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A rank 3 tangent complex of PSp4ðqÞ, q odd
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Abstract. Let G ¼ PSp4ðqÞ, q ¼ pk odd. We show that the geometry of root subgroups of G

is the tangent envelope of a system of conics that comprise the ðq; qÞ-generalized quadrangle
associated with G. The flags of this geometry form a rank 3 chamber complex in the sense of
Tits [9], as one would expect from the theory of symmetric spaces for Lie groups. By way of
application, we give an intrinsic interpretation of symplectic 2-transvections. We then show
that the subgroup generated by a pair of short-root subgroups not contained in a p-Sylow is
determined by the geometry. In particular, we describe the incidence conditions under which
such pairs are contained in the maximal subgroups of G corresponding to the plus-point and
minus-point stabilizers in the orthogonal construction of G ([2], xii).

Key words. Root subgroup geometry, generalized quadrangle, chamber complex, maximal
subgroup.

1 Introduction

The significance of root subgroups in the study of groups of Lie type derives from two
complementary interpretations: as groups of transvections on some natural module
(extrinsic), and as points of some incidence geometry related to the lattice of maximal
parabolic subgroups (intrinsic). There are natural comparisons with the theory of
symmetric spaces for Lie groups. Let G ¼ PSp4ðqÞ, q odd. We construct an incidence
geometry G ¼ ðP;LÞ whose points are the root subgroups of G: long, short and
virtual (defined in Section 2). Unlike the constructions in [6] and [8], no member of
L consists entirely of long-root subgroups. Rather, G is generated by a collection of
lines that can be viewed as the ‘‘tangent bundle’’ of the ðq; qÞ-generalized quadrangle
for G when this quadrangle is represented as a system of conics whose points are the
long-root subgroups. It will then be easy to show that the flag complex of G is a rank
3 chamber complex.
In Section 3 we use G to construct the subgroups of index 2 in the centralizers of

involutions of class 2A and 2C. In Atlas notation 2A is central in a 2-Sylow of G

and CGð2AÞF 2:L2ðqÞ � L2ðqÞ : 2, whereas 2C is an outer involution and CGð2CÞF
L2ðq2Þ : 22. In orthogonal terminology these centralizers are the plus-point and minus-
point stabilizers, respectively, and both are maximal subgroups of G.



2 The tangent bundle and chamber complex

Let Z ¼ ZðOpðPÞÞ, where the maximal parabolic subgroup P is the stabilizer of a
maximal isotropic subspace of the natural module. Since Z is elementary abelian of
order q3 we will identify it with the vector space V of 2� 2 symmetric matrices over
K ¼ GFðqÞ. The points of G that belong to Z are the 1-dimensional subspaces of
V, classified as follows: Subspaces consisting of singular matrices are long-root sub-
groups, those which contain a matrix with determinant �1 are short-root subgroups,
and the remainder we call virtual root subgroups. Thus, as projective matrices the
qþ 1 long-root subgroups in Z are

1 0

0 0

� �
and

u2 u

u 1

� �
; u A K ;

the qþ1
2

� �
short-root subgroups are

u 1

1 0

� �
and

u2 � l2 u

u 1

� �
; u A K ; l A Ka;

and the q

2

� �
virtual root subgroups are

u2 � e u

u 1

� �
; u A K ; e B K 2:

The above description is consistent with the representation Z ¼ hXb;Xaþb;X2aþbi in
terms of Chevalley generators, where Xg is a root subgroup relative to a chosen split
torus such that a is the fundamental short-root and b is the fundamental long root.
The homogeneous triple ½d; u; v�, where d ¼ 0 or 1, represents the subgroup

fXbðdtÞXaþbðutÞX2aþbðvtÞ j t A Kg:

When this triple is identified with the corresponding projective matrix M in the ob-
vious way the subgroup may be represented on a symplectic 4-space by the matrices

