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1 Introduction and background

Given a closed subset K of Rn, and �ma�a AZ n
�

a (multi-) sequence of real numbers, the
K-moment problem asks whether this sequence can be realized as the moment sequence
of some positive Borel measure on K. In other words, the question is whether there is
a positive Borel measure m on K which satis®es�

K

xa dm � ma

for every a A Zn
�. (By this notation, we imply tacitly that all moments of m exist.)

In slightly di¨erent terms, the question is to characterize those linear forms
L : R�t1; . . . ; tn� ! R for which there exists a positive Borel measure m on K whose
moments exist and satisfy �

K

f �x� dm � L� f �

for every f A R�t1; . . . ; tn�. In this case, we say that the K-moment problem is solvable
for L. Obviously, it is necessary that L� f �X 0 whenever f X 0 on K. A classical
theorem says that this condition is also su½cient:

1.1. Theorem (Haviland [12]). The K-moment problem is solvable for L if and only if

L� f �X 0 for every polynomial f which is non-negative on K.

Moment problems were originally studied in the one-variable case. In 1894, Stieltjes
[25] showed that for K � �0;y�, the K-moment problem is solvable for L if and only
if L� f 2 � tg2�X 0 for all f ; g A R�t�. The most famous example is the case K � R,
which was solved by Hamburger in 1921 [9]. He showed that a necessary and su½-
cient condition in this case is L� f 2�X 0 for all f A R�t�. In 1923, Hausdor¨ [11]
studied the case K � �0; 1� and showed that a necessary and su½cient condition is
L� f 2 � tg2 � �1ÿ t�h2�X 0 for all f ; g; h A R�t�. These results can be viewed as par-



ticular cases of Haviland's theorem; in all three cases, every polynomial which is non-
negative on K is a ®nite sum of polynomials which were used for testing L.

Extending the moment problem to more than one variable is a more recent idea. The
multidimensional moment problem is mentioned brie¯y in the 1943 book of Shohat
and Tamarkin [24]. Some partial results on the two-dimensional moment problem are
given in a paper by Devinatz [8] in 1957. In 1979, SchmuÈdgen [21] and Berg, Chris-
tensen, and Jensen [1] showed that the Hamburger result for K � R does not extend
to Rn for nX 2, using the fact that in more than one variable there exist polynomials
which are globally non-negative but not sums of squares (see below). Later works
studied the multidimensional moment problem for other (speci®c) sets K, see, e.g., [2],
[6], [16].

In the following, we write A � R�t1; . . . ; tn�, and denote the set of sums of squares
in A by SA2.

1.2. De®nition. Given a closed subset K of Rn and a subset P of A, we say that P

solves the moment problem for K if

(1) K � fx A Rn : f �x�X 0 for every f A Pg;
(2) for every linear functional L on A with

L�a2f1 . . . fr�X 0

for every a A A, rX 0 and f1; . . . ; fr A P, there is a positive Borel measure m on K
such that L is integration with respect to m.

The classic examples above imply (for n � 1) that ftg solves the moment problem
for �0;y�, q solves the moment problem for R, and ft; 1ÿ tg solves the moment
problem for �0; 1�.

In 1991, K. SchmuÈdgen proved the following remarkable theorem:

1.3. Theorem (SchmuÈdgen [23]). Suppose f1; . . . ; fr A A are such that K :�
f f1 X 0; . . . ; fr X 0g is compact. Then f f1; . . . ; frg solves the moment problem for K.

Note that SchmuÈdgen's theorem holds regardless of the polynomials chosen to
de®ne K by inequalities. As a simple example, we obtain the following (non-obvious)
variation of Hausdor¨ 's result: Let K � �0; 1�, then for any (®xed) odd integers k and
m, the K-moment problem is solvable for L if and only if L� f 2 � g2tk�1ÿ t�m�X 0
for all f ; g A R�t�.

It seems that SchmuÈdgen's result was the ®rst on the moment problem which cov-
ers a truly general class of sets K, rather than just speci®c sets.

Our goal in this paper is to study the non-compact case. Recall that a subset K of
Rn is called basic closed (semialgebraic) if it has the form K � f f1 X 0; . . . ; fr X 0g,
where the fi are polynomials. Given such fi, we ask, when does f f1; . . . ; frg solve the
moment problem for K ? The result of Berg et al. and SchmuÈdgen mentioned above
shows that SchmuÈdgen's theorem does not generalize to the non-compact case:
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1.4. Example. Suppose A � R�t1; . . . ; tn� where nX 2. Then there exists a linear
functional L on A such that L� f 2�X 0 for all f A A but the Rn-moment problem is
not solvable for L. In particular, q does not solve the moment problem for Rn.

Sketch of proof. Since nX 2, there exists a polynomial p such that pX 0 on all of
Rn, but p is not a sum of squares. This was proven by Hilbert in 1888 [13], although
the ®rst explicit example of such p to appear in the literature was given by Motzkin in
1965 [17]. (See [18] for more on this interesting subject.)

The cone SA2 is closed in the ®nest locally convex vector space topology on A. By
Hahn-Banach separation of convex sets, there is a linear functional L on A such that
L�p� < 0 but L� f �X 0 for every f A SA2. Trivially, L cannot come from a positive
Borel measure on Rn.

Note that Haviland's theorem implies immediately that the set P consisting of all
everywhere non-negative polynomials in A solves the moment problem for Rn. More
generally, for any closed K, there exists a set P which solves the moment problem for
K, namely the set of all f which are non-negative on K. However, even if K is a basic
closed semialgebraic set, it is not clear Ð and not true Ð in general that a ®nite set P

of polynomials can be found which solves the moment problem for K. Therefore, we
wish to study the following questions:

. Given polynomials f1; . . . ; fr, can we give necessary or su½cient conditions under
which they solve the moment problem for K � f f1 X 0; . . . ; fr X 0g?

