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1 Introduction

Let p be a prime and K the algebraic closure of the finite field GF(p). We will always
work in characteristic p and consider IP” as a scheme over GF(p). Let X be an alge-
braic scheme defined over a finite field GF(p¢). X (K) will denote the set of all KK-points
of X. For every power ¢ of p with ¢ = p¢ let X(q) denote the set of all GF(g)-points
of X. Hence X (¢) < X(¢') if ¢, ¢’ are p-powers and ¢’ > ¢ = p°. X(K) is the union of
all X(g), ¢ > 0 and ¢ a p-power. If X is reduced, then the scheme X is uniquely deter-
mined by the algebraic variety X' (IK) in the sense of Serre (Hilbert Nullstellensatz). If
X is not a zero-dimensional scheme, then X (K) is infinite. We fix a p-power g with
q = p¢ and we would like to see up to what order the finite set X (g) determines the
infinite set X (IK).

Now assume that X is projective and that it is equipped with an embedding X = PV
defined over GF(g). Let k be an integer. We say that the pair (X, X(g)) satisfies the
Finite Field Nullstellensatz of order k (or just that FFN (k) is true for X and X (gq)) if
every homogeneous form of degree < k on IP(IK) vanishing on X (¢) vanishes on
X (K). Choose homogeneous coordinates z, ..., zy on IPV. The set PG(N, q) is the
union of ¢ + 1 hyperplanes; for instance take the hyperplanes zyp = czy, ¢ € GF(gq),
and the hyperplane zy = 0. Hence if X(K) # X(¢) (and in particular if dim(X) > 0),
then the pair (X, X(q)) does not satisfy FFN (g + 1). A. Blokhuis and G. E. Moor-
house proved FFN(q — 1) for an elliptic quadric surface, FFN(q) for a hyperbolic
quadric surface and FFN(q) for a smooth quadric hypersurface of PG(n,q), ¢ = 4
[1]. G. E. Moorhouse proved FFN(q) for Hermitian varieties, ¢ a square [5, Theorem
4.1], and FFN(q — 1) for Grassmann varieties [6, §4]. Here we consider the case of
the intersection of two quadric hypersurfaces and prove the following result.

Theorem. Fix an integer N = 7. Let q be a power of p and assume q = 6. Take two
linearly independent quadric hypersurfaces Qy, Q> of PV defined over GF(q) and set
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Y := Q1 N Qs (the scheme-theoretic intersection). Then Y (q) # &. Let U be the linear
subspace of PV spanned by Y(q). U is defined over GF(q). Set X := YN U (the

scheme-theoretic intersection). Then X (q) = Y(q) and for every P € Y(q) there is a line
D = X defined over GF(q) with P € D. The pair (X, X (q)) satisfies FFN ([(q — 1)/4]).

Notice that since the line D in the statement of the Theorem is defined over GF(g),
we have card D(q) = g + 1. Easy examples show that in general the pair (Y, Y(gq))
does not satisfies FFN (1) (see Remark 5). To get FFN (1) for the pair (Y, Y(g)) one
should add some assumption and we prefer to avoid to do that; this is the reason for
our formulation of the Theorem. We conjecture that if n > 0, n := dim(U), then the
pair (X, X(q)) satisfies FFN(g). For our proof of FFN([(q — 1)/4]) the existence of
GF(q)-lines through each GF(g)-point is very important. We conjecture that similar
results are true for the intersection of s quadric hypersurfaces, i.e. we conjecture the
existence of an integer a(s) such that if n > a(s), calling Y the intersection of s nice
quadric hypersurfaces of IP”(KK) defined over GF(g), then the pair (Y, Y(g)) satisfies
FFN (q). However, we believe that niceness of the quadrics should be a very restrictive
assumption.

2 Proof of the theorem

Remark 1. Recall that by the Chevalley—Warning theorem a finite field is C; [2, p.
11]. Since N > 4, by a theorem of Nagata and Lang which extends the Chevalley—
Warning theorem [2, Theorem 3.4] the quadrics Q; and @, have a common point
over GF(g), i.e. the scheme defined by Q;(KK) N 0,(K) has a GF(g)-point.