I2 M

0 I2

� �

which are identified with their negatives. The above representation presumes the
canonical basis ðe1; e2; e3; e4Þ with symplectic structure given by

0 I2

�I2 0

� �
;
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whereby the torus element hðz; hÞ is represented by

diagðz; h; z�1; h�1Þ and nahðz; hÞna ¼ hðh; zÞ

See [1], O11.3.
We define the point set P for G to be the conjugates in G of the root subgroups

described above. It is readily shown that G is transitive on the virtual root subgroups,
as well. Thus P is partitioned into three orbits Pl ;Ps and Pv. Let PZ denote the col-
lection of root subgroups of Z. It follows that Pl VPZ is a conic Q in PGð2; qÞ. The
geometry whose point set is Pl and whose line set consists of all Q a¤orded by the
conjugates of Z is Q, the ðq; qÞ-generalized quadrangle for G. Let Qðx; yÞ be the conic
determined by adjacent points x; y in Q. Below we write PQ instead of PZ, and refer
to PQ as the focal plane on Q.
To construct the line set L for G note that Ps VPQ consists of the non-absolute

points (relative to the polarity induced by Q) in the envelope of tangents to Q. Let
L0 be the orbit of the tangent lines under conjugation by G. For x A Pl , let L0ðxÞ be
the collection of tangent lines on x and let Px be the set of points in L0ðxÞ. We give
Px the structure of PGð2; qÞ as follows. Since the conjugates of Z partition the short-
root subgroups of G there are exactly two members of L0 on each y A Ps. Let PlðyÞ
denote the two points in Pl on the tangents through y. Let y1; y2 A Px VPs and
suppose no member of L0 contains both y1 and y2. Then the group H generated by
Plðy1ÞUPlðy2Þnfxg contains qþ 1 long-root subgroups z, each of which is adjacent
to x in Q. Let LxðzÞ be the member of L0ðzÞ that is tangent to Qðx; zÞ and define the
line on y1 and y2 by y1y2 ¼ Px V ð6

z AH LxðzÞÞ. Denote by L1 the collection of all
lines so constructed. Thus jL1j ¼ q2ðqþ 1Þðq2 þ 1Þ. If L A L1 then the stabilizer of L
in G has order 1

2 q
2ðq� 1Þðq2 � 1Þ and so G is transitive on L1. We call the incidence

system ðPl UPs;L0 UL1Þ the tangent bundle of Q and refer to Px as the tangent plane

to Q at x.
The maximal flags of the tangent bundle are of type ðPl ;L0;PxÞ; ðPs;L0;PxÞ or

ðPs;L1;PxÞ and so the corresponding flag complex is not connected when adjacency
of two maximal flags is defined by sharing a flag of rank 2. To remedy this situation
we extend the line set to include the flags of the focal planes. The polar of x A Ps VPQ

is the secant line determined by PlðxÞ. The polar of x A Pv VPQ is a line exterior to
Q. It is readily shown that G is transitive on both sets of lines. Let L2 and L3 be the
orbits of all secant and exterior lines, respectively, and let L ¼ 63

i¼0Li. If x; y A P
are adjacent in G we denote the member of L that they determine by xy. The flag
complex of G ¼ ðP;LÞ is residually connected and hence is a rank 3 chamber com-
plex. In particular, the geometry whose points are the tangent planes and whose lines
are the focal planes with two planes incident if they intersect in a line (necessarily a
tangent) is isomorphic to Q via PQ 7! Q, Px 7! x.
We conclude this section with a theorem that describes the correspondence be-

tween G and the action of root elements in G on a symplectic module. Recall that the
long-root subgroups and short-root subgroups of G are 1-parameter groups of trans-
vections and 2-transvections, respectively. Specifically, the above matrices for the
long-root subgroups in Z show that the transvections fv 7! vþ tðe; vÞe j t A Kg cor-
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respond to the subgroup ½0; 0; 1� or ½1; u; u2� where e ¼ e1 or ue1 þ e2, respectively,
and ðe; vÞ is the symplectic inner product. If z A Ps VPQ is represented by ½0; 1; u� then
its polar is the secant line with homogeneous coordinates ½u;�2; 0� and so PlðzÞ ¼