. Given a basic closed semialgebraic set K, when does there exist some ®nite set of
polynomials which solves the moment problem for K ?

If K is compact, the answer to the second question is ``always'', and no conditions
are needed in the ®rst question, both by SchmuÈdgen's theorem. On the other hand,
we will show that there are many cases of non-compact K where the answer to the
second question is negative.

If P is any set of polynomials, it is easy to see that P solves the moment problem
for K if and only if the closure of PUSA2 under addition and multiplication does. A
subset of A closed under addition and multiplication and containing all squares is
called a preorder. (See the next section for precise de®nitions.) It turns out to be ad-
vantageous to replace P by the preorder it generates, and to study the moment problem
for preorders. We will do so in the next section, after introducing the necessary
technical language. Also, it will be important to allow arbitrary ®nitely generated R-
algebras A in place of the polynomial ring. We equip A with the ®nest locally convex
vector space topology. The saturation of a preorder P is the set of all polynomials
which are non-negative on the closed set associated to P. By Haviland's theorem, P

solves the moment problem for its associated set if and only if the topological closure
of P is also closed under saturation (Cor. 3.1). For this reason we are interested in
methods for deciding if a preorder is closed. A key notion in this regard is that of
stable preorders. Our ®rst main result is Theorem 2.14, which provides large classes
of examples of basic closed sets K for which every ®nitely generated preorder with
associated set K is topologically closed, but not saturated, and hence does not solve
the moment problem for K.
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Thus we have found many cases where the answer to our second question above is
negative. Among them are even (many) cases where dim�K� � 1 (Thm. 3.9). We also
have positive results for 1-dimensional sets K, which we obtain by applying theorems
from [20] (Thm. 3.12). Combining 3.9 and 3.12, we have obtained a complete solu-
tion for the moment problem on smooth algebraic curves. This is the second main
result of our paper. Furthermore, in all cases, our results give more precise informa-
tion than just whether the moment problem is solved or not.

When we were in the ®nal stages of writing this paper, we found out from Murray
Marshall and Salma Kuhlmann that they had been studying similar questions. Their
approach and techniques are somewhat di¨erent from ours, for example, they work
only in the polynomial ring. Their preprint [15] contains a list of open questions, and
at the end of our paper we settle some of these.

Acknowledgements. A talk of K. SchmuÈdgen at the 60th birthday celebration of M.
Marshall led the ®rst author to consider the questions studied in this paper. She
thanks Prof. SchmuÈdgen for his inspiring talk, Prof. Marshall for having a birthday,
and Salma and Franz-Viktor Kuhlmann for organizing the birthday conference and
inviting her. The authors also thank M. Marshall and S. Kuhlmann for bringing their
work to their attention.

2 Preorders

Preorders are important objects in real algebra, which in some sense play a role in
semialgebraic geometry that is comparable to the role played by ideals in algebraic
geometry. In this section we study preorders with a view towards answering the
questions on the moment problem raised in the previous section. However, our
results are also of independent interest.

We need to work with ®nitely generated (f. g.) R-algebras, rather than with poly-
nomial rings only. In geometric terms, this means working with a½ne algebraic R-
varieties rather than with n-dimensional a½ne space only. First recall the basic
dictionary between such varieties and f. g. R-algebras.

To any f. g. R-algebra A there corresponds an a½ne algebraic variety V over R.
(We use the word ``variety'' in a broad sense, it does not imply irreducible or reduced.)
The correspondence between A and V is expressed by writing V � Spec A or A �
R�V �. The variety V comes together with its set V�R� of real points; by de®nition
V�R� � HomR�A;R�, the set of R-algebra homomorphisms from A to R. Given
M A V�R�, the corresponding homomorphism A! R is written f 7! f �M� and is
thought of as evaluation of the elements of A in M. Note that if A � R�t1; . . . ; tn�,
then V � An � a½ne n-space, and V�R� is simply Rn.

The set V�R� comes with a natural topology, which has the sets fM A V�R� :
f �M� > 0g ( f A A) as a subbasis of open sets. A subset of V�R� is called semi-

algebraic if it is a ®nite boolean combination (unions, intersections, complements) of
these sets.

Choosing a ®nite system x1; . . . ; xn of generators of A gives an epimorphism
R�t1; . . . ; tn� !! A, ti 7! xi, and correspondingly, an embedding of V�R� into Rn as
a Zariski closed subset. Thus, one can think of V�R� as a (Zariski closed) alge-
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braic subset of some Rn, if one wishes, but it is often preferable not to ®x such an
embedding.

Note that the full algebra A cannot be retrieved from V�R�, if V�R� is given as an
algebraic subset of Rn, say. For example, V�R�may be empty without A being trivial,
e.g., for A � R�t�=�t2 � 1�. All one gets back from V�R� is the quotient ring A=N,
where N is the so-called real nilradical of A (see [3, 4.1]). To get a complete dictionary
between algebras and a½ne varieties, it would be necessary to employ the structure
sheaves of the latter.

Therefore, the algebra A is our basic object of study. We ®x V � Spec A, an a½ne
R-variety. By this we mean that A is a f. g. R-algebra and V � Spec A is the asso-
ciated a½ne algebraic R-variety. A subset P of A is called a preorder (in A) if f 2 A P

for every f A A and P is closed under addition and multiplication. Any intersection of
preorders in A is again a preorder. Therefore, given a subset F of A, there is a smallest
preorder containing F, denoted PO�F�, or PO� f1; . . . ; fr� if F � f f1; . . . ; frg, and
called the preorder generated by F. Explicitly, PO�F� is the set of all ®nite sums of
elements of the form a2f1 . . . fr, where a A A, rX 0 and f1; . . . ; fr A F .

