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Abstract. There are two basic theorems. Let G be a strong parapolar space with these three
properties: (1) For each point x and symplecton S, x is collinear to some point of S. (2) The set
of points at distance at most two from a point forms a geometric hyperplane. (3) If every sym-
plecton has rank at least three, every maximal singular subspace has finite projective rank. Then
G is either D6; 6;A5; 3 or E7; 1, a classical dual polar space of rank three, or a product geometry
L� P where P is a polar space and L is a line. The second theorem concerns parapolar spaces
S of symplectic rank at least three whose point-collinearity diameter is at least three such that
for every point-symplecton pair, ðx;SÞ, x? VS is never just a point. With a mild local condi-
tion, one can show that such a geometry has point-diameter three and has a simply connected
point-collinearity graph. If singular spaces have finite projective rank, one can show that S is
E6; 4, E7; 7, E8; 1, a metasymplectic space, or a polar Grassmannian of type Bn; 2, Dn; 2, nd 4. All
of these geometries are truncations of buildings. The last case can be modified so that the as-
sumption that singular spaces have finite projective rank can be discarded.

1 Introduction

More than twenty years ago, Bruce Cooperstein initiated the study of Lie incidence
geometries in [5]. The important concepts of symplecton and parapolar space un-
folded from this work, and opened the door to characterizing geometries of points
and lines associated with the exceptional groups, just as had been done for projective
spaces and polar spaces.

About 15 years ago, Cohen and Cooperstein produced two theorems which when
taken together, allowed one to characterize every Lie group of rank at least three as
the automorphism group of at least one geometry of points and lines described by
simple axioms [4]. Their theorem has been the central result in this field up to the
present.

Their theory requires three basic assumptions: (1) There is a constant finite sym-
plectic rank at least three. (2) Every singular subspace has finite projective rank. (3)
The spectrum of possible ranks of the projective spaces x? VS, where x is a point and
S is a symplecton not incident with x, experiences some gaps. The spaces x? VS are
either (a) the empty set, a single point, or a maximal singular subspace of S, or (b) the
empty set, a line, or a maximal singular subspace of S.



The present paper concentrates on their second theorem (using (3)(b)) which char-
acterizes most of the so-called ‘‘long root’’ geometries. Our version dispenses with the
first assumption, and greatly weakens the second assumption (2). We replace Assump-
tion (3)(b) with something weaker and quite di¤erent.

In order to make the theorems understandable we insert a few definitions: Fol-
lowing Cohen [3] a parapolar space G is a connected partial linear gamma space with
a family of convex subspaces S called symplecta each isomorphic to a non-degenerate
polar space of rank at least 2 such that every line and every 4-circuit lies in a sym-
plecton. (Note that by allowing symplecta of polar rank 2 this definition of ‘‘para-
polar space’’ is more general than that appearing in virtually all of the literature pre-
ceeding [3].) G has symplectic rank at least k if the symplecta (whose polar ranks may
vary among themselves) have rank at least k. One says G has symplectic rank k if each
symplecton has polar rank exactly k.

In this paper all parapolar spaces have thick lines. We shall always denote the
point-collinearity graph of a parapolar space G ¼ ðP;LÞ by D ¼ ðP;@Þ. Then D�

kðpÞ
denotes the set of points at distance at most k from p in D. A parapolar space is a
strong parapolar space if and only if each pair of points at distance two is always
contained in some symplecton.

Here are the two main theorems:

Theorem 1. Suppose G is a parapolar space of symplectic rank at least three satisfying
these axioms:

1. Given a point x not incident with a symplecton S, the space x? VS is never just a
point.

2. Given a projective plane p and line L meeting p at point p, either (i) every line of p
on p lies in a common symplecton with L, or else (ii) exactly one such line incident
with ðp; pÞ has this property.

3. Given any line L on a point p, there exists at least one further line N on p such that
L? VN? ¼ fpg.

4. If all symplecta have rank at least four, assume every maximal singular subspace has
finite projective rank.

Then G is

1. E6;4, E7;7, or E8;1,
2. a metasymplectic space, or
3. a polar Grassmannian of lines of a non-degenerate polar space of ( possibly infinite)
rank at least four. In the case of finite polar rank, these would be classical Lie inci-
dence geometries of type ðB=CÞn;2 or Dn;2, nd 4.

Theorem 2. Suppose G is a strong parapolar space with these three properties:

1. For every point-symplecton pair ðx;SÞ, x? VS0q.
2. The ball D�

2ðpÞ of radius 2 about any point p is a geometric hyperplane of G.
3. If there is no symplecton of rank two assume every maximal singular subspace has
finite projective rank.
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Then G is one of the following:

1. D6;6, A5;3, or E7;1,
2. a dual polar space of rank three,
3. a product geometry, L� P, where L is a line, and P is a non-degenerate polar space
of rank at least two. (It may have infinite polar rank.)

The authors wish to thank Professor Antonio Pasini for a painstaking review of
the manuscript which resulted in numerous corrections and modifications clarifying
the presentation. In one case he noticed a gap in an argument that has in fact been
duplicated many times in the literature: those comments inspired Section 3.4.

2 Basic concepts

2.1 Point-line geometries and parapolar spaces. For the definitions of point-line ge-
ometry, subspace, singular subspace, polar space, polar rank and diagram geometry,
one may consult Cohen’s survey article in the Handbook of Incidence Geometry [3].
Let Gi :¼ ðPi;LiÞ, i ¼ 1; 2 be two point-line geometries. The product geometry G1 �G2

is a point-line geometry whose set of points is the Cartesian product P1 �P2 and
whose lines are subsets of the form p1 � L2 where p1 A P1 and L2 A L2 (a ‘‘vertical’’
line), or of the form L1 � p2 where L1 A L1 and p2 A P2 (a ‘‘horizontal’’ line). Thus
the product of two lines is the familiar ‘‘grid’’.

A subspace of a point-line geometry ðP;LÞ is a geometric hyperplane if it is a
proper set of points meeting each line at exactly one or all of its points.

In the introduction we gave the definition of ‘‘parapolar space’’ and ‘‘symplecton’’.
In a parapolar space of symplectic rank at least three (as defined in the introduction),
all singular subspaces are projective spaces. But the reader should be warned that
that conclusion can fail if some symplecta have polar rank two (Consider a product
of two a‰ne planes, for example).

In a parapolar space, for any two distinct points x and y, either (i) they are col-
linear, (ii) the set x? V y? of points collinear with both x and y is empty, (iii) x? V y?

consists of a single point (then ðx; yÞ is called a special pair), or the convex closure of
fx; yg is a symplecton (then ðx; yÞ is called a polar pair). It is called a strong parapolar
space if no special pairs exist. Always in any parapolar space of symplectic rank at
least three, every plane lies in some symplecton.

2.2 Special aspects of graphs.

2.2.1 Subgraphs. Let G ¼ ðV ;EÞ be a simple graph. For XJV let EX be the
set of edges in E whose incident vertices lie in X. A subgraph is a pair H ¼ ðX ;E 0Þ
where E 0 JEX , with the inherited incidence. It is an induced subgraph if E 0 ¼ EX .
The intersection of two subgraphs Hi ¼ ðXi;EiÞ, i ¼ 1; 2 is the subgraph H1 VH2 :¼
ðV1 VV2;E1 VE2Þ, and of course one can form such intersections over arbitrary fami-
lies of subgraphs.
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A geodesic path is a path of minimal length connecting its initial and terminal
vertices. A finite subgraph ðX ;E 0Þ is said to be convex in ðV ;EÞ if, for every geodesic
path of ðV ;EÞ connecting two vertices of X, the intermediate vertices of the path all
belong to X.

The distance dGðx; yÞ between vertex x and y is the length of a shortest path
connecting them, if there is one, or is ‘‘y’’ if x and y belong to di¤erent connected
components of G. Given a subgraph H ¼ ðX ;E 0Þ, there are two distance metrics
dG and dH that can be applied to its vertex pairs. We always have dGðh1; h2Þc
dHðh1; h2Þ. We say H is isometrically embedded in G if and only if these metrics co-
incide on H.

One observes the following relations among properties of subgraphs:

1. ‘‘Isometrically embedded’’ implies ‘‘induced’’.
2. ‘‘Induced and convex’’ together imply ‘‘isometrically embedded’’.
3. Neither of the two concepts ‘‘convex’’ and ‘‘isometrically embedded’’ alone im-

plies the other.

An important observation:

Lemma 3. The class of convex induced subgraphs of a graph is closed under arbitrary
intersections. Any intersection of connected graphs in this class is connected.

2.2.2 Strong gatedness in graphs. Now suppose G ¼ ðV ;EÞ is a connected graph so
the distance metric for G assumes only finite values. A subgraph H ¼ ðX ;E 0Þ is said
to be strongly gated with respect to a vertex v if and only if there exists a ‘‘gate’’ gv in
X such that for every x A X ,

dGðv; xÞ ¼ dGðv; gvÞ þ dHðgv; xÞ:

The subgraph H is strongly gated if and only if it is strongly gated with respect to
every vertex. One now has

Lemma 4. Every strongly gated subgraph is a convex induced (and hence isometrically
embedded ) subgraph.

2.2.3 Graph morphisms. Let Gi ¼ ðVi;EiÞ, i ¼ 1; 2, be a pair of simple graphs. A
graph morphism G1 ! G2 is a mapping V1 ! V2 such that if fx; yg is in E1, then ei-
ther f ðxÞ ¼ f ðyÞ or else f f ðxÞ; f ðyÞg is an edge of E2. (Of course it may happen that
f f ðxÞ; f ðyÞg is an edge of E2 even when x and y are distinct non-adjacent vertices
of G1.) The morphism is full if every edge of E2 with vertices in f ðV1Þ is the image
f f ðxÞ; f ðyÞg of some edge fx; yg of G1. The morphism is vertex injective or vertex
surjective according as the induced map V1 ! V2 is injective or surjective. Of course
these morphisms can be composed. For any induced subgraph defined on vertex sub-
set X, we may consider f jX , ( f restricted to X ) as another graph morphism.

A fibering is a vertex-surjective morphism f : G1 ! G2 which is vertex-bijective (but
not necessarily an isomorphism) when restricted to the neighborhood graph G1ðvÞ,
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v A V1. When f : G1 ! G2 is a fibering, every walk of G2 possesses a unique lift at
every preimage of the initial vertex of the walk. The fibering is called a C-covering
if and only if G1 is connected and all circular walks belonging to a family C of G2

always lift to circular walks of G1. We let T denote the collection of all 3-circuits
of G2. T-covers of point-collinearity graphs play a key role in Sections 3, 5 and 6.
Finally, a fibering f : ðV1;E1Þ ! ðV2;E2Þ is called a universal C-covering if it is a
C-covering and if, for any other C-covering, g : ðV3;E3Þ ! ðV2;E2Þ there is a graph
morphism h : ðV1;E1Þ ! ðV3;E3Þ such that f ¼ g 
 h. It is well known that for any
collection of circuits C of a connected graph, there exists a universal C-covering (see
[1] and [10]).

Most objects of concern here in this paper can be described by graphs that anyone
can understand, and so their morphisms can be described as graph morphisms.

2.3 Chamber systems and geometries. A chamber system C ¼ ðV ;E; l; IÞ over I is a
simple graph ðV ;EÞ together with an edge-labelling l : E ! 2I � fqg by non-empty
subsets of I, such that if x, y and z are three pair-wise adjacent vertices, then

lðx; yÞV lðy; zÞJ lðx; zÞ: ð1Þ

For any element i of I, two vertices x and y of ðV ;EÞ are said to be i-adjacent if and
only if fx; yg is an edge and lðx; yÞ contains i. By (1), i-adjacency union the identity
relation is an equivalence relation. The chamber system is connected if and only the
underlying graph ðV ;EÞ is connected.

The vertices of a chamber system are typically called chambers.
Note that the definition does not require that every label of I be realized as an

element of some lðx; yÞ. Thus, if IJK , then any chamber system over I is a fortiori
a chamber system over K.