Remark 2. Let Z be any projective scheme defined over GF(gq). The scheme Z,q is a
subscheme of Z invariant for the natural action of the Galois group of the extension
K/GF(q). Since GF(gq) is a perfect field, this implies that Z,.q is defined over GF(g).
We have Z(K) = Z;.q(K) and Z(q) = Zrea(q).

Remark 3. Fix a p-power ¢’ > ¢ and let G be the Galois group of the extension
GF(q")/GF(q). Let A be a reduced projective scheme defined over GF(g) and as-
sume that over GF(g') the scheme A is the union of s subschemes 4, ..., 4, none of
which is decomposable over GF(¢’). Then G acts as a permutation group on {1, ..., s}
permuting A4, ..., A;. The scheme A4, is invariant by this action of G if and only if A4; is
defined over GF(q). For any g € G and any component A; the varieties g(A4;) and A4;
are isomorphic over K. In particular we have dim(g(4;)) =dim(4;) and deg(g(4;)) =
deg(A;). Hence if (dim(A4,;),deg(A4;)) # (dim(4;),deg(A4;)) for every i > 1, then A4, is
defined over GF(q).

Remark 4. We use the notation of Remark 3. If P € A(g) we have g(P) = P for every
g € G. Hence if Pe A; we have P e g(A4;) for every g € G. In particular if P is a
smooth point of A4, then g(A4,) = A, for every g € G, i.e. A, is defined over GF(q).
Since a line is uniquely determined by two of its points, if 4; is a line containing two
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different points of A(g), then 4, is defined over GF(g) and hence card 4,(q) = ¢ + 1.
Similarly, if 4; is a smooth conic containing at least 3 points of A(g) and no other
component of A4 is contained in the plane {(A4;) spanned by A;, then 4, is defined
over GF(¢) and hence card 4,(¢) = ¢ + 1.

We separate here one step of the proof of the Theorem, because it may be useful
for attacking the conjecture on the intersection of s quadrics. In each case or subcase
considered we are able to identify {(X N M’)(¢))> and to give a large integer k such
that the pair (XN M', (X N M')(q)) satisfies FFN (k) seeing X N M’ as a subscheme
of (XN M'),.q>. In most cases the integer k we found is obviously the best possible
one, i.e. FFN(k + 1) fails.

Preliminary steps for the proof of the Theorem. Let M(q) = PG(n,q) be a 3-
dimensional linear space. Call M(KK) the 3-dimensional linear subspace of P"(K)
spanned by the finite set M (¢) and M’ the associated scheme. Hence M'(IK) = M (K)
and M'(q) = M(q).Set W := (M' N X),4. Since X and M are defined over GF(q), W
is defined over GF(g) (Remark 2). We have W # &, because W (K) # . We fix an
integer k < ¢ and a homogeneous form F of degree k defined over GF(g) and vanish-
ing on X (g). We distinguish 7 cases and divide some of them into several subcases.

(a) W= M' Hence W(q) = M(q), {W(q)> = M'(K). Since deg(F) = k < g and
F vanishes at each point of M(q), F | M’'(K) = 0.

(b) Here we assume that W is a quadric surface cone, say with vertex P and the
smooth plane conic C defined over GF(g) as a base. We have P € PG(3,¢). If C has
no GF(g)-point, then W(q) = {P} and hence {W(q)» = {P}, while (W (K)> = M".
Now assume C(q) # . Hence card C(q) =g+ 1, card W(q) =1+q+q* <W(q)) =
M’ and if k < ¢/2 we have F| W(K) = 0.

(c) Here we assume that W is a reducible quadric surface, say W = 4 U B with 4
and B planes. If the two planes 4 and B are not defined over GF(g), then only the line
AN B is defined over GF(g) and hence W(g) = (AN B)(q), card W(gq) = ¢+ 1 and
{W(q)) = AN B. Hence if W(q) is not contained in a line, 4 and B are defined over
GF(q) and W(q) = A(q)UB(q), <W(q)> = M’ and card W(q) =2(¢* + ¢ +1) -
q — 1. Since k < ¢, we obtain F | W(K) = 0 if W(q) is not contained in a line.

(d) Here we assume that W is a plane. We have (W (q)> = <W(K)). Since k < ¢,
we have F | W(K) = 0.