Given a preorder P in A, we write

S�P� :� fM A V�R� : f �M�X 0 for every f A Pg:
This is a closed subset of V�R�. If P � PO� f1; . . . ; fr� is ®nitely generated, then
S�P� � fM A V�R� : f1�M�X 0; . . . ; fr�M�X 0g, and in particular, is a semi-
algebraic set.

On the other hand, if K is a closed subset of V�R�, we write

P�K� :� f f A A : f X 0 on Kg:
This is a preorder in A, and clearly S�P�K�� � K .

A preorder P will be called saturated if there exists a closed subset K of V�R�
with P � P�K�. If so, then necessarily K � S�P�. The saturation Sat�P� of a pre-
order P is de®ned by Sat�P� :� P�S�P��; this is the smallest saturated preorder
containing P. The correspondence K 7! P�K� is a bijection between closed subsets of
V�R� and saturated preorders in A, the inverse map being P 7!S�P�.
2.1. Examples. The unique smallest preorder in A is SA2, the set of sums of squares
in A. Its saturation Sat�SA2� is the set A� of all positive semide®nite ( psd ) functions
in A, i.e., of all f A A with f X 0 on V�R�. Consider in particular the case A �
R�t1; . . . ; tn�. If n � 1, then SA2 � A�. However, if nX 2, then as we saw in Example
1.4, A� is strictly larger than SA2.

As a matter of fact, the preorder A� of all psd polynomials is not ®nitely generated
(as a preorder), if A � R�t1; . . . ; tn� and nX 2. An even stronger assertion is true:
A� is not the closure of any ®nitely generated preorder, with respect to the topology
introduced below. This is a particular case of Thm. 3.7 from the next section.

Let A be any f. g. R-algebra. By a subspace of A, we always mean an R-linear
subspace of A. Recall that if W is any ®nite-dimensional (f.-d.) vector space over
R, then a semialgebraic set in W is a ®nite boolean combination of sets of the form
fx A W : f �x� > 0g, where f is a polynomial function on W. A subset S of A will be
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called locally semialgebraic if S VU is a semialgebraic subset of U for every f.-d.
subspace U of A. If, in addition, S is contained in some f.-d. subspace of A, then S is
called semialgebraic.

We will always equip A with the ®nest topology that makes A a locally convex
topological R-vector space [4, II §4 no. 2]. Every subspace of A is closed, and every
linear map A! R is continuous (loc. cit., exercise 6). By A4 we denote the dual of
A, i.e., the space of all linear maps A! R. A subset of A is closed if and only if its
intersection with every f.-d. subspace U of A is closed in U. (This uses that A has a
countable linear basis, see loc. cit., exercise 8.)

For preorders in A, we study the properties of being closed and of being saturated.
These will be key properties needed for our results on the moment problem. We begin
with some simple observations.

2.2. Lemma. Any preorder in A is a convex cone in A. Any saturated preorder is closed

in A.

Proof. The ®rst statement is obvious. For the second, note that if P � P�K� is satu-
rated, then P �7

M AK
lÿ1

M �0;y�, where lM : A! R is evaluation at M.

By the Hahn-Banach separation theorem for convex sets [4, II §5 no. 3], the closure
P of the preorder P is given by

P � fa A A : L�a�X 0 for every L A A4 with LX 0 on Pg:
However, in practice it is often not easy to give a more concrete description of P.
By Haviland's theorem, the problem of understanding P is in fact closely related
to the moment problem, see 3.1 below. It is precisely this relation which leads us to
introduce the topology on A and to study the closure P of a preorder P.

2.3. Lemma. If P is a preorder in A, then the closure P of P in A is again a preorder.
Moreover, S�P� � S�P�.

Proof. The multiplication map A� A! A is continuous, since A has a countable
linear basis [4, II exercise 9a]. Therefore, it is clear that P is a preorder. Moreover, the
saturated preorder Sat�P� is closed, and so PHPH Sat�P�, which implies S�P�I
S�P�IS�Sat P� �S�P�.

2.4. Proposition. Let K be a closed semialgebraic set in V�R�, and let P � P�K�, the

saturated preorder associated to K. Then P is a closed, convex, locally semialgebraic

subset of A.

Proof. We already know that P is closed and convex. There is an epimorphism
p : R�t1; . . . ; tn� !! A, for some n, inducing an embedding V�R� ,! Rn. Given a f.-d.
subspace U of A, choose a f.-d. subspace U 0 of R�t1; . . . ; tn� so that p�U 0� � U . Then
U 0 V pÿ1�P� consists of all f A U 0 which are non-negative on the closed semialgebraic
subset K of V�R�HRn. So U 0 V pÿ1�P� is a semialgebraic subset of U 0, since it can
be described by a formula in the ®rst order language of ordered ®elds.
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2.5. Proposition. Let U be a f.-d. subspace of A. Then there is an integer pU such that

every sum of squares of elements of U is a sum of pU squares of elements of U.

Proof. By [7, 4.2] this is true for A � R�t1; . . . ; tn�. It is easy to see that this particular
case implies the general one: Again use p : R�t1; . . . ; tn� !! A, and lift U to a f.-d.
subspace U 0 of R�t1; . . . ; tn�, as in the proof of Prop. 2.4. The result for U 0 then im-
plies the result for U.

Given a subspace W of A and f1; . . . ; fr A A, we denote by S�W ; f 1; . . . ; fr� the set
of all sums X

i A f0;1g r

si � f i1
1 . . . f ir

r

in which the si are sums of squares of elements of W. Recall that the ring A is said to
be reduced if a2 � 0 implies a � 0, for every a A A.