Let C ð jÞ ¼ ðV ð jÞ;E ð jÞ; lð jÞ; IÞ, j ¼ 1; 2, be two chamber systems over I. A mor-

phism of chamber systems is a graph morphism

f : ðV ð1Þ;E ð1ÞÞ ! ðV ð2Þ;E ð2ÞÞ

which ‘‘preserves labels’’ in the sense that if fx; yg A E ð1Þ is such that ffðxÞ; fðyÞg is
an edge in ðV ð2Þ;E ð2ÞÞ—that is, fðxÞ and fðyÞ are distinct vertices—then

lð1Þðx; yÞJ lð2ÞðfðxÞ; fðyÞÞ:

We denote this morphism by f : C ð1Þ ! C ð2Þ. Clearly morphisms can be composed
when the underlying graph homomorphisms can, and the chamber systems over I
form a category with respect to these morphisms.

For any subset J of I let EJ :¼ fe A E j lðeÞV J0qg, the set of edges bearing at
least one label from J. The connected components of the graph ðV ;EJÞ are called
residues of type J and can be regarded as a chamber system over J with labelling lJ
where lJðx; yÞ ¼ lðx; yÞV J, for each edge fx; yg in EJ . If jJj ¼ 1, a residue of type J
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is called a panel. A chamber system is firm if and only if every panel contains at least
two chambers.

A residue of type J is said to be of cotype I � J and corank jI � Jj.
Let C ¼ ðV ;E; l; IÞ be a chamber system over I and let J be a fixed subset of I.

Let V=J denote the collection of all residues of C of type J. If R1 and R2 are two
distinct members of V=J and i A I � J, declare R1 and R2 to be i-adjacent if and only
if R1 UR2 is contained in a residue of type J U fig. Letting E=J be all 2-subsets of
V=J exhibiting some i-adjacency, and letting

lJðR1;R2Þ ¼ fi jR1 is i-adjacent to R2g;

then

CJ :¼ ðV=J;E=J; lJ ; I � JÞ

is a chamber system over I � J called the truncation of type I � J of C.
A chamber system C is residually connected if and only if the following statements

hold:

1. C is connected.
2. Let fRsg be any collection residues of C. Then these residues pair-wise intersect

non-trivially if and only if they have a non-empty global intersection 7Rs.
3. The intersection of any collection of residues is either empty or is itself a residue

whose type T is the intersection of the types of the residues of the collection—that
is, it is a connected subgraph when restricted to edges bearing labels from T.

In a residually connected chamber system, C, the intersection over GðcÞ, the set of
all corank-one residues containing c, is just fcg.

A residue R of type J of a connected chamber system is said to be strongly gated
if and only if, it is strongly gated as an induced subgraph of ðV ;EÞ, the underlying
graph of C¼ ðV ;E; l; IÞ. A strongly gated residue is always a convex isometric sub-
graph of ðV ;EÞ. In particular, any two of its vertices which form an edge in E, form
one in EJ . The intersection of finitely many strongly gated residues is strongly gated.

Let M ¼ ðmijÞ be a symmetric matrix with diagonal entries 1 and all other entries
integers greater than one, or the symbol y—a so-called Coxeter Matrix. A chamber
system is type M (or belongs to diagram M ) if and only if its residues of type fi; jg are
chamber systems of generalized mi; j-gons. Note that ‘‘type M ’’ implies ‘‘firm’’ and
the property that l assumes only singleton values on edges. A building is a connected
chamber system of type M all of whose corank-one residues are strongly gated. (The
equivalence of this definition with the traditional one is proved in Shult [12]: see also
Scharlau [9].)

Now it follows from Lemmas 3 and 4 that in a building B, the intersection of res-
idues Ri of cotype i for i ranging over J, is itself a residue of type I � J or is empty. If
J0 I , it follows that since B is firm, the intersection over a finite set of strongly gated
Ri’s having pairwise non-trivial intersection is such a residue. Since a building is firm
and connected, we have
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Lemma 5. Any building of finite rank is residually connected.

On the other hand, in [7] the authors of this paper showed that no firm chamber
system without multiple edge-labels over an infinite typeset can be residually con-
nected. Thus buildings of infinite rank are not residually connected.

A geometry over I is a multipartite graph ðV ;EÞ whose (non-empty) parts are in-
dexed by I. One thinks of the underlying partition of the vertices into cocliques as
segregating the objects of the geometry according to their type (for example, ‘‘points’’,
‘‘lines’’ ‘‘planes’’ ‘‘symplecta’’ etc) and adjacency in the graph as indicating the inci-
dence relations among objects. Thus we have an onto type function typ : V ! I and
two objects of the same type are never incident. A flag F is just a set of pairwise in-
cident vertices (that is, a clique), and its type is the set typðFÞ of types of its vertices.
Since the type function is injective when restricted to cliques, jtypðFÞj ¼ jF j for all
flags. A chamber flag is a flag of type I, and so is just a set of pairwise incident objects
(that is, a clique) with one object of each type.

Let Gð jÞ ¼ ðV ð jÞ;E ð jÞ; typð jÞ; IÞ, j ¼ 1; 2 be geometries over I. A morphism of

geometries, f : G ð1Þ ! G ð2Þ, is a graph homomorphism f : ðV ð1Þ;E ð1ÞÞ ! ðV ð2Þ;E ð2ÞÞ
which ‘‘preserves types’’—that is, for any object v of Gð1Þ,

typðvÞ ¼ typðfðvÞÞ:

Such a morphism takes flags of type J to flags of type J. Geometries over I form a
category with respect to the geometry morphisms.

Suppose F is a flag of type J in geometry G. The residue in G of F is the subgraph
induced on the set ResGðF Þ of vertices v not in F for which F U fvg is a flag. Letting
IF be the set of types of vertices in the residue of F, then ResGðFÞ becomes a geom-
etry over IF under suitable restriction of the type mapping. Clearly IF J I � J and F
lying in some chamber-flag is a su‰cient (but not necessary) condition for equality of
these type sets.

A geometry is residually connected if and only if the residue of every flag of corank
one is non-empty and the residue of every flag of corank at least 2 is non-empty and
connected. (The residue of the empty flag is the entire geometry, so as a multipartite
graph, it is connected.)

2.4 The functors G and C. Let G be a geometry over I. Let CðGÞ be the set of
chamber flags of G. Two chamber flags F and F 0 are said to be i-adjacent if and only
if they di¤er only in their objects of type i. The i-adjacencies define a collection of
labelled edges on the set of chamber flags with respect to which CðGÞ is a chamber
system over I. It may happen that CðGÞ is empty (that is, G has no chamber flags) but
as defined, it is still a chamber system over I. It is easy to see that C is a functor from
the category of geometries over I to the category of chamber systems over I.

Similarly let C be a chamber system over I. Let V be the collection of all corank-
one residues of C, and let E be the pairs of distinct residues which have a non-empty
intersection. Then we have a mapping typ : V ! I which records the cotype of each
corank-one residue. Clearly its fibres are non-empty cocliques of the graph ðV ;EÞ, so
it is multipartite. Thus GðCÞ :¼ ðV ;E; typ; IÞ is a geometry over I. Then the map-
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ping from the category of chamber systems over I to the category of geometries over I
which takes C to GðCÞ is a functor.

2.5 G-images and residual connectedness. Let C ¼ ðV ;E; l; IÞ be a chamber system
over I. For each subset X of V let GðXÞ be the collection of all corank-one residues of
C which contain X. In particular for a single vertex (or chamber) c, GðcÞ is all corank-
one residues which contain c.

Now suppose F is a flag of the geometry GðCÞ. Then F is a collection fRigi AL
of corank-one residues of C which pairwise intersect non-trivially. We may assume
these corank-one residues to be indexed by their cotypes so i is the cotype of Ri,
and L is the type of the flag F. Such a flag is said to be a G-image if and only if
7
i AL Ri0q. In that case, 7

i AL Ri is a union of residues of C of type I � L. Also
in that case, whenever we choose a chamber c in the intersection of the Ri, GðcÞ is
a chamber flag of GðCÞ containing flag F. Conversely, any subflag of a chamber flag
that is a G-image is also a G-image. It follows that the collection of all G-images is a
subcomplex of the simplicial complex of all flags of GðCÞ.

Remarks. 1. Moreover if C is residually connected, every flag of GðCÞ is a G-image.
In fact,

CðGðCÞÞFC:

2. Buildings over a finite typeset I are always residually connected (Tits [14])
while buildings over an infinite typeset I are never residually connected (Kasikova
and Shult [7]).

3. The functors G and C preserve the properties of residual connectedness for geo-
metries and for chamber systems of finite rank.

2.6 Coverings of chamber systems. A morphism of chamber systems over I,
a : C0 ! C, is said to be a k-covering if and only if C0 is connected, a is a fibering (in
the sense of Section 2.2) and for any subset J of I of cardinality at most k, the re-
striction of a to any residue R of type J induces a chamber-system isomorphism
R! aðRÞ between residues of type J.

Obviously if l is less than k, any k-covering is an l-covering.

Lemma 6. Let k be any positive integer greater than 1 and let C be a chamber-system
over I. Then there exists a universal k-covering k : ĈC ! C—that is, for every k-covering
a : C0 ! C, there is a morphism f : ĈC ! C0 such that a 
 f ¼ k.

This is proved by Tits for chamber systems, but is part of a general theorem on
covers of graphs proved in Aschbacher–Segev [1]. (See Shult [10] for a full exposi-
tion.)

When we use the word ‘‘covering’’ without a prefixed ‘‘k’’, we shall mean a
2-covering. These are then just chamber-surjective morphisms of chamber systems
which are isomorphisms when restricted to rank-1 and rank-2 residues.

The major theorem of the field is this:
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Theorem 7 (Tits’ Local Approach Theorem [15]). Suppose C is a chamber system of
type M, where M is a finite Coxeter matrix, whose residues of rank 3 are 2-covered by
buildings. Then the universal 2-cover of C is a building.

2.7 A vital lemma on 2-coverings of chamber systems. This section contains a lemma
which concludes that under certain conditions, the morphism of geometries induced
by a 2-covering of chamber systems, is injective when restricted to an appropriate
residue.

Lemma 8. Suppose f : ĈC ! C is a 2-covering of chamber systems over I. Suppose X
is a residue of cotype K in C, and X is any lift of X to a cotype K residue of ĈC. Let
h ¼ Gf be the ( functorially induced ) morphism of geometries over I:

h : D :¼ GðĈCÞ ! GðCÞ :¼ D:

Then X may be regarded as a flag of type K of the geometry D and X may similarly be
regarded as a flag X of the geometry D, where hðXÞ ¼ X .
Now suppose the following:

1. The residue X is a 2-simply connected chamber system over I � K .
2. For some subset J of I properly containing K, the truncation CJ is a residually con-
nected chamber system over J. If jK j > 1, assume also that the truncation ĈCJ is re-
sidually connected.

Let DJ and DJ be the truncations to type J of the respective geometries D and D.
Then, the mapping of geometric residues

hX : ResDJ ðXÞ ! Res
DJ
ðX Þ;

induced by the restriction of h is injective.

Proof. Suppose by way of contradiction, that y1 and y2 are distinct objects of type
i A J � K in the geometry D which are incident with X while hðy1Þ ¼ hðy2Þ. Then, by

the definition of D, each yk can be regarded as a residue Yk of chamber system ĈC, of
cotype i such that

1. Y1 VY2 ¼ q,
2. f ðY1Þ ¼ f ðY2Þ is a residue of cotype i of f ðĈCÞ ¼ C, and
3. for each k A K , Y1 VXk0q0Y2 VXk,

where Xk denotes the unique residue of cotype k containing X.
But we actually have

3*. Y1 VX0q0Y2 VX

which we now justify. If jK j ¼ 1, Xk ¼ X , with corank 1. Then the Statements 3
and 3� coincide. If jK j > 1, the fact that ĈCJ is residually connected, together with
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Statement 3 just above, implies the intersections Yj V ð7
K
XkÞ, j ¼ 1; 2, of residues

whose cotypes are subsets of J, are non-empty. But by residual connectedness of ĈCJ ,
7
k AK Xk ¼ X . Thus 3� holds in either case.
By Assumption (i) X is simply 2-connected and so as f is a 2-cover, the restric-

tion of f to X induces an isomorphism X ! X as chamber systems over I � fKg.
Thus in chamber system C, we have residues Y :¼ f ðY1Þ ¼ f ðY2Þ and X of cotypes
i and K in C, whose intersection Y VX consists of at least two components. Since all
of the ‘‘components of the Venn diagram’’, C � ðX UY Þ, X � Y , Y � X , and Y VX
are each a union of residues of C of type I � J, with X and Y residues of cotypes K
and i of the truncation CJ , we must infer that CJ is not residually connected, contrary
to hypothesis.