(e) Here we assume that W is the disjoint union of a plane 4 and a non-empty
union B of points and curves. Since two quadric surfaces containing A intersect in
the union of A4 plus a line (perhaps contained in A4), B is a line. By the last part of
Remark 3 both A and B are defined over GF(g). Hence we have <W(q)> = (W (K))
and F| W(K) = 0.

(f) From now on, we assume that I has pure dimension one. By the Bezout the-
orem we have 1 < deg(W) < 4 and if deg(W) =4, then W is a reduced complete
intersection of two quadric surfaces. In particular ¥ has at most 4 irreducible com-
ponents. Let 4 be an irreducible component of W defined over GF(¢). If deg(4) = 1
we have card A(q) =g+ 1. Since kK <g we have F|A(K)=0. Now assume
deg(A4) =2. By [4, pp. 3 and 4] either A(q) = & or card A(q) = g+ 1. If A(q) = &,
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we cannot say anything; however, this case will not arise in the proof of the Theorem,
because we will always meet a case with 4(gq) # . If card 4(q¢) = g + 1 we obtain
F|A(K) =0 when k < ¢g/2. Now assume deg(A4) = 3. Since A is contained in the
intersection of two quadric surfaces and W does not contain a plane, 4 spans M’.
Hence 4 is a rational normal curve of M’ and we have A(KK) =~ IP!(IK). The canon-
ical line bundle of a smooth projective curve defined over any field K is defined over
K. In particular the canonical line bundle of A4 is defined over GF(g). The canonical
divisor of IP! has degree —2, i.e. even degree, while 3 = deg(4) is odd. Hence there is
a degree one line bundle on A defined over GF(g). This implies that 4 is isomorphic
to P! over GF(g). In particular we have card 4(¢) = ¢ + 1. Hence F| W (K) =0
if 3k < g. Now assume deg(A4) = 4. Hence 4 = W, p,(4) = | and 4 is the complete
intersection of two quadrics. First assume A4 singular. Since p,(4) =1, we have
card(Sing(4)) = 1, the normalization 4’ of A4 is isomorphic to P! over K and 4 has
either an ordinary node or an ordinary cusp. The curve A’ is defined over GF(gq) by
the universal property of the normalization. If 4 has a cusp, then the counter-image
of Sing(A4) in A’ is a unique point of A4’ and hence it is defined over GF(g); we have
g+ 1 =card 4'(q) = card A(gq) and hence F | A(K) = 0 if 4k < ¢. Now assume that
A has an ordinary node. If 4,.4(q) # &, then 4'(q) # &, i.e. A’ is isomorphic to IP!
over GF(q). Hence card 4'(q) = g + 1 and card A(q) = ¢. Since deg(A) = 4, we have
F|A(K) = 0 if 4k < ¢ by the Bezout theorem.