½0; 0; 1�; 1;
u

2
;
u

4

h in o
. It is readily verified that the transformations in the root sub-

group z are the 2-transvections determined by e ¼ e1 and f ¼
u

2
e1þe2. Similarly, if z¼

½1; u; u2�l2� then its polar is ½u2�l2;�2u; 1�, whereby PlðzÞ ¼ f½1; uGl; ðuGlÞ2�g
and the 2-transvections in z are determined by e¼ ðuþlÞe1þe2, f ¼ ðu�lÞe1þe2.
Finally, let Q̂Q be the extension of Q over GFðq2Þ. If z A Pv VPQ then the extension of
the polar of z over GFðq2Þ intersects Q̂Q in the two points ½1; uG

ffiffi
e

p
; ðuG

ffiffi
e

p
Þ2� of

PGð2; q2Þ, whereas the transformations in z are of the form v 7! vþ t½ðe; vÞ f þ ð f ; vÞe�
with e ¼ ðuþ

ffiffi
e

p
Þe1 þ e2, f ¼ ðu�

ffiffi
e

p
Þe1 þ e2. This proves the following theorem.

Theorem 2.1. Let x; y A Pl be adjacent as points of Q and let Q ¼ Qðx; yÞ. If x and y

are a¤orded respectively as groups of transvections by the orthogonal 1-spaces hei
and h f i then the short-root subgroup LxðyÞVLyðxÞ is the group of 2-transvections
fv 7! vþ t½ðe; vÞ f þ ð f ; vÞe� j t A Kg. Further, if z A Pv VPQ, L̂L is the extension of the

polar of z over GFðq2Þ and Q̂Q is the extension of Q, then the virtual root subgroup z is

the group of 2-transvections determined by the orthogonal 1-spaces corresponding to

L̂LV Q̂Q as t varies over K.

3 Plus-point and minus-point stabilizers

In this section we determine the subgroup generated by a pair of short-root groups
not contained in a common parabolic. Aspects of this determination have been ad-
dressed in [5] and [7] for PSp2nðqÞ; nd 2, but here we show directly that such a pair
generates the subgroup of index 2 in either the centralizer of involution 2A or 2C,
using incidence relations in G to distinguish the cases. These centralizers are the plus-
point and minus-point stabilizers, respectively, in the orthogonal construction of G.
We represent the symmetric form that a¤ords the quadratic form of index 2 by the
matrix

B ¼

0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

0
BBB@

1
CCCA:

We will not require an explicit representation for the form of index 1.
With P and Q as in Section 2, let P� be a parabolic opposite P and Q� the cor-

responding opposite conic in Q. Given x A Ps VPQ, each point in PlðxÞ is adjacent
in Q to a unique point of Q�. These two points of Q� comprise Plðx�Þ for some
x� A Ps VPQ� , which we call the opposite of x in PQ� .

Theorem 3.1. Let PQ and PQ� be opposite focal planes of G with x A Ps VPQ and
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x� its opposite in PQ� . Let y A Ps VPQ be distinct from x. Then, as a subgroup of

G, hx�; yi is contained in a conjugate of P if xy A L0, whereas hx�; yi < CGð2AÞ
if xy A L2 and hx�; yi < CGð2CÞ if xy A L3.

Proof. It is straightforward to classify the pairs fy; zg with y A Ps VPQ and
z A Ps VPQ� . In fact, since PVP� is transitive on Ps VPQ it su‰ces to fix z ¼ X�a�b

and to describe the orbits of pairs as subsets of Ps VPQ. We thus obtain the follow-
ing 1

2 ðqþ 3Þ orbits where l; m A Ka, m20 1 and the number following the semicolon
is the length of the orbit.