Thus the lemma holds.

3 Locally truncated geometries: a quick review

For this entire section, D is a finite diagram over the typeset I and J is a subset of I. A
connected geometry G over J with type function typ is said to be locally truncated of
type D (over I) if and only if

(LT) for every non-empty flag F of G, the residue ResGðFÞ is isomorphic to the trun-
cation to J � typðF Þ of a geometry belonging to the diagram RestypðFÞðDÞ (that
is, the diagram D with the nodes of typðF Þ suppressed).

The reader may appreciate our resistance to the temptation to recast Condition
(LT) in the form that ResGðF Þ is isomorphic to the appropriate truncation of a resi-
due of a geometry C belonging to diagram D. No one knows whether such a geom-
etry C exists, so this existence question should not impair the definition above. For
further descriptions of locally truncated geometries of type D the reader is referred to
Ronan [8], Brouwer and Cohen [2].

A locally truncated geometry X of type D can always be rendered by presenting
the diagram D, and then changing all nodes not in the ‘‘real-world’’ set J to square
nodes. For example the diagram

P L Q

1 2 3 4

refers to a rank-three geometry of points and lines and quadrangles (denoted P;L;Q,
respectively) with the property that for each point p, the rank-two incidence geometry
ResXðpÞ ¼ ðLp;QpÞ of all lines and quadrangles on p forms a geometry isomorphic
to the ‘‘points’’ and ‘‘lines’’ of a PGð3;DÞ.

Like diagram geometries, locally truncated diagrams are a device for axiomatizing
a geometry, except that now residues can be certain proper truncations of diagram
geometries.

3.1 The idea of sheaves. When is a locally truncated geometry realizable as a trun-
cation of a geometry belonging to a diagram D? This question was first answered by
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Ronan [8], whose proof was replaced by a more transparent one due to A. Brouwer
and A. Cohen [2]. Since this theory will be needed to show that certain homomorphic
images of geometries are isomorphisms, we are forced to review it.

Let G be a geometry over J which is locally truncated of type D (whose type set is
I ). From our definitions, JJ I . The definition means that there is an ‘‘overall dia-
gram’’ D over I, such that if F is a flag of G of type K (necessarily K is a subset of J ),
then the residue

ResGðF Þ

is the truncation to J � K of a geometry belonging to diagram ResKðDÞ (the dia-
gram remaining when the nodes of K are suppressed.) Note the extra property that if
FJG is a containment of flags in G, then typðFÞ ¼ K is contained in typðGÞ ¼ L,
and that in that case one has

Lemma 9. 1. G � F is a flag of type L� K in ResGðFÞ.
2. The residue of G � F in ResGðF Þ is naturally isomorphic to ResGðGÞ where ‘‘natu-
rally’’ records the correspondence between any super-flag H � F of G � F and su-
perflag H of G.

3.2 Sheaves. Suppose now that G is a geometry over J which is locally truncated
of type D (over I ). A sheaf is a function F which assigns to each non-empty flag F
(whose type is rendered by typðFÞ), a geometry FðF Þ over I � typðF Þ, whose trun-
cation to J � typðFÞ is the geometry ResGðFÞ. We must also have ‘‘connecting mor-
phisms’’ in the flag poset of G: For any containment of flags of G, F1 JF2, one has
an embedding eðF1;F2Þ : FðF2Þ ! FðF1Þ which induces the identity map on the ob-
jects in G and whose image is the residue of F2 � F1 in the codomain, thus inducing
an isomorphism

FðF2ÞFResFðF1ÞðF2 � F1Þ; ð�Þ

as geometries over I � typðF2Þ. It is required that these morphisms respect composi-
tions: If F1 JF2 JF3 is a chain of flags, then

eðF1;F3Þ ¼ eðF2;F3Þ 
 eðF1;F2Þ:

If such a function F exists, we say that a sheaf exists.
By convention, for each object x of G, we regard x as also denoting the rank-one

flag fxg, so that we may write FðxÞ instead of FðfxgÞ.
The existence of a sheaf has been worked out for several important cases in the

seminal papers of Ronan [8] and Brouwer–Cohen [2]:

Theorem 10. Assume G is a locally truncated geometry over J of type D over I. Then
there exists a sheaf in each of the cases depicted by the truncated diagrams in Figure 1.

Point-line characterizations of Lie geometries 157



3.3 The chamber system associated with a sheaf. Suppose that F is a sheaf for
the locally truncated geometry G with truncated diagram D. We have JJ I where
J is the typeset for G and I indexes the nodes of D. Fix a flag F of G and select
chamber flag cF of FðF Þ. Now cF has type I � typðFÞ and so is a sequence of ob-
jects with those objects whose type belongs to J � typðFÞ forming a flag F1 of G of
that type. We can always write any desired subsequence of objects with type in J
segregated, and written first, followed by the others. This segregation can be indi-
cated by the ‘‘l’’ sign. Thus cF can be written as F1 l c 0 where c 0 is a chamber flag
in ResFðFÞðF1Þ ¼ FðF UF1Þ. In this way we can produce a sequence involving an
object of every type, with more than one way to indicate it. Thus

Fl cF ¼ ðF UF1Þl c 0;

would be such a sequence. We call such a sequence (where an object of each type in I
occurs) an F-chamber or simply a chamber of CðFÞ. Each such chamber can always
be written in the extremal form where the segregation puts all objects having type in J
first. The right-hand term of the expression above is of that form.

We can now convert CðFÞ into a chamber system as follows: Suppose F1 l c1 and
F2 l c2 are two F-chambers in CðFÞ, where Fi A CðGÞ and ci A CðFðFiÞÞ. If j A J,
we say that these two F-chambers are j-adjacent if and only if F1 is j-adjacent to
F2 in CðGÞ and c1 ¼ c2 (as flags of type I � J in FðF1 VF2Þ). (Note that if jJj > 1,
then F1 VF2 is non-empty, so this makes sense.) But if, on the other hand, i A I � J,
then these two F-chambers are i-adjacent if and only if F1 ¼ F2 and c1 and c2 are
i-adjacent chamber flags of the common geometry FðF1Þ of type I � J. With these
adjacencies, CðFÞ becomes a chamber system over I.

Of course, it may happen that for some flag F the geometry FðFÞ possesses no
flag chambers at all. In that case there are no F-chambers of the form Fl cF . In the

Figure 1. Locally truncated diagrams with sheaves

Anna Kasikova and Ernest Shult158



worse scenario, CðFÞ itself might be empty. Usually this is prevented by the nature
of the diagram D. Such a diagram specifies rank-two residues, and we would like these
to be residually connected geometries, so that a diagram can be attached to residues
of the chamber system of the same type.

Theorem 11. Suppose G is a locally truncated diagram geometry of type J over a dia-
gram D of type I where jJjd 3. Suppose a sheaf F exists. Then there is a canonically
defined chamber system CðFÞ over I. Suppose, for each object x A G, that every rank-
two residue of FðxÞ is connected. Then the chamber system CðFÞ also belongs to the
diagram D.

Proof. Let K ¼ fi; jgJ I . Let R be a residue of CðFÞ of type K. We must show that
the rank-two residue R belongs to the diagram ResI�KðDÞ (the relation in D between
the nodes i and j). Since R is by definition non-empty, and jJj > 2, there exists a non-
empty flag F of G of type J � ðK V JÞ, such that

RJRF :¼ fFl cF j cF A CðFðFÞÞg;

showing that R is a residue of type K of the chamber system CðFðxÞÞ for some x A F .
Then R belongs to ResI�KðDÞ since FðxÞ belongs to the diagram RestypðxÞðDÞ and has
connected rank-two residues.

3.4 The e¤ect of local isomorphisms on the existence of sheaves. A sheaf purports to
assign a type to each of the phantom objects appearing in FðFÞ where F is a flag of
the original geometry G. But in deriving the existence of a sheaf from a local knowl-
edge of residues, one may encounter a problem.

Suppose G ¼ ðP;LÞ is a parapolar space of symplectic rank at least three. Given
a point p, all singular subspaces over p are visible as singular subspaces of the residue
geometry ResðpÞ ¼ ðLp;PpÞ and the symplecta on p are symplecta of ResðpÞ. Now
we can assemble these subspaces as an enrichment of the ‘‘point’’-‘‘line’’ geometry
ResðpÞ ¼ ðLp;PpÞ. Normally that leads one to believe that one is dealing with a lo-
cally truncated geometry. The problem is that the diagram D in that definition as-
signs a type to the subspaces making their debut in a residue.

There are infinitely many examples showing that this is not justified. Consider the
‘‘symmetric’’ Grassmannian of type A2n�1;n, nd 8. This Grassmannian has the same
point-residue as does its factor-geometry, A2n�1;n=hsi where s is a polarity of Witt
index at most n� 4. In the latter geometry there are not actually two distinct types of
maximal singular subspaces—the classes are fused. That means there is no global
way to assign types to all the objects that appear in a residue. So one cannot imme-
diately conclude that one has a locally truncated diagram, let alone a sheaf.

However there is a way around this. Although the procedure is general, we will
describe it in the particular case that a point-residue has its incident singular sub-
spaces and symplecta assembled as a Grassmannian A2n�1;n since these are the cases
that concern us here.

In this case, for each point p, the point residue ResðpÞ contains exactly two classes
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Ap and Bp of maximal singular subspaces so that any plane on p lies in exactly one
from each class.

Let P̂P be the set of all pairs ðp;XpÞ where p is a point and Xp is one of the

two symbols Ap or Bp. Similarly we let L̂L be the collection of pairs ðL;XLÞ where L
is a line and XL is a class of maximal singular subspaces containing L. We say that
ðp;XpÞ is incident with ðL;XLÞ if and only if p is incident with L and XLJXp. Then

ĜG :¼ ðP̂P; L̂LÞ is a point-line geometry and the projection onto the first coordinates of
the pairs induces a geometry morphism

g : ĜG ! G;

which is a fibering of bipartite graphs. The mapping g also induces a vertex-surjective
morphism of point-collinearity graphs

d : D̂D :¼ ðP̂P;@Þ ! D :¼ ðP;@Þ;

which restricts to an isomorphism x̂x? ! x? on each induced neighborhood graph. In
particular d is a T-covering of graphs in the sense of Section 2.

Now any connected component Y of ĜG (or of D̂D) is mapped vertex-surjectively by g

(or d) as either a one-to-one mapping or a two-to-one mapping depending on whether
Y is a proper subgeometry (or induced proper subgraph) or not. In either case, Y is a
geometry (or graph) which is locally identical with G (or D) and in Y the local classes
are not fused—precisely that means there can be no sequence ðy0;X0Þ, ðy1;X1Þ; . . . ;
ðyn;XnÞ where

— Xi is one of the two classes of maximal singular subspaces on yi A Y .
— yi is collinear with yiþ1 by a line lying on a maximal singular space in both Xi and
Xiþ1.

— yn ¼ y0 so ðy0; . . . ynÞ is a circular walk in D̂D, and Xn is a di¤erent class than X0 in
the point-residue of y0—thus fusing the classes.

Of course, this approach can be generalized whenever one has a connected gamma
space G whose local diagrams for a point-residue possess proper automorphisms. One
normally obtains canonical morphisms g and d which are isomorphisms on point-
residues and neighborhood graphs, respectively. The point is that in an enrichment of
the point-residues of the geometry YJ ĜG, it is perfectly legitimate to assign distinct
types to objects of distinct classes within a point-residue. In that case a locally trun-
cated diagram over I exists to support the definition of a sheaf.