(g) Now we assume the existence of an irreducible component B of W not defined
over GF(g). Since W has pure dimension one and deg(W) < 4, we have deg(B) <2
by Remark 3. First we consider the case deg(B) = 2. Hence over K the irreducible
curve B is a smooth conic and W = BU B’ with B’ a smooth conic (over K). Since
deg(W) =4, we have W = M’ N X, i.e. W is the complete intersection of two quadric
surfaces. Hence W spans M’, W is connected and p,(W) = 1. In particular we have
1 < card(Sing(W(K))) < 2. By Remark 4 this case cannot occur if card W(q) > 3.
Now assume deg(B) = 1. First assume that W has an irreducible component D with
deg(D) = 2. Since deg(W) < deg(B) + 2deg(D), D is defined over GF(g). Hence
card D(q) = g+ 1 and <D(q)) is a plane. By Remark 4 this case cannot occur if W (q)
spans M'. Look at P € W(q) and assume that P is not contained in a component of
W defined over GF(g). Since M’ N X is the complete intersection of two quadric
surfaces, there cannot be 3 components of W containing P, unless every component
of W contains P (Remark 4); hence in this subcase we obtain that all the components
of W are defined over GF(g) (Remark 3), contradiction. If P is contained in a unique
component of W, then that component is defined over GF(g) by the first part of
Remark 4. Now we assume that P is contained in exactly two components, say B
and B, of W, none of them defined over GF(¢). By Remark 3 neither B; nor B,
contain other points of W (q). Since (W (q)> = M’, we obtain deg(W) = 4 and that
the other two components, say 4, and A,, of W are defined over GF(g). Since W is the
complete intersection of two quadric surfaces, W is connected and p,(W) = 1. Since
B and B, are coplanar and W is the complete intersection of two quadrics, neither 4
nor A, can be contained in the plane {B; U B, ). The plane {B; U B, is defined over
GF(gq) because B; and B, are exchanged by G. Hence the points A4; N<B; U By,
i =1,2, are defined over GF(gq). Since W is connected and P € B; N B,, we obtain
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that at least one of the lines B;, i = 1,2, contains two points of W (gq) and hence it is
defined over GF(g) (Remark 4). Since the scheme M'N X is the complete intersec-
tion of two quadric surfaces, we have h°(M'N X, Oyrnx) =1 (cf. [3]), i.e. M'N X is
connected in a very strong sense. In particular W = (M’ N X),.4 cannot be the union
of two disjoint lines. Since (W (q)> = M', we obtain deg(W) > 3. First assume
deg(W) = 3. Since W = (M'NX),.,4 and deg(M’' N X) = 4, the scheme M' N X con-
tains one line, D, of W with multiplicity two, while the other two lines of W appear
with multiplicity one. Hence D is G-invariant, i.e. it is defined over GF(g), contradic-
tion. Now assume deg(W) = 4. If W (q) contains a point contained in only one line
D = W, then D must be defined over GF(g), contradiction. Since card W (q) > 4 by
assumption, we obtain that at least one line of W contains two points of W(g) and
hence it is defined over GF(g) (Remark 4), contradiction.

Proof of the Theorem. We divide the proof into five steps.

Step 1. Since N > 6, we have Y (q) # J by an extension due to Nagata and Lang
of the Chevalley—Warning theorem [2, Theorem 3.4 and p. 11]. Set n := dim(U). U
is defined over GF(q) because it is spanned by a subset of PG(N, ¢). By Remark 2
and the very definitions of U and X, X(¢) = Y(¢) and X(g) spans U, i.e. the pair
(X, X(q)) satisfies FFN(1) with respect to U. Fix an integer k < ¢ and a homoge-
neous form F of degree k defined over GF(g) and vanishing on X(g). We call again
Q; the restriction of Q; to U.

Step 2. Fix P € X(q). First assume that both Q; and Q, are singular at P, i.e. that
they are cones with vertex P. Fix a hyperplane H of (X defined over GF(q) (i.e.
spanned by a subset of PG(n,q)) with P ¢ H. Hence X N H is defined inside H
by two quadratic equations defined over GF(g). H is the intersection of (X ) with a
hyperplane H' of PV defined over GF(g). Since dim(H’) = N —1 >4, we have
(XNH)(q) # |2, Theorem 3.4 and p. 11]. Fix O € (XN H)(g)). The line D span-
ned by {P, O} is defined over GF(g). Since O € Q1N Q, and Q; and Q, are cones
with vertex P, then D < X, as wanted. Now assume that Q; and Q, are smooth at
P. Let TpQ:i(K) = PV (IK) (resp. TrQi(q) < PV (g)) be the tangent space of Q; at
P. Since Q; is smooth at P, TpQ;(K) and TpQ;(q) are hyperplanes and TpQ;(K)
is spanned by TpQi(q). Set Z(K) := TpQi(K)NTp0>(K) and Z(q) := TpQi(q) N
TpQ>(q). Hence Z(K) and Z(gq) are projective spaces (respectively over K and over
GF(q)) such that n — 2 < dim Z(K) = dim Z(¢) < n — 1. We will call Z the corre-
sponding linear subspace of P”. Hence dim Z = dim Z(g) and Z is generated by
Z(q). Since Q; is smooth at P, Q; N TpQ; is the union of all lines contained in Q; and
passing through P. Furthermore, Q;(¢) N TpQ;i(g) is the union of all lines of GF(g)
contained in Q;(¢) and passing through P. Z is the intersection of U with a codi-
mension one or two linear subspace of IP¥(g) defined over GF(g). Since N — 2 > 4,
we have (ZN X)(q) # & [2, Theorem 3.4 and p. 11]. For any O € (ZN X)(g) the line
spanned by P and O is the line we were looking for. Now assume that Q; is smooth
at P but that O, is singular at P. Take a hyperplane H of TpQ;(K) defined over
GF(g) with P ¢ H. Set Y := X N H. Since X, Z and U are defined over GF(g), Y is
defined over GF(q). The scheme Y is defined in H by two quadric hypersurfaces.
Since dim H = N — 2 > 4, we have Y(q) # J [2, Theorem 3.4 and p. 11]. For any
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O € Y(q) the line spanned by P and O is the line we were looking for, because it is
contained in 7pQ», too. In the same way we find the line D if Q; is singular at P, but
Q> is smooth at P.