2.6. Proposition. Let f1; . . . ; fr A A, and let K � S� f1; . . . ; fr�. Let W be a f.-d. sub-
space of A. Then

(a) S�W ; f 1; . . . ; fr� is a convex semialgebraic subset of A.

(b) If A is reduced and K is Zariski dense in V, then S�W ; f 1; . . . ; fr� is closed.

Proof. We abbreviate S�W ; f 1; . . . ; fr� by S�W�. It is clear that S�W� is contained in
some f.-d. subspace U of A, and that it is a convex set. Let N � pW , see Proposition
2.5.

For a A A, let Ann�a� � fb A A : ab � 0g, the annihilator of a. This is an ideal of
A, and the ring A=Ann�a� is reduced if A is reduced. For i A f0; 1gr, write
f i :� f i1

1 . . . f ir
r . Consider the map

f : 0
i A f0;1gr

�W=W VAnn� f i��N ! A

de®ned by

w � �wij�i A f0;1g r; j�1;...;N 7! f�w� �
X

i A f0;1gr

�X
j

w2
ij

�
� f i:

Here wij � wij � �W VAnn� f i��; note that the right hand side is well-de®ned.
The map f is a homogeneous quadratic polynomial map, and S�W� is its image

set. In particular, it is clear that S�W� is a semialgebraic set. Now assume that the
conditions of (b) hold. We ®rst show fÿ1�0� � f0g. So let w � �wij� be a tuple with
f�w� � 0. If M is any point in K, we have f i�M�X 0 for every i, and therefore
�w2

ij f i��M� � 0 for every bi-index �i; j�. Since K is Zariski dense and A is reduced, it
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follows that w2
ij f i � 0, and hence even wij f i � 0, for every bi-index �i; j�. Hence

w � 0.
Now the next lemma shows that f is a proper map. In particular, the image of f is

closed.

2.7. Lemma. Suppose f � �f1; . . . ; fn� : Rm ! Rn is a homogeneous map of some

®xed degree d X 1 (i.e., each component fi is homogeneous of degree d ). If fÿ1�0� �
f0g, then f is a proper map.

Proof. Recall that a continuous map is proper i¨ it is closed and has compact ®bres

[5, ch. I §10 no. 2]. If K is a closed subset of Rm with 0 B K , then 0 B f�K�, since
0 B f�K� and f is homogeneous. Therefore, it su½ces to show that the restriction
f 0 : Rmnf0g ! Rnnf0g of f is proper. Consider the commutative square

Rmnf0g ���!f 0
Rnnf0g

r

???y ???yr

S mÿ1 ���!f S nÿ1

���

in which the vertical arrows are the natural retractions x 7! x=jxj and f � r � fjS mÿ1.
One checks immediately that the square ��� is cartesian. Since S mÿ1 is compact, f is a
proper map, and therefore f 0 is proper as well.

2.8. Remark. In general, the conditions in Prop. 2.6(b) cannot be dropped. For
example, let A � R�t�, f � ÿt2, K � f0g and W � R : 1lR : t, the space of poly-
nomials of degreeW 1. Here K is not Zariski dense in V. We have t� e A S�W ; f �
for every e > 0, but t B S�W ; f �, so S�W ; f � is not closed. For essentially the same
example, seen from a di¨erent viewpoint, take the ®nite (non-reduced) algebra A �
R�t�=�t2� and r � 0 (no fi). Here t� e is a sum of squares in A for every e > 0, but not
for e � 0. Again, SA2 � S�A;q� is not closed.

Let again A be an arbitrary f. g. R-algebra, and assume now that we are given
®nitely many elements f1; . . . ; fr A A. Suppose we know that S�W ; f 1; . . . ; fr� is
closed for every f.-d. subspace W of A. Under suitable conditions, see 2.6(b), this will
be the case. Let P � PO� f1; . . . ; fr�, the preorder generated by the fi. We would like
to ®nd a condition under which we can conclude that P is itself closed. One such
condition is the following:

�*� For every f.-d. subspace U of A, there is a f.-d. subspace W of A with PVU H
S�W ; f 1; . . . ; fr�.

Indeed, PVU � S�W ; f 1; . . . ; fr�VU then, which under our assumption is a closed
subset of U.

We are therefore going to study condition �*� more closely.
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2.9. Lemma. Let f1; . . . ; fr A A, and write P � PO� f1; . . . ; fr�. Given g A P (so also

P � PO� f1; . . . ; fr; g�), condition �*� holds for f1; . . . ; fr i¨ it holds for f1; . . . ; fr; g.

Proof. The ``only if '' is obvious. Conversely, assume �*� holds for f1; . . . ; fr; g. Let
U and W be f.-d. subspaces of A with U VPHS�W ; f 1; . . . ; fr; g�. Choose a f.-d.
subspace W 0 of A which contains 1 and the fi and in addition satis®es g A
S�W 0; f 1; . . . ; fr�. Let WW 0 be the subspace spanned by the products ww 0 �w A W ;
w 0 A W 0�. Then U VPHS�WW 0; f 1; . . . ; fr�.

2.10. De®nition. Let P � PO� f1; . . . ; fr� be a ®nitely generated preorder in A. We
say that P is stable if �*� holds. By Lemma 2.9, this is independent of the choice of
generators of P.

Note that if a f. g. preorder P is stable, then it is a locally semialgebraic subset
of A.

2.11. Corollary. Let P be a ®nitely generated preorder in A which is stable. Assume

that A is reduced and that K � S�P� is Zariski dense in V. Then P is closed in A.