We conclude at least the following:

Theorem 12. Suppose G ¼ ðP;LÞ is a parapolar space with symplectic rank at least
three, with the property that the collection of all symplecta and singular subspaces on a
point p are the singular subspaces and symplecta of the point-line geometry ResðpÞ ¼
ðLp;PpÞ forming in that way the subspaces of a Grassmannian of type A2n�1;n. Then
there is a locally truncated connected geometry Y with respect to the diagram D derived
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by inserting a branch from the node labelled P at the middle node of A2n�1;n, and a fi-
bering morphism of geometries gjY : Y ! G which induces a 1- or 2-fold T-covering
djY : DY ! D ¼ ðP;@Þ of the point-collinearity graph of G.

3.5 Recovering G from C(F). We say that a geometry X over K is strongly chamber-
connected if and only if

1. every flag lies in a chamber flag (a flag of type K ), and
2. the geometry is chamber connected—that is, the chamber system of chamber flags

CðX Þ is connected.

This property of a geometry is implied by residual connectedness; but examples
(even at rank three) show that it is weaker.

We continue with the hypothesis of this section that G is a geometry of type K
which is a locally truncated geometry with respect to the finite diagram D over I. We
suppose a sheaf F exists.

Lemma 13. The following statements hold:

1. Suppose F is a flag of type K in the geometry G. Set

RF :¼ fFl cF j cF A CðFðFÞÞg:

If FðF Þ is strongly chamber connected, then RF is a residue of cotype K in CðFÞ.
2. SupposeFðF 0Þ is strongly chamber-connected for any flag F 0 of G of type K. (Note
that K is a fixed subset of J.) Let R be a residue of CðFÞ of cotype K. Then there
exists a flag F of type K such that R ¼ RF .

Proof. For the first part, the F-chambers in RF are connected under the i-adjacency
relations as i ranges over I � K , for the reason that FðFÞ is chamber connected.
Suppose now, an F-chamber r :¼ F1 l c1 in RF were i-adjacent to some F-chamber
c ¼ F2 l c2 in CðFÞ, for some i A I � J (we suppose typðFiÞ ¼ K). Then F ¼ F1 ¼ F2

whence c A RF . Thus no chamber of RF is i-adjacent to any chamber of CðFÞ � RF ,
for any i A I � K . It follows that RF is a residue of type I � K .

For the second part, we let R be an arbitrary residue of CðFÞ of cotype K (i.e. it
is a residue of type I � K). The definition of adjacency in CðFÞ shows that there
exists a flag F of type K such that RJRF . By Part 1 RF is already a residue of type
I � K , so R ¼ RF .

Theorem 14. Suppose the sheaf F is strongly chamber connected—that is, for each
object x of the geometry G, the geometry FðxÞ is strongly chamber-connected. Then
there is an isomorphism of geometries:

f : G ! GðCðFÞÞJ ;

where the right side is the truncation of type J of the geometry functorially defined by

the chamber system CðFÞ.
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Proof. For each object x of the geometry G, set fðxÞ :¼ Rx as defined in Lemma 13
(recall that x is regarded as a flag of rank one, so we don’t have to write fxg here).
By the hypothesis on FðxÞ and Lemma 13, Rx is a residue of cotype typðxÞ A J and
hence is an object of type typðxÞ in the geometry ðGðCðFÞÞÞJ . Conversely, any object
of GðCðFÞÞJ is a residue R of CðFÞ of cotype j, for some j A J. Now by Lemma 13,
Part 2, R has the form R ¼ Rx for some object x of type j. Thus f is a surjective
mapping.

Now suppose ðx; yÞ is an incident pair of (necessarily distinct) objects of G. By
strong chamber-connectedness of FðxÞ, there is a flag-chamber of FðxÞ containing
y, and hence an F-chamber c A Rx VRy. Thus the images of x and y under f are
incident objects of ðGðCÞÞJ . Thus f is a morphism of geometries.

It is also a full morphism, for if Rx VRy0q for x0 y, then Rx VRy contains an
F-chamber of the form fx; ygl c 0, when fx; yg is a flag of rank two, whence x is
incident with y.

Finally, suppose x and x 0 are distinct objects of G of the same type. Then Rx0Ry
since they contain no F-chamber in common. Thus fðxÞ0 fðx 0Þ. So f is injective.
Now f is an isomorphism.

3.6 Residual connectedness of G and (C(F))J . We shall say that a sheaf F has a
geometric property P if and only if each of its values FðFÞ have property P, as F
ranges over the non-empty flags of G. (We did this for strongly chamber-connected
sheaves in Theorem 14.) Thus we say that a sheaf is chamber connected (residually
connected) if and only if each geometry FðFÞ is chamber-connected (residually con-
nected, respectively) for each non-empty flag F of G.

Lemma 15. Assume the sheafF is residually connected. Then the following statements
hold:

1. The geometry G is residually connected.
2. There is an isomorphism

CðGÞFCðFÞJ ;

as chamber systems over J.
3. The chamber systems of the preceeding statement are residually connected chamber
systems.

Proof. Let F be any fixed non-empty flag of G. From the definition of a sheaf,

ResGðFÞF ðFðF ÞÞJ : ð2Þ

Moreover, FðFÞ is a geometry over I � tðFÞ, and, for any object x A F , the
residue

ResFðxÞðF � fxgÞ;
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is a residue of the residually connected geometry FðxÞ, and so is itself residually con-
nected. As a result

(a) FðF Þ is non-empty if I � typðFÞ is non-empty.
(b) FðF Þ is strongly chamber-connected—that is, all flags lie in a chamber flag and

the chamber system CðFðF ÞÞ is connected. (This includes the cases where it is
rank 1 or is empty (only if typðF Þ ¼ J ¼ I ).)

(c) Any truncation of FðFÞ of rank at least two is also residually connected.

Now, if F is a flag of G of corank 1 so fJ � tðFÞg ¼ f jg for some j A J, then FðF Þ
has chambers (by (b)), and so contains an object of type j, so ResGðF Þ is non-empty.
On the other hand, if F is non-empty of corank at least two, then, by Equation (2)
and (c), ResGðFÞ is connected. Finally, if F is empty, its residue is G itself, of rank at
least three, and connected by the initial hypothesis. Thus G is a residually connected
geometry.

The chamber system CðFÞ has as its chambers elements of the form c ¼ Fl cF
where F is a flag of G of type J (that is, a flag-chamber of G) and cF is a flag-chamber
of FðF Þ. The residue of CðFÞ of type I � J which contains chamber c must consist
of chambers of the form Fl c 0F where c 0F wanders over a connected component of
the chamber system CðFðFÞÞ containing c 0F . Thus the mapping

c : CðFÞ ! CðGÞ;

which takes each chamber Fl cF to F (that is, it reads o¤ the J-part of each chamber
flag) satisfies this important property:

(P) If chamber c is i-adjacent to chamber c 0 in CðFÞ, then either cðcÞ ¼ cðc 0Þ and
i A I � J, or else cðcÞ and cðc 0Þ are distinct and i-adjacent for some i in J.

Notice that (b) above implies that every chamber flag F of G is the c-image of a
chamber Fl cF , and so c is surjective. But in particular (P) implies c is a morphism
of chamber systems and that the kernel of c is a partition of CðFÞ into fibers which
are unions of ðI � JÞ-residues—that is, the map c factors through a morphism c :
CðFÞJ ! CðGÞ. Now, finally, (b) above tells us that in fact each of these fibers is
a single ðI � JÞ-residue of CðFÞ. Thus the induced mapping c is an injective mor-
phism of chamber systems over J.

It only remains to show that c is a full morphism. Suppose A and B are distinct
elements of CðFÞJ (that is, residues of type I � J in CðFÞ), such that F :¼ cðAÞ is
j-adjacent to G :¼ cðBÞ in CðGÞ. Then as jJjd 2, H :¼ F VG is a non-empty flag
of cotype j in G. Then since FðHÞ is residually connected, F �H and G �H lie in
respective flag chambers cF and cG of FðHÞ, and a :¼ Hl cF ¼ Fl c 0F and b :¼
Hl cG ¼ Gl c 0G are connected by a gallery whose type is a word in ðI � JÞU f jg
(this gallery corresponds to one in CðFðHÞÞ). But RF ¼ A and RG ¼ B contain a
and b, respectively, and so lie in a common residue T of type ðI � JÞU f jg. Thus c is
a full bijective morphism, and so is an isomorphism of chamber systems. This proves
the second statement.

Point-line characterizations of Lie geometries 163



The third conclusion is immediate for if G is residually connected, CðGÞ is residu-
ally connected as a chamber system. The proof is complete.

3.7 Configurations produced by a 1-covering of C(F). This section concerns what
happens when we have a 1-covering of the chamber system CðFÞ. We must stan-
dardize both the notation and the hypotheses:

1. (The locally truncated geometry) As has been standard so far, G is a geometry over
J which is locally truncated with respect to the diagram D over I.

2. (Existence of a sheaf ) We assume there is a sheaf F defined for this local trun-
cation, and we let C denote its associated chamber system over I. If each FðxÞ is
strongly chamber-connected, we know from Theorem 14 that there is an isomor-
phism f : G ! GðCðFÞÞJ ¼ GðCJÞ.

3. (The covering of the chamber system of the sheaf ) We assume there is a 1-covering
k : C ! C.

4. (The morphisms of geometries) We let D :¼ GðCðFÞÞ and D :¼ GðCÞ be the geo-
metries over I defined by the chamber systems C and C, respectively. (Recall that
a flag in GðCÞ is just a collection of pairwise intersecting corank-one residues of C.
Such a flag is called a G-image if all these residues lie on a common chamber. So
some flags of GðCÞ are G-images, and some might not be. Of course all flags are
G-images if C is residually connected as a chamber system. A similar distinction
applies to the flags of D :¼ GðCÞ.) We let h :¼ GðkÞ be the functorially defined ge-
ometry morphism D ! D. We let hJ : DJ ! DJ be the morphisms induced by h on
their truncations of type J.

Lemma 16. Assume these hypotheses:

(a) k : C ! C ¼ CðFÞ is a 1-covering of chamber systems.
(b) The sheaf F is strongly chamber-connected.

Then the following statements hold:

1. The induced hJ : DJ ! DJ is a full epimorphism. Thus there is a full epimorphism of
geometries

f ¼ f�1 
 hJ : DJ ! G:

2. Every flag of G is the image under f of a flag of DJ which is a G-image with respect
to GðCÞ.

3. (The flag-lifting property) Suppose X 0 is a flag of DJ which is a G-image such that
f ðX 0Þ ¼ X . Suppose further that F is any flag of G such that XJF . Then there
exists a flag F 0 of DJ (also a G-image) containing X

0 such that f ðF 0Þ ¼ F .

Proof. Consider a containment of non-empty flags, F1 JF2 of G, and an object x A F1.
Since F is strongly chamber-connected, by Lemma 13, RF2

JRF1
JRx is a contain-

ment of residues of C of cotypes typðF2Þ, typðF1Þ and typðxÞ, respectively. Let c be a
chamber in RF2

. Since k is surjective, there is a preimage c 0 of c in C. Then let R2 J
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R1 JRðxÞ be the residues of C of respective cotypes typðF2Þ, typðF1Þ and typðxÞ,
containing c 0. Then, since k is a 1-cover, R2, R1 and RðxÞ are the lifts of RF2

, RF1
and

Rx at c 0, respectively.
We apply the developement of this paragraph to prove the first two parts of the

lemma.
Taking F1 ¼ F2, we see that F 0

1 :¼ fRðxÞ j x A F1g is a flag of D of type typðF1Þ
which is a G-image and which maps onto F1. This proves Part 2. But it also proves
Part 1, since x ¼ f�1ðRxÞ for all x A G, and any incident pair of objects in G lies in a
flag F1 which is the image of the flag F 0

1 just described.
Part 3. Suppose X 0 is a G-image of DJ mapping to a flag X of G which lies in a

larger flag F of G. Since X 0 is a G-image, it is a collection of corank-one residues RðxÞ
of C, whose intersection contains a residue R1 of cotype typðXÞ which maps via k

onto RX . Choose a chamber c A RF . It possesses a preimage c 0 A R1. Now let R2 be
the residue of cotype typðFÞ on c 0. Now we have

c 0 A R2 JR1:

Then the full set of corank-one residues of C containing R2 is the desired G-image
flag F 0 of Part 3.