Step 3. Use the set-up and notation of Step 2. Instead of H (resp. Z) take a hyper-
plane H; (resp. Z;) of H (resp. Z) defined over GF(g). Since N — 3 > 4, we may take
O e (XNH)(q) (resp. O e (XNZ;)(q)). Hence we obtain that for every P e X(q)
there are several lines (at least three) contained in X, defined over GF(g) and con-
taining P.

Step 4. Assume the existence of an integer u with 2 <u <n and lines T; = X,
1 <i < u, defined over GF(q), such that 7; N T; # ¢J if and only if |i —j| <1 and
T)U --- UT, spans a linear space of dimension u. Assume k& < ¢/2. For any integer ¢
with 3 < ¢ < n, we define the following assertion H(¢):

H(f): There exists a ¢-dimensional linear subspace M, of PPY(IK) spanned by a
subset of X (¢) (and hence defined over GF(g)) such that F | (X N M,),.4(K) = 0.

If H(n) is true, then X satisfies FFN (k). In this step we will prove H () for every
integer ¢ < u taking as M, the linear span of 77 U --- U T,,. First, we use the prelimi-
nary step to the proof of the Theorem to check H(3) with M3 :=<T U --- UT3);
we use parts (a), (b), (c) and (d) if X N M35 contains a surface and part (g) if
dim(X N M3) = 1; indeed, since card 71 (¢) = ¢ + 1 we avoid the case W (g) = {P} in
part (b); in case (c) both planes 4 and B are defined over GF(g) because card 7; U
To(q) =29+ 1>qg+1=card(ANB)(g). Assume u >4. We have card T4(q) =
q+ 1. For every P € T4(q) let A(P) be the hyperplane of My spanned by M, and P.
M, is defined over GF(¢) and M4N T4 = {P}. By the previous step we have
F|(XNA(P)),q(K) =0 for every P. Since A(P)NX contains P and P ¢ T; U T,
(X N A(P)),eq 1s the union of 77 U T> and at least another curve containing P. Hence
(X N My),.q contains 77 U T, and at least g + 1 other curves, say Ci, ..., Cyy1, such
that F|C;(K) =0 for every i. If X contains My, then F|M4(IK) =0 because
PG(4, q) satisfies FFN(q) and k < ¢. Hence to prove H(4) using M, we may assume
that X does not contain M,. In order to obtain a contradiction we assume that F'
does not vanish at some point of (X N Mjy),.4(K). First assume that X N M4 does not
contain a hypersurface of M. This is equivalent to assuming that the scheme X N My
is a codimension 2 complete intersection of two quadric hypersurfaces of My. Since
deg X N M, =4, we have deg(X N My),4 <4. Call 4;, 1 <i<s, the irreducible com-
ponents of (X N M,),., defined over K, not necessarily over GF(g) of (X N My),.4. Fix
an index i. Either F | 4;(IK) = 0 or the scheme {F = 0} N A4; has degree 2 deg(A4;) and
hence the scheme ({F =0} N A4;),.4 has degree at most 2deg(4;). Hence if {F = 0}
does not contain an irreducible component of (X N Mjy), 4, then the sum of all degrees
of the curves Ty, 15, Cy, . .., Cyq1 is at most 8. If ¢ > 6 this is impossible. Now assume
that (X N My),4 has some component of dimension 3, say B;, 1 <j <r, and some
component of dimension 2, say A4;, 1 <i<s, withr>1and s > 0. Since X N My is
defined by two quadratic equations, By U - -- U B, is either a quadric hypersurface of
M, (perhaps reducible) or a hyperplane of M,. First assume that X N M} is a quadric
hypersurface of M;. We must have XN My = B;U --- UB,. Since T1UT,UT3U
T, = X N My, By cannot be a cone with vertex a line R and as base a conic without
GF(q)-points, because in this case we would have card(X N My)(g) = card R(q) =
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¢ + 1; hence we have H(4), because the irreducible quadric hypersurfaces of PG(4, q)
with rank at least 4 satisfies FFN (¢ — 1). If X N M4 is a reducible quadric hypersurface,
then both components of X N M, are defined over GF(g) because 73U T, U T3 U
Ty = X N My and each line T; is defined over GF(g); in this subcase H(4) is true,
because every linear space satisfies FFN(g¢). Now assume that BjU ---UB, is a
hyperplane. We may also assume s > 1, otherwise F | (X N My),.4(K) = 0, because a
linear space satisfies FFN(q) and B, is defined over GF(q) by Remark 3. Since
X N My is the intersection of two quadric hypersurfaces of My containg B, we have
s=1, and A, is a plane. Since A4; is defined over GF(q) and k < ¢, we obtain
F|(XNMy),q(K)=0. Now assume u > 5. We will prove H(5). For every Pe
Ts(g)\(Ts(q) N M4(q)), call A(P) the hyperplane spanned by M4 and P. The previous
proof gives F | (X N A(P)),.q(IK) = 0. Since card Ts5(q) N M4(q)) = q and 2k < q, we
obtain H(5). If u > 6 we continue in the same way.