Proof. Choose f1; . . . ; fr A A with P � PO� f1; . . . ; fr�. Then S�W ; f 1; . . . ; fr� is closed
for each f.-d. subspace W of A (2.8). Since P is stable, P is closed.

2.12. Remark. Prof. SchmuÈdgen informs us that a condition similar to �*� has been
used in the context of general star algebras to prove that the positive cone is closed.
See [22], condition (III) on page 326.

2.13. Remark. This remark is for readers with a little background in real algebraic
geometry. It won't be used in the sequel.

Let R be any real closed ®eld, and let A be a ®nitely generated R-algebra. Consider
the topology on A which is analogous to the one we use for R-algebras: A subset of A

is open i¨ its intersection with every f.-d. R-linear subspace of A is open in this sub-
space. Prop. 2.6 and Lemma 2.9 hold in this context as well, mutatis mutandis. Hence
it is clear what we mean by saying that a ®nitely generated preorder in A is stable.

Now one can give the following di¨erent characterizations of stable preorders,
which explain the reason for our choice of the word ``stable''. Given a real closed
®eld R, a ®nitely generated R-algebra A and a ®nitely generated preorder P in A, P is
stable if and only if either one of the following two conditions is satis®ed:

(i) For every real closed ®eld extension R 0=R, the preorder in A 0 � AnR R 0 generated
by P is a locally semialgebraic subset of A 0;

(ii) P is a locally semialgebraic subset of A, and for every real closed extension R 0 of R,
the preorder in A 0 generated by P is equal to P�R 0�.

Here in (ii), we mean by P�R 0� the subset Q of A 0 for which QV �U nR R 0� is the base
extension (to R 0) of the R-semialgebraic set PVU , for every f.-d. R-linear subspace U

of A.
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We return to our usual setting, and assume that A is a f. g. R-algebra. The next
theorem, though it may appear somewhat technical, is the ®rst main result of our
paper. In the next section we will apply it to concrete particular cases. It provides us
with a large family of examples of ®nitely generated preorders which are stable and
closed. On the other hand, if we add a suitable dimension hypothesis, they won't be
saturated, by a result from [19].

Recall that V � Spec A is called normal if A is a direct product of ®nitely many
integrally closed domains. This is a mildness condition on the nature of the singu-
larities of A.

2.14. Theorem. Suppose that the variety V � Spec A is normal. Let P be a ®nitely

generated preorder in A and set K �S�P�. Assume that V has an open embedding into

a normal complete R-variety V such that the following is true: For any irreducible

component Z of V ÿ V , the subset K VZ�R� of Z�R� is Zariski dense in Z, where

K denotes the closure of K in V�R�. Then the preorder P is stable and closed.

2.15. Example. To illustrate this, consider the polynomial ring A :� R�t1; . . . ; tn� and
the preorder P � SA2 of all sums of squares in A. The preorder P is stable (and there-
fore closed). Indeed, if a polynomial f is a sum of squares, say f �Pi f 2

i , and if f

has (total) degreeW d, then it is obvious that the fi must have (total) degreesW d
2,

since leading terms cannot cancel. The theorem, and its proof, are a generalization
of this simple remark.

For the proof of the theorem, we need to use some (easy) ideas from algebraic ge-
ometry and from real algebraic geometry. For the ®rst we refer to Hartshorne's book
[10], for the second to [3] or [14]. In particular, we need the notion of the real spec-
trum Sper A of A, and how it relates to the semialgebraic subsets of V�R�.

Proof. We can assume that V is irreducible. Fix an irreducible component Z of
V ÿ V , then Z has codimension one in V , and hence de®nes a discrete valuation vZ

of R�V�, the function ®eld of V. Namely, vZ� f � is the (vanishing, resp. pole) order of
f along Z. The residue ®eld of vZ is R�Z�, the function ®eld of Z.

The condition in the theorem implies that Z�R� is Zariski dense in Z. It is well
known that this is equivalent to the condition that the function ®eld R�Z� of Z is
(formally) real. Therefore, the valuation vZ has a real residue ®eld.

The subset Z�R�VK of Z�R� is semialgebraic. Therefore, the hypothesis that
Z�R�VK is Zariski dense in Z means that the associated constructible subset
�Z�R�VK�@ in the real spectrum of Z contains an element whose support is the
generic point of Z. This, in turn, means that the constructible set ~K of Sper R�V �
contains an element a with support (0) which is compatible with the valuation vZ.

Let now Z1; . . . ;Zr be the irreducible components of V ÿ V , and let vZi
be the

discrete valuation of R�V� associated to Zi, as above. For nX 0, let the R-subspace
Un of A be de®ned by

Un � f f A A : vZi
� f �Xÿn for i � 1; . . . ; rg:
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Then dimR�Un� <y for each n. This is a particular case of [10, Thm. II.5.19], noticing
that Un � G�V ;OV �nD��, where D is the Weil divisor D �Pi Zi on V . Moreover,
U0 HU1 H � � � H6

n
Un � A.

Now assume that a1; . . . ; am A P are such that a1 � � � � � am A Un, for some nX 0.
Each ai is positive in a. Since a is compatible with vZi

, for each i, it follows from [19,
Lemma 0.2] that vZi

�Pj aj� � minj vZi
�aj�, for each i. In particular, each summand

aj lies itself in Un.
From this observation it is easy to see that the preorder P is stable. Indeed, if P �

PO� f1; . . . ; fr�, and if a A A and 1W j1 < � � � < js W r are such that a2fj1 . . . fjs A Un,
then vZi

�a2�XÿnÿPs
k�1 vZi

� fjk
� for each i, and so it is clear that PVUn H

S�UN ; f 1; . . . ; fr� for su½ciently large N. (Explicitly, it su½ces to take 2N X n�
maxi

Pr
j�1 mij, where mij � maxf0; vZi

� fj�g.)
From the hypotheses, it follows that K is Zariski dense in V. Therefore P is closed

by Corollary 2.11.