3.8 A covering of a point-collinearity graph derived from a locally truncated geo-

metry. In this subsection we assume the notation of Items 1–4 at the beginning of
Section 3.7. In addition we assume

1. D is a Coxeter diagram over the finite set I whose rank-three residues are covered
by buildings.

2. k : C ! C is a universal 2-covering.
3. The sheaf F is residually connected.

Since D is a Coxeter diagram with rank-three residues covered by buildings, C is
a chamber system over I which is a building and so is residually connected. Accord-
ingly, the associated geometry D :¼ GðCÞ is a building geometry over I.

Now Assumption 3 implies FðFÞ is strongly chamber-connected for every non-
empty flag F of G. Thus hypotheses (a) and (b) of Lemma 16 hold, so

f : DJ ! G; ð3Þ

is a full epimorphism of geometries over J.
Again, since the sheaf is residually connected, Part 3 of Lemma 16 forces the

Morphism (3) to possess the flag-lifting property:

(FL) If X 0 is a flag of DJ that is a G-image such that f ðX 0Þ ¼ X , and F is a flag of
G incident with X (i.e. X UF is a flag), then there exists a flag F 0 of DJ with
f ðF 0Þ ¼ F and F 0 UX 0 a flag of DJ .

Finally, our hypothesis that G is connected and the Assumption 3 that F is resid-
ually connected imply three statements: (1) that G is a residually connected geometry,
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(2) that CðGÞFCðFÞJ as chamber systems over J, and (3) that CðFÞJ is residually
connected as a chamber system. All three conclusions are a direct application of
Lemma 15.

We are now ready to introduce the main theorem of this section.

Theorem 17. Suppose tP, tL, and tP are three pairwise disjoint collections of subsets of
J. Let ðPG;LG;PGÞ and ðPD;LD;PDÞ be the triples of collections of all flags of these
respective types in the geometries G and DJ , respectively. We assume

1. For E A fG;Dg, and each object X A PE , ResEðX ÞVPE is a singular subspace of
PE :¼ ðPE ;LEÞ, regarded as a point-line geometry.

2. For any triple ða; b; cÞ A PG �PG �PG of pairwise collinear points of G, there
exists an object X A PG such that fa; b; cgJResGðXÞVPG.

3. If X A PG ULG, then FðXÞ is a 2-simply connected geometry.
4. ðPG;LGÞ is a partial linear space.

Then the graph morphism

f : ðPD;@Þ ! ðPG;@Þ

of point-collinearity graphs of ðPD;LDÞ and ðPG;LGÞ induced by the truncated
mapping

f : DJ ! G;

is aT-covering of graphs, where T is the collection of all 3-circuits in ðPG;@Þ.

Remarks. (i) The part of Condition (1) concerning G (but not necessarily D), and
Conditions (2) and (4) hold, for example, if ðPG;LGÞ is a parapolar space and PG is
the full collection of all its projective plane subspaces.

(ii) Condition (3) is satisfied if FðXÞ is a building geometry over I � typðX Þ for all
X A PG ULG.

Proof. For the first two steps below, we need to establish the hypotheses of Lemma 8.
We have on hand the 2-covering of chamber systems: k : C ! C ¼ CðFÞ belonging
to diagram D.

Let X be a flag of G whose type is an element of ftP; tLg—that is, X is either a
point or a line of the geometry ðPG;LGÞ. By Lemma 13

RX :¼ XlCðFðXÞÞ ¼ fXl cX j cX A CðFðX Þg

is a residue of cotype typðX Þ. By Hypothesis 3 of the theorem, CðFðXÞÞ is 2-simply
connected. Since the mapping Xl cX ! cX induces an isomorphism of CðFðX ÞÞ
and RX , we see that

(A-1) RX is 2-simply connected as a chamber system over I � typðX Þ.
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But by property (3) just preceeding the statement of this theorem,

(A-2) CðFÞJ is residually connected.

We have now assembled all of the hypotheses of Lemma 8, where C, CðFÞ and
typðXÞ fulfill the roles of ĈC, C, and K of that lemma. Thus the lemma produces this
conclusion:

(LI) If X̂X is a flag of DJ with f ðX̂X Þ ¼ X , then the mapping

fX̂X : ResDJ ðX̂XÞ ! ResGðXÞ;

induced by the restriction of f : DJ ! G, is injective on objects. It is therefore
injective when restricted to the sets of flags of any prescribed type of these resi-

dues.

If X is a point, then we have

Step 1. (Local injectivity of lines) If L and N are distinct lines of LD incident with a

common point p of PD then f ðLÞ is not equal to f ðNÞ, that is f, our graph morphism,
is injective when restricted to the lines incident with a common point.

If X is a line we have

Step 2. (Local injectivity of points) If p and q are distinct points of PD incident with a

common line L of LD, then fðpÞ is not equal to fðqÞ, that is, f is point-injective when
restricted to a line.

We conclude

Step 3. f : ðPD;@Þ ! ðPG;@Þ is a fibering of graphs, that is,

1. Each fiber f�1ðxÞ of a vertex x A PG is a coclique of ðPD;@Þ.
2. Moreover, f induces a bijective mapping

PDðxÞ ! PGðfðxÞÞ

when restricted to neighborhood subgraph of a point x A PD.
3. f is both point and edge surjective.

Thus for every path in ðPG;@Þ and any specified point x in the fiber above the initial
point of this path, there is a unique lift in ðPD;@Þ of this path beginning at x.

Proof of Step 3. Part 1 follows from Step 2. For Part 3 we use the flag-lifting property
(FL) to conclude that every point and edge of ðPG;@Þ is the image of a point or edge
of ðPD;@Þ.

To prove Part 2, we invoke for the first time the hypothesis that ðPG;LGÞ is a
partial linear space. Suppose ðy; y1Þ and ðy; y2Þ are distinct edges of ðPD;@Þ. Then
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there are (not necessarily unique) lines Ni of LD containing fy; yig, i ¼ 1; 2. Suppose
by way of contradiction that fðy1Þ ¼ fðy2Þ. By Step 2, this point is distinct from
fðyÞ but collinear with it. Then f ðN1Þ and f ðN2Þ are lines of LG on the distinct
points y and fðy1Þ ¼ fðy2Þ. Since ðPG;LGÞ is a partial linear space, we have f ðN1Þ ¼
f ðN2Þ. But since the Ni lie in ResDJ ðyÞ, Step 1 forces N1 ¼ N2. But in that case y1 and
y2 are distinct points of N1 mapping to a common point of f ðN1Þ, against Step 2.
Thus fðy1Þ ¼ fðy2Þ is impossible, and so f restricts to a vertex-injective mapping
of the set of neighborhood vertices of a given vertex. That f restricted to the neigh-
borhood of y in ðPD;@Þ maps onto the neighborhood of fðyÞ in ðPG;@Þ follows
from the fact that any line of LG on fðyÞ lifts to a line on y in LD by Condition (FL).
Thus the induced mapping on vertex neighborhoods is bijective on vertices as re-
quired.

Step 4. Every lift of a 3-circuit in ðPG;@Þ is a 3-circuit of ðPD;@Þ.

Proof of Step 4. Suppose ða; b; cÞ is a 3-circuit of ðPG;@Þ. By Hypothesis 2, of the
theorem, there exists an object X A PG, incident with the three points a, b and c.
Since f : DJ ! G has the flag-lifting property (FL), for every point a 0 in the fiber
f�1ðaÞ, there exists a flag X 0 of DJ incident with a 0 such that f ðX 0Þ ¼ X . Also, by
(FL), each point x A fa; b; cg has a preimage x 0 A PD incident with X 0. Now by Hy-
pothesis 1 of this theorem, ResDJ ðX 0ÞVPD is a singular subspace of ðPD;LDÞ, and
so the three points a 0, b 0, and c 0 are pairwise collinear. Thus the 3-circuit ða 0; b 0; c 0Þ is
the unique lift of the 3-circuit ða; b; cÞ at the point a 0 of the fiber above a.

The proof that f is a T-covering is complete.

4 The Cohen–Cooperstein theory revisited and updated

Nearly seventeen years ago Cohen and Cooperstein [4] proved the following theorem:

Theorem 18 (Cohen and Cooperstein). Suppose G¼ ðP;LÞ is a strong parapolar space
of symplectic rank exactly k where kd 3 such that each maximal singular subspace has
finite projective rank. Suppose the following:

(CC)1 If ðx;SÞ A P�SðGÞ is a non-incident point-symplecton pair and x? VS con-
tains at least two points, then x? VS is a maximal singular subspace of the
symplecton S.

Then:

(CCC) At least one of the following statements is true:

1. G is a polar space.
2. k ¼ 3 and

(a) G is a Grassmannian An;d , 1 < d < n� 1.
(b) G is A2n�1;n=hri, a quotient of a Grassmannian by a polarity r of Witt

index at most n� 4.
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3. k ¼ 4 and G is the point-line truncation to types fn; n� 2g of a locally
truncated geometry of type J over the Dynkin diagram of type Dn over I ¼
f1; 2; . . . ; ng satisfying the conditions of Theorem 17 such that D and J cor-
respond to the top diagram of Figure 1. In particular, G is a homomorphic
image of a truncation of a building. Moreover the point-collinearity graph
of the half-spin geometry Dn;n�2ðKÞ is a T-cover of the point-collinearity
graph of G.

4. kd 5: Here G is one of the exceptional Lie incidence geometries E6;1, or
E7;1 (k ¼ 5 and 6 respectively). No example with k larger than 6 can exist.

Remark. This di¤ers from their original theorem in only two minor details: namely by
Cohen’s up-dated definition of ‘‘parapolar space’’ and the added remarks in (CCC)
about the case k ¼ 4. The latter follow from Theorem 17 of the previous section.

The next result was an attempt to view this theorem without the hypothesis of
constant symplectic rank. It involves this hypothesis:

(WH) (The weak hexagon hypothesis) Suppose ðx0; x1; . . . ; x5; x0Þ is a 6-circuit in
the point-collinearity graph of the gamma space G. If the distance dðx0; x3Þ ¼ 3,
then there exists a point y in x?0 V x?2 V x?4 . (Of course if x2 ¼ x4, we may take
y ¼ x1.)

The adjective ‘‘weak’’ comes from the distance-three requirement.
Let E3 be the collection of all strong parapolar spaces G ¼ ðP;LÞ with point-

diameter three, such that

1. for any point p, D�
2ðpÞ, the collection of all points at distance at most two from p

forms a geometric hyperplane of G, that is, a proper subspace which meets every
line non-trivially;

2. every geodesic path of length two in the point-collinearity graph extends to one of
length three.

The reader may check that these assertions are equivalent to the axioms (E1)–(E4)
for En in [6] when n ¼ 3.

The class F consists of all gamma spaces with these properties:

1. Every geodesic path of length two in the point-collinearity graph of G extends to
one of length three.

2. For any two points x and y at distance three in the point-collinearity graph of G,
their convex closure (the smallest convex subspace containing them) is a member
of E3.

Remark. It follows that any member of F is a strong parapolar space.

Theorem 19 (El-Atrash and Shult [6]). Suppose G ¼ ðP;LÞ is a geometry in F with

all lines thick having point-diameter at least three and all symplecta of polar rank at

least three, such that
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1. the Condition (WH) holds,
2. every symplecton has finite polar rank (necessarily at least three), and
3. all singular subspaces of G possess finite projective rank.

Then G satisfies the conclusion (CCC) of Cohen and Cooperstein’s theorem.

Basically the hypotheses imply constant symplectic rank and Condition (CC)1. We
will use this theorem to prove Theorem 1.