OA ¼ f½0; 1; 0�g; 1

OB ¼ f½0; 1; l�; ½1; l; 0�g; 2ðq� 1Þ

OC ¼ f½1; 0;�l2�g; 12 ðq� 1Þ

Om ¼ f½1; l; l2ð1� m2Þ�g; q� 1:

Now assume z ¼ x� so that its opposite in PQ is x ¼ Xaþb. It follows that hx�; yi
is contained in the stabilizer of QðX2aþb;X�bÞ if y A OB, in which case xy is tangent
to Q. If y A OC then xy is a secant line provided �1 A K 2, whereas xy is exterior to Q

otherwise. Take l ¼ 1 and let i ¼
ffiffiffiffiffiffiffi
�1

p
. Then the involution t ¼ hði;�iÞna centralizes

hx�; yi. If y A Om for some m then xy is a secant provided 1� m2 A K 2 and an exterior
line otherwise. Take l ¼ 1 and let jm ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� m2

p
. Then the involution tm ¼ hð j�1m ; jmÞna

centralizes hx�; yi. Thus t and tm are of class 2A when xy is a secant, and of class
2C when xy is an exterior line.

Corollary 3.2. If q0 3, the subgroup of G generated by a pair of short-root subgroups

not contained in a common parabolic is isomorphic to either L2ðq2Þ or 2:L2ðqÞ�L2ðqÞ:

Proof. If q ¼ 3 there is no orbit of type Om, so assume y A OC . Then there is the
possibility by Dickson’s theorem ([3], page 44) that hx�; yiFL2ð5Þ. That this is the
case follows by setting a ¼ Xbð1ÞX2aþbð�1Þ; b ¼ X�a�bð1Þ and c ¼ babab. Then c2 ¼
b3 ¼ ðcbÞ5 ¼ 1, whereas a ¼ ½b; c�b. Now suppose q0 3 and consider the products
X�a�bðtÞXbðuÞXaþbðuÞX2aþbð j2muÞ and X�a�bðtÞXbðuÞX2aþbð�uÞ. Direct computation

using the representation in Section 2 easily demonstrates that the square of such
products is never diagonal for non-zero values of t and u. Thus when xy is an exterior
line it follows that hx�; yiFL2ðq2Þ since the conditions of Dickson’s theorem are
subsumed. When xy is a secant line hx�; yi is seen to be all of 2:L2ðqÞ � L2ðqÞ as
follows. Let

J�ði; tÞ ¼

1 0 0 0

�it 1 0 0

�it 0 1 0

t2 it it 1

0
BBB@

1
CCCA; J�ð jm; tÞ ¼

1 0 0 0

�jmt 1 0 0

j�1m t 0 1 0

t2 �j�1m t jmt 1

0
BBB@

1
CCCA
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and

JþðtÞ ¼

1 �t �t �t2

0 1 0 t

0 0 1 t

0 0 0 1

0
BBB@

1
CCCA:

Then as t varies over K either the J�ði; tÞ or the J�ð jm; tÞ together with the JþðtÞ
generate the group of matrices J such that J TBJ ¼ B where J T is the transpose of J.
Let y A OC be represented by ½1; 0; 1�. Then the map J�ði; tÞ 7! X�a�bðtÞ, JþðtÞ 7!
XbðtÞX2aþbðtÞ induces a homomorphism onto hx�; yi with kernel GI . In case y A Om

we represent y by ½1; j�1m ; 1�. Then the corresponding homomorphism onto hx�; yi
is J�ð jm; tÞ 7! X�a�bðtÞ; ðJ�ð jm; tÞÞTJþðtÞ 7! XbðtÞXaþbð j�1m tÞX2aþbðtÞ.

Remark 3.3. Even though the number of orbits of pairs of short-root subgroups not
contained in a common parabolic is a function of the field, the corollary shows that
the subgroup generated by such a pair fx; yg is determined by the relation between x

and y as points of G. See Figure 1.
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