2.16. Remark. Observe that the hypotheses in the theorem depend only on V and K,
but not on the particular choice of the preorder P. In the next section we will apply
the theorem to exhibit classes of basic closed sets which admit no ®nite presentation
by non-strict inequalities which would solve the moment problem.

In the next section, we will apply the following result proved in [19, Prop. 6.1]:

2.17. Proposition. Let A be a f. g. R-algebra, let V � Spec A, and let P be a ®nitely

generated preorder in A. Assume that K �S�P� has (topological ) dimensionX 3.
Then there exists f A R�V � with f X 0 on V�R� but f B P. In particular, P is not

saturated.

2.18. Example. Let P be a f. g. preorder in A for which K �S�P� is compact. If
K has dimensionX 3, then, by 2.17, P is not saturated, and hence is not closed by
SchmuÈdgen's theorem (c.f. 3.2 below). In particular, if A is reduced and K is Zariski
dense in V, P cannot be stable, by 2.11.

If dim�K�W 2, however, the question of stability for P is less clear, since P may be
saturated. We mention a non-trivial example: Let C be a smooth a½ne curve over R
for which C�R� is compact. Let P � SR�C�2, the preorder of all sums of squares. It
can be shown that P is saturated [20]. In any case, P is stable if, and only if, for each
integer d X 0, there is an integer N�d�X 0, such that every sum of squares f A R�C�
whose pole orders (in the points at in®nity) are Wd is a sum of squares of regular
functions whose pole orders are WN�d�. We do not know whether this condition
always holds. One can show that it does indeed hold if C has genus one, using the
approach from [19, §4].

3 Applications to the moment problem

We use the previous results on preorders to study the questions raised in §1. First, we
can rephrase Haviland's theorem (1.1) in our terminology as follows:
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3.1. Corollary. Suppose P is a preorder in R�t1; . . . ; tn� and K � S�P�. Then P solves

the moment problem for K if and only if the closure P of P is a saturated preorder.

Proof. If P is not saturated, then there is a polynomial f with f X 0 on K but f B P.
The argument of 1.4 now generalizes: Since P is a convex cone, there exists, by Hahn-
Banach separation, a linear form L : R�t1; . . . ; tn� ! R with LX 0 on P, but L� f � <
0. Obviously, L cannot come from a positive Borel measure on K. Conversely, every
linear map L with LX 0 on P satis®es LX 0 on P. So if P is saturated, P solves the
moment problem for K by Haviland's theorem.

3.2. Example. Let A be a f. g. R-algebra and P a f. g. preorder in A for which K �
S�P� is compact. Then the saturation Sat�P� of P is equal to the closure P of P in A.
Indeed, Sat�P� is closed by 2.4. Conversely, for every f A Sat�P� and e > 0 one has
f � e A P, by SchmuÈdgen's theorem (1.3), and so f A P.

3.3. Corollary. Suppose P is a preorder in R�t1; . . . ; tn� and K � S�P�. If P is closed

but not saturated, then P does not solve the moment problem for K.

3.4. Remark. For the question of whether a given preorder solves the moment prob-
lem, we can often pass from a½ne n-space to a smaller algebraic variety; and, as we
will see, it is in fact useful to do so. The reason is the following.

Let P be a preorder in A � R�t1; . . . ; tn�, and let K � S�P�. The support of P is
the ideal supp�P� :� PV �ÿP� of A. Write B :� A=supp�P�, and let p : A! B be the
natural epimorphism. Then V � Spec�B� is a closed subvariety of An, and K is con-
tained in V�R�. If P is ®nitely generated, then K is Zariski dense in V. This is seen as
follows: Let f A A with f 1 0 on K. By the real Nullstellensatz (e. g. [14, p. 143]),
there is an identity f 2m � a � 0 in A, with mX 1 and a A P. Therefore f 2m A supp�P�,
and so the element p� f � is nilpotent in B. Note however that the ring B need not be
reduced in general.

Let Q � p�P�, the preorder in B induced by P. The linear maps L : A! R with
LX 0 on P are precisely those of the form L � L � p, where L : B! R is a linear
map with LX 0 on Q. Therefore, the closures of P (in A) and of Q (in B) are related
by P � pÿ1�Q�. On the other hand, the respective saturations are obviously related
by SatA�P� � pÿ1�SatB�Q��. Therefore, P solves the moment problem for K , P �
SatA�P� , pÿ1�Q� � pÿ1�SatB�Q�� , Q � SatB�Q� , the closure of Q in B is
saturated.

Conversely, if I is an ideal in A � R�t1; . . . ; tn�, if B � A=I and p : A! B is the
canonical map, and if Q is a preorder in B, then starting from a system of generators

for Q it is easy to obtain a system of generators for the preorder P :� pÿ1�Q� of A.
Indeed, if Q is generated by elements p� fl�, l A L, with fl A A, then P is generated by
the fl together with Ga1; . . . ;Gam, where a1; . . . ; am is a system of generators for
the ideal I. In particular, Q is ®nitely generated i¨ P is ®nitely generated. Summa-
rizing some of the above discussion, we have:

3.5. Lemma. Let P be a preorder in A � R�t1; . . . ; tn�, let K � S�P�, and let Q be the

preorder induced by P in B � A=supp�P�. Write V � Spec�B�.
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(a) P solves the moment problem for K (in Rn) if and only if the closure of Q in B is

saturated.

(b) P is ®nitely generated if and only if Q is ®nitely generated. In either case, the subset

K of V�R� is Zariski dense in V.