5 A special class of strong parapolar spaces

In this section G is a strong parapolar space satisfying the following axioms:

(P1) If x is a point and S is a symplecton, then x? VS0q.
(P2) For every point p, D�

2ðpÞ is a geometric hyperplane of G.
(P3) If every symplecton has rank at least three, all singular subspaces are assumed

to have finite projective rank.

Notice that if all symplecta have rank at least three, then all singular subspaces
of G are projective spaces. But without this assumption, it is conceivable, for the time
being, that singular subspaces are not projective. Indeed, we shall prove that they are
projective in a later corollary.

Our objective is to prove the second main theorem by showing that G is one of the
following:

1. D6;6, A5;3 or E7;1.
2. A classical dual polar space of rank three.
3. A product geometry L� P, where L is a line and P is a polar space of arbitrary

rank.

This is accomplished by a series of theorems:

Theorem 20. Suppose a point x is distance three from a point p in a symplecton S. Then
x? VS ¼ frg, a single point, and D�

2ðxÞVS ¼ r? VS. The symplecton S is gated with
respect to x.

Proof. Clearly x? VS is a non-empty singular subspace of S. Since S is a polar space
and contains a point at distance three from x, x? VS is a single point set frg. Then
r? VSJD�

2ðxÞVS, and equality now follows from the fact that in a polar space of
rank at least two having thick lines, all geometric hyperplanes are maximal subspaces.

Theorem 21. In the point-collinearity graph D ¼ ðP;@Þ of G, every geodesic path of
length two extends to a geodesic path of length three.

Proof. Let ðp; a; bÞ be a geodesic path of length two in ðP;@Þ. We wish to extend
it to a geodesic path ðp; a; b; cÞ of length three. Let z be any element in D3ðpÞ (exists
by (P2)) and let S be the unique symplecton containing the geodesic ðp; a; bÞ. Then
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z? VS ¼ frg by (P1) and by Theorem 20 r is the gate of S with respect to z. We need
only show that b is collinear to a point of D3ðpÞ. This is implied by the following
claim

(Claim a1) Every point of S � p? is collinear to a point of D3ðpÞ.

But since S has thick lines, the induced point-collinearity graph on S � p? is con-
nected. Since r is a point of S � p? which is connected to a point of D3ðpÞ, it su‰ces
to prove

(Claima2) If r1 and x are collinear points of S � p? and r1 is collinear with a point of
D3ðpÞ then x is also collinear with a point of D3ðpÞ.

Proof of Claima2. By hypothesis r1 is collinear with a point z1 of D3ðpÞ. Then x is
distance two from z1 and so there is a symplecton T containing fx; z1g. Since S is a
polar space, p is collinear with a point g on line xr1 and g is distinct from both x and
r1 by hypothesis. Now, since T contains a point z1 at distance three from p, T is gated
with respect to p so D�

2ðpÞVT ¼ g? VT . But as T is a non-degenerate polar space g
is the unique deep point of g? VT , so there is a point of x? VT not contained in
g? VT ¼ D�

2ðpÞVT . Thus x is collinear with a point of D3ðpÞ and the Claim a2 is
proved.

So, as remarked, the entire theorem is proved.

Since we cannot assume that singular subspaces are projective, we must be careful
about what we call a ‘‘plane’’. We know that G is a partial linear gamma space. We
say that a singular subspace is a plane if it is generated by a non-incident point-line
pair—that is, it has the form h p;Li. Conceivably, one plane could properly contain
another. But because of our strong hypotheses, we can show that all planes are pro-
jective planes.

Theorem 22. Every plane p :¼ ha;Li lies in some symplecton.

Proof. We begin by assuming that p lies in no symplecton.
Choose a point b A L and select a symplecton R on line ab (one exists by the par-

apolar hypothesis). Since a? VR is not a clique, there is a point x in R with x? V ab ¼
fag. Now if u A x? VL, then the symplecton fx; bg contains b; a, and u A L� fbg
and so contains L (G is a partial linear space), and so contains p, contrary to assump-
tion. Thus

x? VL ¼ q: ð4Þ

Now the geodesic ðx; a; bÞ extends to one of length three, say ðx; a; b; zÞ. Clearly if
z? contained L, then the symplectonfz; agwould contain L and a and hence would
contain p, a contradiction. Thus z? VL ¼ fbg.
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We observe that any symplecton on L is a rank-two symplecton, or ‘‘quad’’. For
otherwise, if such a symplecton Q0 had polar rank at least three, L? VQ0 would
not be a clique, and so would contain a point v not in a?, and then the symplecton
fv; ag would contain p, against our assumption.

Now let c A L� fbg and let Q ¼fz; cg. By the previous paragraph, Q is a quad.
Then by Theorem 20 there is a unique point w A x? VQ and w? VQ ¼ D�

2ðxÞVQ
contains L. But as observed, L is a maximal singular subspace of the quad Q, and
so w A L. But this contradicts Equation (4) and completes the proof.

Corollary 23. All singular subspaces of G are projective spaces.

Proof. By Theorem 22, all planes of such a subspace are projective.

Corollary 24. Every pair of distinct intersecting lines lies in a symplecton. If the two
lines do not lie in a singular subspace, the symplecton containing them is unique.

Theorem 25. If an intersection of two symplecta contains a point, it also contains a line.

Proof. Suppose by way of contradiction, that S1 and S2 are distinct symplecta whose
intersection is a single point p. Choose a geodesic ðp; b; xÞ in S1 and extend it to a
geodesic ðp; b; x; qÞ (permitted by Theorem 21). Now by hypothesis, x? VS2 contains
a point y. If x? VS2 contained a line, this line would contain a point of p? � fpg
lying in S1 VS2, contrary to our assumption. Thus x? VS2 ¼ fyg.

Now either ðy; x; qÞ is a geodesic of length two, or fy; x; qg lies in a plane. Using
Theorem 22 in the last case, we see that in all cases, fy; x; qg lies in a symplecton R.
Now R is gated with respect to p, so p? VR ¼ ftg, and D�

2ðpÞVR ¼ t? VR. But the
latter set contains both x and y, whence

t A p? V x? V y? JS1 VS2;

by the convexity of these symplecta. This forces t ¼ p, which is impossible since
dðp; qÞ ¼ 3.

Theorem 26. If x? VS is a single point for some symplecton S, then S contains a point
at distance three from x. In particular, S is strongly gated with respect to point x.

Proof. Suppose, for some point x and symplecton S, that x? VS ¼ fyg. If S were not
strongly gated with respect to x, there would be a point z in S at distance two from y

which was also distance two from x. In that case there is a symplecton R on fx; zg.
Now by Theorem 25 the intersection of R and S contains a line L on z. Then as L
and x are in symplecton R, x? meets L at a point v. But then v A x? VS ¼ fyg, so
v ¼ y. But that contradicts dðy; zÞ ¼ 2. Thus all points of S � y? are at distance three
from x and S is gated with respect to x.

Theorem 27. G possesses the weak hexagon property.
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Proof. Suppose ðx0; x1; . . . ; x6Þ, x6 ¼ x0, is a six-circuit in the point-collinearity graph
of G and that dGðx0; x3Þ ¼ 3. Let R and S be the symplecta on fx0; x2g and fx0; x4g,
respectively. Then by Theorem 25, RVS contains a line L on point x0. Now x?2 VL ¼
fag and x?4 VL ¼ fbg, for points a and b lying in D�

2ðx3ÞVL. Since D�
2ðx3Þ is a sub-

space and x0 is distance three from x3, we must have a ¼ b A x?0 V x?2 V x?4 . Similarly,
there is a point in x?1 V x?3 V x5. So the weak hexagon property holds.

We require a minor lemma:

Lemma 28. If all symplecta have rank at least three, then the point-collinearity graph

of G is simply connected.

Proof. Axiom (P2) of the hypotheses introduced at the beginning of this section shows
that the point-collinearity graph has diameter three. Moreover, since symplecta have
rank at least three, any circuit within a symplecton is contractible. Thus we need only
show that any circuit of length seven or less decomposes into circuits of length three
or four.

Suppose c ¼ ðx0; x1; . . . ; x5Þ, x5 ¼ x0, is a circuit of length five not decomposable
into circuits of length three or four. Then x0 is distance two from both x2 and x3,
and the intersection of the two symplecta R and S on fx0; x2g and fx0; x3g contains
a line L on x0. Now if R ¼ S, c is contractible. So we may assume x2 is not in S.
Then x?2 VS is a clique containing x3 and a point a on L. Now c decomposes into
the circuits ðx0; x1; x2; a; x0Þ, ðx3; a; x2; x3Þ and ðx0; a; x3; x4; x0Þ of lengths 4, 3 and 4,
a contradiction. Thus all five-circuits are decomposable into circuits of length three
or four.

If c is a six-circuit with an antipodal pair of vertices at distance two, it decomposes
into two five circuits. Otherwise, an antipodal pair is at distance three, and the weak
hexagon property shows that this decomposes into three circuits of length four. Thus
all six-circuits are decomposable.

Suppose now that c ¼ ðx0; x1; . . . ; x7Þ, x7 ¼ x0, is an indecomposable seven-circuit.
Then we must have dGðx0; x3Þ ¼ dGðx0; x4Þ ¼ 3. Now the hyperplane D�

2ðx0Þ meets
the line N on x3 and x4 at a point b. Choosing a in x?0 V b?, we see that c decomposes
into the two six-circuits, ðx0; x1; x2; x3; b; a; x0Þ and ðx0; a; b; x4; x5; x6; x0Þ. This con-
tradicts the indecomposability of c.

Theorem 29. If all the symplecta of G have rank at least three, then G is isomorphic to
one of the following Lie incidence geometries:

D6;6; A5;3 or E7;1:

Proof. We have noted that the point-collinearity graph of G has diameter three. The
axioms (P1) and (P2) at the beginning of this section together with Theorem 21 show
that G belongs to the family E3 of polarized spaces introduced in [11] and studied in
[6]. Since all symplecta have rank at least three, our initial Assumption (P3) requires
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all maximal singular subspaces to have finite projective rank. By Theorem 27, the
weak hexagon property holds, and so the main theorem in [6] (that is, Theorem 19)
shows that G is one of the following:

1. A Grassmann space An;k,
2. A2k�1;k=hsi, a homomorphic image of a Grassmannian, A2k�1;k where s is a po-

larity of Witt index at most k � 4.
3. A homomorphic image of a classical halfspin geometry Dn;n.
4. The Lie incidence geometry E7;1.

Now we have the additional properties that G has point-diameter at least three,
and that for any point-symp pair ðx;SÞ, x? VS is non-empty. In the first case listed
this eliminates all but the Grassmannian A5;3. The second case is eliminated alto-
gether since the geometry there has point diameter at least four.

In the third case above, the parapolar space G ¼ ðP;LÞ is enriched to a rank-five
geometry G ¼ ðP;L;M;A3;SÞ over J ¼ fn; n� 1; . . . n� 4g, which is a locally
truncated geometry relative to the diagram

P

n

L A3 S
n� 2

n� 3 n� 4 1
M

n� 1

where M and A3 are two classes of maximal singular subspaces and S is the class of
symplecta. (This much is in [4] and [6].)

Now by the Remark (1) following Theorem 17, Hypotheses 1, 2, and 4 of that
theorem are in place, where P is the collection of all projective subplanes. Since the
residues of any point or line in G are truncations of buildings, Condition 3 of Theo-
rem 17 holds (Remark (2) following Theorem 17).

Thus by Theorem 17, the geometry epimorphism f : DJ ! G obtained from Lemma
16 induces a T-covering

f : G ! G

of their point-collinearity graphs. But since the point collinearity graph G is simply
connected, f is a graph isomorphism. Thus G has the point-collinearity graph of the
half-spin geometry. But all objects in the rank-n building geometry D are induced
subgraphs of its half-spin collinearity graph, and so the morphism f is also a geometry
isomorphism. Then G is a bonafide half-spin geometry. Now the two special proper-
ties of G force G to be isomorphic to D6;6.

In the last case all the axioms hold, so this case survives.
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Theorem 30. If G contains a symplecton which is a grid, and a symplecton which is
not, then G is a product geometry L� P, where L is a line and P is a polar space of
arbitrary rank.