Step 5. We are not able to prove that we always may take u = n. By Step 2 we
may at least take u > 3. Take the maximal integer u such that there is 77U --- U T,
and assume u < n. Since u is maximal, for every O € T,,(¢)\T,-1(¢q) every line con-
tained in X and containing O is contained in <7, U --- UT,>. However, to prove
H(t) we need the full force of the existence of 77U --- UT, only for u = 3. In the
other cases it is sufficient to take another line D < X, D defined over GF(g) and D
not contained in {7, U --- U T, >. Such a line exists because u < n := dim{X(¢))» and
for every P e X(q) with Pe<T U --- UT,) there is a line D = X, D defined over
GF(g) with P € D (Step 1). Since the set D(g) contains at least ¢ points not contained
in <7 U --- UT,>, the proof of H(¢) given in Step 4 works for t = u + 1 using either
M =<nJ.--UT,UD) if DNKTHU---UT,># & or M, spanned by 71U
-+ UT,—1, D and one of the ¢ points of T,,(¢)\7,—1(g). Then we continue inductively
using at each step a suitable line and adding the new line to the previous configura-
tion of lines (perhaps with several connected components) either ¢ new GF(g)-points
or ¢ + 1 new GF(g)-points and conclude the proof of the Theorem.

Remark 5. Here we show a very trivial case in which n < N, i.e. Y # X and Y does
not satisfy FFN(1). Assume that in the pencil spanned by Q; and Q> there is a double
hyperplane, say Q, with Q4 the hyperplane M and, say, Q # Q;. For any scheme
Z we have Z(K) = Z.4(K) and in particular Z(gq) = Zq(q). Hence Y(q) =
(M NQ1)(g) = M(q). Notice that this case may occur even if we assume that both O,
and Q, are smooth.

Remark 6. The existence of multiple components of Y has another drawback. Assume
dim(Y) = N — 2, i.e. assume that Q; and Q> have no common components; for in-
stance if Q) is irreducible just assume Q; # Q». It may occur that (Q; N Q3),.4 spans
PV but that Q; N Q> has a multiple component. For instance take a GF(g)-plane A
and an (N — 3)-dimensional linear space V" defined over GF(q) with ANV = (. Take
two smooth conics C; and C; in V defined over GF(g) with card C; N C, = 3, i.e.
tangent at exactly one point. Let Q; be the quadric cone with vertex ¥ and base C;.
Call ¢; any homogeneous equation of Q;. Even if Q) N Q5 satisfies FFN (k) we may
only say that a degree k polynomial vanishing on Q; N Q»(¢) vanishes at each point
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of (Q1N Q»),.4(K), not that F = a;q; + a»q> with a; a homogeneous polynomial of
degree k — 2. The latter is the algebraic form of FFN (k) when dim(X) =n —2 and X
has no multiple component.
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