3.6. Corollary. Let K be a basic closed semialgebraic subset of Rn. Let I be the ideal

of all polynomials in A � R�t1; . . . ; tn� which vanish identically on K, and put B � A=I .
The following two conditions are equivalent:

(i) There exists a ®nite family of polynomials which solves the moment problem for K;

(ii) the saturated preorder P�K� in B contains a dense preorder which is ®nitely

generated.

In view of the lemma and its corollary, Thm. 2.14 allows us to obtain many exam-
ples of basic closed semialgebraic sets K for which the moment problem is not solved
by any ®nite family of polynomials.

3.7. Proposition. Let f1; . . . ; fr A R�t1; . . . ; tn� be such that K � f f1 X 0; . . . ; fr X 0g
contains an open cone (i.e., there are x A Rn and a non-empty open subset U of Rn with

x� lu A K for every lX 0 and u A U). Then the preorder P � PO� f1; . . . ; fr� is stable

and closed. If nX 2, P is not saturated, and hence f1; . . . ; fr do not solve the moment

problem for K.

Proof. By Thm. 2.14, P is stable and closed, and by Prop. 2.17, P is not saturated
if nX 3. Consider the case n � 2 (c.f. also [19, Rem. 6.7]). We can ®nd a smooth
irreducible curve C in the a½ne plane, of genusX 1, which has exactly one point at
in®nity and for which the set K VC�R� is unbounded. Indeed, after an a½ne change of
coordinates, K contains the positive quadrant, and we can take C to be the curve
t2
2 � t1�t2

1 � 1�, for example.
Let p : R�t1; t2� !! R�C � be the natural (restriction) homomorphism. By [19, Cor.

3.9], there exists a psd function g A R�C � which is not contained in p�P�, the preorder
induced by P in R�C �. By loc. cit., Thm. 5.6, g can be lifted to a psd polynomial
f A R�t1; t2�, i.e., p� f � � g. Clearly f B P, and in particular, P is not saturated.

3.8. Remarks. 1. The fact that P is closed is also proven by Kuhlmann and Marshall
in [15, Thm. 3.5]. Applying results from [19], they deduce from this that the fi do not
solve the moment problem for nX 2, in the same way that we do.

2. In contrast to 3.7, it is not enough to assume that K contains a cylinder. For
example, in [15, 5.1], it is shown if K is a cylinder in R2 with compact cross section,
then there is a ®nite set of polynomials which solves the moment problem for K.

We recall some terminology: If C is a smooth irreducible a½ne curve over R, there
exists (up to isomorphism) a unique smooth irreducible projective curve C over R
which contains C as a Zariski open subset, i.e., for which there is a ®nite subset T of
C such that C GCnT . The points in T are called the points at in®nity of C. They are
called real or nonreal according to whether they are R-rational or not.

The moment problem for non-compact semialgebraic sets 83



We can now give a complete solution to the moment problem for one-dimensional
closed semialgebraic sets K contained in a smooth curve C. There are two possible
situations, depending on properties of C and K. We start with the ®rst case (for the
remaining case, see 3.12 below):

3.9. Theorem. Let C be a smooth a½ne curve over R, of genus gX 1, and let P be a

f. g. preorder in R�C�. Put K � S�P�. Assume that every point of C at in®nity is real,
and is contained in the closure of K (inside C�R�). Then P is closed and stable, but not

saturated.

Proof. P is stable and closed by Thm. 2.14. On the other hand, by [19, Thm. 3.5],
there exists a psd function f A R�C� which is not contained in P. In particular, P is
not saturated.

In particular, if C is a smooth a½ne curve over R, of genus gX 1, whose points at
in®nity are all real, and if K HC�R� is a closed semialgebraic set whose closure in
C�R� contains all points at in®nity, then the moment problem for K is not solvable
by ®nitely many polynomial functions.

We can even go further and, using a restriction-extension argument, generalize this
last fact considerably. The following corollary was inspired by, and generalizes, [15,
Cor. 3.10]:

3.10. Corollary. Let K be a basic closed semialgebraic subset of Rn. Assume that there

exists a smooth curve C in An, of genusX 1, all of whose points at in®nity are real and

are contained in the closure of K VC�R� (inside Pn�R�). Then the moment problem for

K is not solvable by ®nitely many polynomials.

Proof. Let P be a f. g. preorder in A � R�t1; . . . ; tn� with S�P� � K . We show that
the closure P is not saturated. Let p : A! R�C� be the natural epimorphism, and let
Q � p�P�, the preorder induced by P on C. Then Q is ®nitely generated and has
S�Q� � K VC�R�. By [19, Thm. 3.5], there exists g A R�C� with gX 0 on C�R� but
g B Q. The latter is witnessed by a linear map L 0 : R�C� ! R with L 0�g� < 0 but
L 0X 0 on Q. The linear map L :� L 0 � p : A! R satis®es LX 0 on P. By loc. cit.,
Thm. 5.6, we can ®nd an everywhere non-negative polynomial f A A with p� f � � g.
In particular, f A Sat�P�, but f B P since L� f � < 0.

On the other hand, there are the following positive results for the moment problem
on curves. We state them without proofs here, referring instead to [20].

3.11. Theorem ([20]). Let C be an irreducible smooth a½ne curve over R, let f1; . . . ;
fr A R�C�, and put K � f f1 X 0; . . . ; fr X 0gHC�R�. Suppose that the following

three conditions are satis®ed:

(1) Either C has a nonreal point at in®nity, or it has a real point at in®nity which does

not lie in the closure of K (inside C�R�);
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(2) f1 . . . fr has vanishing orderW 2 in each point of K;

(3) if M is an isolated point of K, then ordM� fi�W 1 for every i.