We begin the proof of Theorem 30 with a series of lemmas.

Lemma 31. Suppose G, S1 and S2 are three symplecta whose intersection GVS1 VS2

is a point p. We suppose that G is a grid. Then at least one of the Si is also a grid.

Proof. From Theorem 25 and the hypotheses, GVSi ¼ Li, i ¼ 1; 2 are the two dis-
tinct lines of G on p and S1 VS2 is a singular subspace meeting the Li at p and con-
taining a line N on p. Suppose by way of contradiction that neither Si was a grid.
Then the lines and planes of Si which are incident with point p is either a rank one
polar space (or coclique) with at least three points, or is a polar space of rank at least
two. In either case, it is not the union of a clique and the perp of a point. Thus each
symplecton Si contains a line Ni on p which is not in L?

i or in the singular space
S1 VS2. By Corollary 24, there is a symplecton R containing N1 UN2. But then by
Theorem 25, RVG must be one of the two lines of G on p, L1 or L2. But if RVG
were the line L1, then R would be the unique symplecton containing L1 UN1, namely
S1, and that would imply that line N2 was in S1, contrary to choice. But also RVG
cannot be the other line L2 by the complete symmetry of the indices i ¼ 1; 2 in the
face of the hypotheses and the choice of the lines Ni. This contradiction infirms the
assumption that neither Si was a grid, and the proof of the lemma is complete.

Lemma 32. Suppose G is a symplecton which is a grid, and that G intersects a second

symplecton Q, which is not a grid, at a line L1. Choose a point p on L1, let L2 be the

other line of G on p distinct from L1, and choose any point q in L2 � fpg. The fol-
lowing statements must hold:

1. With the exception of the line L2, every line on p lies in Q.
2. q? VQ ¼ fpg.
3. Any symplecton containing p which is distinct from Q, is a grid.
4. Let Lp and Lq be the collections of all lines of G on points p and q, respectively.
Then there is a bijection

b : Lq � fL2g ! Lp � fL2g;

such that for corresponding lines L A Lq � fL2g and bðLÞ, there is a second bi-
jection L! bðLÞ taking each point r of L to the unique point of Q to which it is
collinear.

Proof. 1. Suppose M were a line on p distinct from L2 and not lying in Q. Then by
Corollary 24, M UL2 lies in some symplecton S. By Theorem 25 the intersection
S VQ contains a line N on p which is necessarily distinct from L1. But now, Q and S
meet G at distinct lines, and so the intersection of all three is just the single point p.
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Since G is a grid and Q is not, Lemma 31 implies that S is a grid. But that is impos-
sible since L2, M and N are three distinct lines of S on point p. Thus no such line M
exists, which proves the result.

2. Suppose by way of contradiction that q? VQ is contained a line N and let p be
the projective plane generated by q and N. Clearly pVQ ¼ N. It follows that there is
a line of p on p distinct from N and L2, against Part 1. Thus q? VQ can only contain
the point p.

3. Suppose S is a symplecton on p distinct from Q. Then p? VS consists of the
singular subspace S VQ, which at least contains a line on p, and the unique line L2

(Part 1) on p which is not in Q. Precisely, the collinearity graph induced on p? VS is
the union of two cliques. It follows that S is a grid.

4. We define the mapping b : Lq � fL2g ! Lp � fL2g as follows. For each line L
on q, there is a symplecton R on LUL2 (Corollary 24). By Part 3, R is a grid, so L
is not in L?

2 and so R is the unique symplecton on L and L2. Thus, using Theorem
25, RVQ is a line bðLÞ uniquely determined by L. Note that L and bðLÞ are opposite
lines of the grid R, and so the desired bijection L! bðLÞ exists.

Suppose now that bðLÞ ¼ bðL0Þ and let R and R 0 be the unique grids on LUL2

and L0 UL2 as in the previous paragraph. Then R and R 0 are the unique symplecta on
bðLÞUL2, forcing R ¼ R 0 and L ¼ L0. Thus b is injective.

If N is any line of Lp � fL2g, then by Part 1, N is not in L?
2 and the unique sym-

plecton T on N UL2 is a grid by Part 3. Then N ¼ bðN 0Þ where N 0 is the unique line
of T on q which is distinct from L2. Thus b is onto. The proof of 4 is complete.

Lemma 33. Again let G, Q, L1 be as in Lemma 32. Every line of Q lies in exactly one
further symplecton which is a grid. Consequently, every point of Q is incident with ex-
actly one line which is not in Q.

Proof. Choose point p in L1 and let L2 be the other line of G on p as in Lemma 32.
Let L be any line of Q. If L is incident with p then the unique grid containing LUL2

is the only symplecton on L besides Q. Suppose then L is not incident with p. Then
there is a point r in L collinear with p. Without loss of generality, L1 can be taken to
be the line on p and r and G to be the grid on L2 UL1. Then r enjoys the same hy-
potheses that p did in Lemma 32. So there is a unique line L3 on r which is not in Q.
Then the symplecta on L are Q and the unique symplecton on LUL3, which, by Part
3 of Lemma 32, is a grid.

The uniqueness of the out-going lines follows.

Now we can complete the proof of Theorem 30. Suppose the polarized space
G contains a symplecton which is a grid and one which is not. Since the point-
collinearity graph is connected and every line of G lies in at least one symplecton
(Corollary 24 for example), there must be an instance in which a symplecton G which
is a grid intersects a symplecton Q which is not a grid at some point. Then by Theo-
rem 25, GVQ is a line L1.

Now choose a point p on L1, let L2 be the unique second line of G on point p and
choose point q in L2 � fpg. We now have the situation of Lemma 32.
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We know that we can choose at least two distinct lines, N1 and N2, in Lq � fL2g.
Let Qq be any symplecton containing N1 UN2. We make three claims:

1. Qq VQ ¼ q.
2. The symplecton Qq is isomorphic to Q, and so is not a grid.
3. Qq contains all lines on q except L2.

First suppose Qq and Q had a nonempty intersection. Then by Lemma 33, Qq
would be a grid intersecting Q in a line L. Moreover, since q? VL is nonempty, L
must contain p, the unique point of q? VQ (Lemma 32, Part 2). It follows that Qq
contains L2, and so L2;N1 and N2 comprise three distinct lines of Qq on q. That is
impossible since Qq was a grid in this case division.

Now by our basic hypothesis on G, each point of Qq is collinear with at least one
point of Q, and, since Qq VQ ¼ q and each point of Q lives on only one out-going
line, this point must be unique. Thus there is an injective mapping f : Qq ! Q taking
each point of Qq to the unique point of Q with which it is collinear. But also by the
fundamental hypothesis, each point of Q is collinear with at least one point of Qq and
so f is a bijection. Using the presence of the unique system of interlocking grids, it
is easy to see that f and f�1 both preserve the collinearity relation on points. Thus f
induces a bijection b of the lines of Qq with those of Q, extending the bijection b of
Lemma 32 Part 4. This establishes the second and third claims.

Now set Q ¼ Qp, and for each point x of symplecton Q, let Lx be the unique line
on x not in Q. (In this notation, L2 is now Lp.) From what we have established, each
of these ‘‘out-going’’ lines Lx meets each Qq at a single point, each point in any Qy
lies on a unique one of these Lx’s, and has all its remaining lines in Qy. It follows that
the union of the disjoint Qy’s, as y ranges over the points of Lp, is a connected com-
ponent of the collinearity graph of G and hence covers all of the points. Thus every
point of P can be coordinatized as ðx; yÞ where the point x of Q ¼ Qp, indexes the
unique line Lx connecting it to Q (or is the point itself, if it already is in Q ¼ Qp),
while the coordinate y is the point of Lp which indexes the unique Qy in which the
point lies. All lines are now either the ‘‘horizontal’’ lines of one of the symplecta Qy
which partition the points, or one of the ‘‘vertical’’ lines Lx, x A Qp. Thus we have a
product geometry Lp �Qp. The proof is complete.

Remark. Note that in this case it is possible for the vertical lines to possess a di¤erent
cardinality than that for the horizontal lines.

Theorem 34. If all symplecta are generalized quadrangles, G is a dual polar space of
rank three or the product geometry L�Q of a line L and a generalized quadrangle Q.
(Of course if Q is itself a grid, G is just the ‘‘Hamming cube’’—that is, the product of
three lines L1 � L2 � L3, where three line cardinalities are possible.) In each case, G is
a near hexagon of classical type.

Proof. By [13] it su‰ces to show that G is a near hexagon with all quads classical.
If there were a plane in G, by Theorem 22, it would lie in some symplecton. But that
would be impossible since each symplecton is a generalized quadrangle. So there are
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no planes. Yet, by hypothesis, for each non-incident point-symplecton pair ðp;QÞ,
the intersection p? VQ is not empty. Since there are no planes, the intersection p? VQ
is always a single point. By Theorem 26, the symplecton Q is strongly gated with re-
spect to x. Thus we see that any symplecton of G is a quadrangle with the property
that it is strongly gated with respect to every exterior point, and that every such point
is collinear with exactly one of its points. This makes G a near hexagon of classical
type.

Theorem 35. If G contains no grids, and at least one symplecton has rank at least three,
then all symplecta have rank at least three and the conclusion of Theorem 29 holds.

We first prove the following technical lemma:

Lemma 36. Suppose G contains no grids. Suppose ða1; x; yÞ and ða2; x; yÞ are two ge-
odesics, i ¼ 1; 2. Then there is a point b in y? which is simultaneously distance three
from both a1 and a2.

Proof. By Theorem 21 there is a point bi such that ðai; x; y; biÞ is a geodesic of length
three, for i ¼ 1; 2. If b1 ¼ b2 we are done, so assume the bi are distinct. By either the
strong parapolar hypothesis or Theorem 22, there is a symplecton R on fb1; y; b2g.
Now by Theorem 20, for i ¼ 1; 2, there exist points ri such that

a?i VR ¼ frig and D�
2ðaiÞVR ¼ r?i VR:

It may happen that r1 ¼ r2, but in any case, both are distinct from y since dðai; yÞ ¼ 2,
for both values of i. In any case, the set Li of lines of R on point y which lie in D�

2ðaiÞ
are just those in ðri yÞ?.

If R has rank at least three, the lines and planes of R on y form a polar space with
thick lines, ResðyÞVR, of which the two sets Li form hyperplanes. Since no polar
space with thick lines is the union of two hyperplanes, there is a line yb in ResðyÞVR
which is in neither of these two hyperplanes.

If, on the other hand R is a generalized quadrangle, one has ðri yÞ? VR ¼ ri y. In
this case, since R is not a grid, there exists a line yb not in either D�

2ðaiÞVR.
In all cases dðb; aiÞ ¼ 3, i ¼ 1; 2, as required.

Proof of Theorem 35. Under the hypothesis of no grids we shall show that any sym-
plecton which intersects a symplecton of rank at least three non-trivially must itself
have rank at least three. It will then follow from the connectedness, that all symplecta
have rank at least three.

So suppose S1 is a symplecton of rank at least three and S2 is a second symplecton
intersecting S1 non-trivially. Our objective is to show that S2 has rank at least three.
By Theorem 25, S1 VS2 contains a line. If the intersection contains a plane, S1 has
rank at least three and we are done. So we may assume that S1 VS2 is a exactly a line
L. Choose distinct points x and y on line L, and points ai in x? VSi � y?, i ¼ 1; 2.
Then ðai; x; yÞ are geodesics of length two which, by the previous lemma, can be ex-
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tended in a common way to geodesics ðai; x; y; bÞ, i ¼ 1; 2. Note that these metric re-
quirements show that b cannot be in either S1 nor S2.

Now by hypothesis there is a plane p in S1 on line L, and so there is a point z in
p� L. Now if b were collinear with z, we would have b? VS1 containing the line yz
meeting a?1 , against dðb; a1Þ ¼ 3. Thus dðb; zÞ ¼ 2, and as G is a strong parapolar
space, there is a symplecton S on fz; y; bg. Then S VS2 contains a line M.

Obviously, as b is distance three from a2, S VS2 cannot contain a plane. Thus
S VS2 ¼M exactly.

