theory. Springer, London, 2001.
- [2] DOOB, J. L.: Classical potential theory and its probabilistic counterpart. Springer, New York, 1984.
- [3] EFFROS, E. G., and J. L. KAZDAN: On the Dirichlet problem for the heat equation. Indiana Univ. Math. J. 20, 1971, 683–693.
- [4] WATSON, N. A.: A theory of subtemperatures in several variables. Proc. London Math. Soc. 26, 1973, 385–417.
- [5] WATSON, N. A.: Green functions, potentials, and the Dirichlet problem for the heat equation.
 Proc. London Math. Soc. 33, 1976, 251–298.

Received 8 December 2006