Then the preorder PO� f1; . . . ; fr� in R�C� is saturated.

3.12. Theorem ([20]). Let C be an irreducible smooth a½ne curve over R. Let K be a

closed semi-algebraic subset of C�R�, and let P � P�K�, the saturated preorder in

R�C� associated with K. Assume that at least one of the following three conditions is

satis®ed:

(i) C is rational;

(ii) C has at least one nonreal point at in®nity;

(iii) C has a real point at in®nity which does not lie in the closure of K (in C�R�).
Then the following are true:

(a) P is ®nitely generated. In particular, the moment problem for K can be solved by

®nitely many functions.

(b) If either (ii) or (iii) holds, then P is in fact generated by two elements, and even by
one element if K has no isolated points.

Sketch of proof. In case (i), one can reduce to C � A1, i.e. to the polynomial ring R�t�.
In this case the proof becomes elementary, see [15, Thm. 2.2], for example. For the
remaining cases one has, by Thm. 3.11, to show that one can ®nd polynomial func-
tions f1; . . . ; fr A R�C� such that K � fM A C�R� : f1�M�X 0; . . . ; fr�M�X 0g, and
such that the fi satisfy conditions (2) and (3) from 3.11; moreover, that this is even
possible with r � 2 or r � 1, respectively. This can be achieved using methods similar
to those used in [19, §2]. For details, we refer to [20].

3.13. Remark. Observe that the condition that at least one of (i)±(iii) holds in 3.12 is
the precise complement of the condition in 3.9. Therefore, taking together 3.9 and
3.12, we have obtained a complete answer to the question whether the moment prob-
lem for K is solvable by ®nitely many polynomials, in the case when K is contained in
a smooth curve.

3.14. Example. We illustrate our results on curves by a series of examples.
1. Let C be an irreducible smooth a½ne curve over R, embedded into An as a

Zariski closed subset, for some n. Let I � �g1; . . . ; gm� be the vanishing ideal of C

inside R�t1; . . . ; tn�, and let K be a closed semialgebraic subset of C�R�. Assume that
C and K satisfy (ii) or (iii) from 3.12. Then the moment problem for K (considered as
a closed subset of Rn) can be solved by 2m� 2 polynomials, and even by 2m� 1 if
K does not contain an isolated point. Namely, it su½ces to take two polynomials
whose restrictions to C generate P � P�K� in R�C�, together with Gg1; . . . ;Ggm.
If K � C�R� (so C has a nonreal point at in®nity), the moment problem for K is
solved by Gg1; . . . ;Ggm alone. Both assertions follow from 3.12.
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2. For an explicit example, let C be the plane a½ne curve with equation
f �x; y� � x3 � y3 � 1 � 0. Then C is smooth, of genus one, and has 3 geometric
points at in®nity, of which one is real and the other two are complex conjugate.
According to the remark before, the moment problem can be solved by W4 poly-
nomials for any closed semialgebraic subset K of C�R�HR2. Using the criterion
from 3.11, it is easy to verify, for example, that the moment problem for K1 �
C�R�V fxX 0g is solved by x, f, ÿf , that the moment problem for K1 U f�ÿ1; 0�g is
solved by x� y� 1, ÿy, G f , and that the moment problem for K � C�R� is solved
by G f .

3. Let C be the plane hyperbola with equation y2 � x2 � 1. The moment problem
for the set C�R�HR2 is solved by G�y2 ÿ x2 ÿ 1�. The moment problem for
C�R�V fxX 0; yX 0g is solved by x� yÿ 1, G�y2 ÿ x2 ÿ 1�; and so on.

4. Let q�x� A R�x� be a square-free polynomial, and let K be a closed semialgebraic
subset of C�R� :� f�x; y� A R2 : y2 � q�x�g. If deg�q�W 2, then the moment prob-
lem for K can be solved by ®nitely many polynomials, since the curve y2 � q�x� is
rational. If deg�q�X 3 and K is not compact, the moment problem for K cannot be
solved by ®nitely many polynomials (3.9). In the case K � C�R�, this is also shown
directly in [15, 3.7].

5. Generalizing part of the last example, let C be an irreducible smooth plane
curve with equation xn � f �x; y� � 0, where every monomial in f �x; y� has total
degree W nÿ 1. If nX 3, then the moment problem cannot be solved by ®nitely many
polynomials for any non-compact closed semialgebraic subset of C�R� (in particular,
for C�R� itself, since C�R� is not compact). Indeed, C has precisely one point at
in®nity, and this point is real; moreover, C is not rational. So the assertion follows
from 3.9.

6. We remark that our questions from the introduction are completely settled for
(closed semialgebraic) subsets K of R, in [15, §2].

Finally, we can settle some of the open problems raised in [15]. Open Problem 4
asks for an irreducible smooth a½ne curve over R for which the sums of squares are
not closed. Such a curve cannot exist:

3.15. Corollary. If C is an irreducible smooth a½ne curve over R, then the preorder

SR�C�2 of all sums of squares is closed in R�C�.

Proof. If C has a nonreal point at in®nity, then SR�C�2 is even saturated ([20]; if C is
not rational, this is also contained in Thm. 3.11 as a special case; if C is rational, it is
clear anyway). If all points of C at in®nity are real, 3.9 applies.

We can also answer Open Problems 6 and 7 from [15]. Namely, the preorders
P1 :� PO�x; 1ÿ x� and P2 :� PO�1� x; 1ÿ x; 1� y; 1ÿ y� in R�x; y� are both satu-
rated, and in particular, are closed. This is proved in [20]. Problem 7 asked whether
P2 is closed. Problem 6 asked whether for every f A Sat�P1� it is true that f � e A P1

for all e > 0.
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