Now the unique point r on a?2 VM is distinct from y, and by Theorem 20 is the
unique point of a?2 VS (the gate) and

D�
2ða2ÞVS ¼ r? VS:

Why can’t M ¼ L, so that r ¼ x? In that case S VS1 contains the plane hL; zi ¼ p
forcing dðb; a1Þ ¼ 2, a contradiction. Thus M is not in S1, for otherwise MJ
S2 VS1 ¼ L. Thus M VS1 ¼ fyg, and r is not in S1.

Since M is a thick line, there is a point s in M distinct from r and y. Moreover,
since S is a non-degenerate polar space, there is a point b 0 in S collinear only with the
point s of M. Since b 0 is not in r?, we have that dða2; b

0Þ ¼ 3. Thus we see that

S2 VD�
2ðb 0Þ ¼ S2 V s

?: ð5Þ

Now x? VS contains the line yz and so dðb 0; xÞ ¼ 2. It follows from Equation (5)
that s is collinear with x. We now see that the clique fs; x; yg spans a plane in S2, and
so S2 must have rank at least three. The proof is complete.

6 Proof of Theorem 1

In this section, G is a parapolar space of polar rank at least three satisfying these
hypotheses:

(A1) Given a point x not incident with a symplecton S, the space x? VS is never just
a point.

(A2) Given a projective plane p and line L meeting p at point p, either (i) every line
of p on p shares a symplecton with L, or else (ii) exactly one such line incident
with ðp; pÞ has this property.

(A3) If L is a line on point p, then there exists at least one further line N on point p
such that

L? VN? ¼ fpg:
(A4) If all symplecta have rank at least four, then every maximal singular subspace

has finite projective rank.

Remark. Note that axiom (A3) prevents G from being a strong parapolar space.

Point-line characterizations of Lie geometries 179



6.1 Simple-connectedness of the point-collinearity graph of G. It is useful at the be-
ginning to show that the axioms (A1), (A2) and (A3) alone force the point-collinearity
graph G ¼ ðP;@Þ of G to be simply T-connected—that is, every cycle of the graph
can be deformed to a single point by some iteration of the processes of either replacing
an edge representing one side of a triangle by the other two sides, or the reverse of this
process.

We define the angle between lines L1 and L2 of Lp as the integer aðL1;L2Þ where

aðL1;L2Þ ¼

0 if L1 ¼ L2

1 if L1 0L2 but both are in a plane

2 if L1 0L2 PL?
1 but both lie in a symplecton

3 if L1 and L2 lie together in no symplecton:

8>>><
>>>:

(Note that in the last case, if yi A Li � fpg, then y?1 V y?2 ¼ fpg, that is ðy1; y2Þ is a
special pair.)

Suppose now w ¼ ðx0; x1; . . . ; xnÞ is a path in the point-collinearity graph G. Let Li
be the unique line on fxi; xiþ1g, and let aiþ1 be the angle between Li and Liþ1. Then
the sequence ða1; a2; . . . ; anÞ is the angle type of the path w.

Theorem 37. The point-collinearity graph G ¼ ðP;@Þ is simply connected.

Proof. We must show that every circuit in G is T-contractible where T is the
collection of all triangles of G. Assume c ¼ ðx0; x1; . . . ; xn ¼ x0Þ is a circuit of min-
imal length n subject to being non-contractible. We can assume n > 3, and since any
4-circuit lies in a symplecton (whose circuits are easily seen to be contractible), we can
assume n > 4 as well.

We can also assume that xi is not collinear with xj for n� 1 > ji � jj > 1. If R were
a symplecton on fx1; x2; x3g, then x?0 VR would contain a line L, and x?3 VL would
contain a point z. Then c would decompose as a circuit c 0 ¼ ðx0; z; x3; . . . ; xn ¼ x0Þ
of length n� 1, a triangle, and a circuit of length 4, all of which are contractible by
the conditions on n. Since this would make c contractible, no such symplecta can lie
on fx1; x3g—or on fxi; xiþ2g for that matter. Thus c has angle type ð3; 3; . . . ; 3Þ.

Now choose a plane p on fx1; x2g. Now by axiom (A2) there is a line L of p on x1

such that L and line x0x1 lie in a symplecton R. A second application of (A2) simi-
larly produces a line N of p on x2, sharing a symplecton S with line x2x3. Since both
L and N are lines of p they must intersect at a point z. Now by (A1), x?4 VS contains
a line B on x3, which by the polar space property for S, bears a point b of z?. Simi-
larly x?n�1 VR contains a line A on x0, which in turn also bears a point a of z? as
z A R. (Note that if n ¼ 5 then x4 ¼ xn�1; but this doesn’t hurt anything.) Now it is
clear that c decomposes into a circuit

c 0 ¼ ða; z; b; x4; . . . ; xn�1; aÞ

of length n� 1, two circuits ðx0; a; z; x1; x0Þ and ðx3; b; z; x2; x3Þ of length at most
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4 and three triangles ðxn�1; x0; a; xn�1Þ, ðx1; z; x2; x1Þ (in p), and ðx4; b; x3; x4Þ, all of
which are contractible. Hence c is contractible.

Thus no non-contractible circuits exist, and the theorem is proved.

6.2 The uniform structure of the point-residues. As usual, we let P;L;P and S be
the set of points, lines, planes and symplecta of G. Then the sets Lp;Pp and Sp are
the lines, planes and symplecta incident with a point p.

Recall that for each point p of G, the geometry ResðpÞ :¼ ðLp;PpÞ of lines and
planes on p is a ‘‘point’’-‘‘line’’ geometry which is a strong parapolar space with all
singular subspaces projective, whose ‘‘symplecta’’ are the lines and planes incident
with a flag ðp;SÞ A P�S. By (A1), ResGðpÞ satisfies the property that each ‘‘point’’
is collinear with at least one point of any ‘‘symplecton’’ which does not contain it.
Similarly (A2), (A3) and (A4) force ResGðpÞ to satisfy the rest of the hypotheses of
Theorem 2. It follows that ResGðpÞ is isomorphic to one of the geometries appearing
in Theorem 2. But is it the same geometry for each point p?

Suppose L ¼ pq is a line. Then both of the geometries ResðpÞ and ResðqÞ look the
same above a ‘‘point’’ L. Thus when ResðpÞ is (a) D6;6, (b) A5;3, (c) E7;1, (d) a dual
polar space of rank three, or (e) the product L� P of a line and a polar space, the
subgeometries of symps and singular spaces containing L are respectively, ða 0Þ A5;2,
a Grassmannian, ðb 0Þ A2 � A2, the product geometry of two planes, ðc 0Þ the excep-
tional geometry E6;1, ðd 0Þ a projective plane A2 of lines and symps, or ðe 0Þ the dis-
connected union of a point and the point-residue of a symp. So each case is distinc-
tive. That means that ResðpÞ is of the same type and defined by the same parameters
as ResðqÞ, except possibly in the last case. (If the line pq is the isolated ‘‘point’’ of each
point-residue, the symplecta forming a bouquet over p might conceivably be of a dif-
ferent isomorphism type than the symplecta forming a bouquet over q. But even here,
the uniformity holds and is discussed fully in Lemma 40 of the next section.)

So we have:

Lemma 38. For any two points of G, the point-residue geometries are uniformly iso-
morphic.

From this point onward (with a minor abuse of notation) we regard G as a higher
rank ‘‘enriched’’ geometry over a typeset J singling out points, lines, symplecta, and
all singular subspaces. Some of these isomorphism types are sorted into further classes
by the nature of the uniform point-residues (See 6.4 for details).

6.3 The case of finite singular rank. Assume now that every maximal singular sub-
space of G has finite projective rank.

It follows from Lemma 38 and Theorem 1 that G is a geometry belonging to one
of the following locally truncated diagrams over I (the set J which is the recipient of
the truncation is indicated by the round nodes in the figure below).

However, as remarked at the beginning of Section 3.4, in order to define a sheaf
we must be sure that one can define types to the objects one sees in a point-residue.
Any fusion of types would require an automorphism of the locally truncated diagram
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A4 L A 04

P

P L S

P L S
P

S L P

S1 S2

Figure 2

fixing the node ‘‘P ’’, and this is only possible in the case that the enriched ResðpÞ is
a truncation of A5;3 as in (1) of Figure 2. Here it is conceivable that the two local
classes of PGð4Þ (denoted A4 and A 04) are fused in the global geometry G. If so,

one can invoke Theorem 12 (with Y ¼ ĜG) to conclude that there is a geometry mor-
phism g : ĜG! G such that (i) the point-residues of ĜG are mapped isomorphically onto
the point-residues of G so that ĜG also belongs to the locally truncated diagram (1) of
Figure 2, and (ii) in ĜG the two classes A4 and A 04 are not fused. But Theorem 12
also asserts that g induces a T-covering d ¼ djY of the point-collinearity graph of the
G, and by Theorem 37 that graph covering is an isomorphism. Thus g induces a bi-
jective mapping on points and since all other objects of ĜG are uniquely determined by
their point-shadows, g is an isomorphism of geometries. Thus from property (ii) above
one can assign a distinct type to the objects of the locally truncated diagram for G just
as in all the other cases depicted in Figure 2. Thus, because there is an unambiguous
assignment of types, G is a locally truncated diagram geometry with respect to the di-
agram D.

Now, by Theorem 10, there exists a sheaf, and in each case the ambient diagram
is a Dynkin diagram, there exists a building geometry D over I and a vertex-surjective

morphism h : D ! D of geometries such that G is isomorphic to D truncated to the
typeset J: the typeset of G which includes fP;L;Sg and all singular subspaces. Thus
h induces a morphism

f : DJ ! G

as in Lemma 16.
Now if we truncate to fP;Lg we recover the original parapolar space G (sans en-

richment) and a truncation of a building geometry ðPD;LDÞ, and both of these point-
line geometries are parapolar spaces of polar rank at least three. In each case, let P
and PD be the full sets of projective planes in these respective geometries. Then Hy-
pothesis 1 of Theorem 17 holds, just from our choice of P. Hypotheses 2 and 4 hold
because they are parapolar spaces. We need to check Hypothesis 3 only when X is a
line, having already established that the five cases listed above for point-residues are
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truncations of rank at least three of buildings. But the same conclusions hold for a
line L. This is because the lines are a set of flags which isolate the points P from all
other nodes of the diagram. Thus the sheaf-value FðLÞ at a line L is a geometry be-
longing to a diagram of type

A1 � Y;

where Y is the diagram of a line-residue in the building FðpÞ for a point p. Since the
latter is a building, so is its residue Y. Thus Condition 3 of Theorem 17 is verified.

Now Theorem 17 applies to show that

ð�Þ The morphism f induces a graph morphism

ðPD;@Þ ! ðPG;@Þ

of the point-collinearity graph of D onto the point-collinearity graph of G, which is
a T-covering of graphs.

Now by Theorem 37 the latter graph is simply connected, so this graph morphism
is actually an isomorphism. This means f induces a bijection on points. Now the fact
that all objects of the building geometry DJ are distinguished by their point-shadows
forces the morphism f : DJ ! G to be an isomorphism of parapolar spaces, and com-
pletes the proof of Theorem 1 when all maximal singular subspaces possess finite pro-
jective rank.

6.4 The case of infinite singular rank. The hypotheses (A1)–(A4) show that if
G possesses a singular subspace of infinite projective rank, then our point-residue
ResGðpÞ is the product geometry L� P where P is a polar space.

Here we shall take this structure of P of ResGðpÞ as a hypothesis, where P is any
polar space that is not a grid. Of course that means we are reproving some of the fi-
nite singular rank cases over again, but this time without resorting to the theory of
locally truncated geometries. All the better!

We first require a general theorem:

Theorem 39. Suppose G is a parapolar space satisfying the hypothesis.

(A1) If x is a point, and S is a symplecton, then x? VS is never a single point.

Then the point-collinearity graph G :¼ ðP;@Þ has diameter at most three.

Proof. It su‰ces to show that G possesses no geodesic of length four. So by way
of contradiction assume g ¼ ðx0; x1; x2; x3; x4Þ is a geodesic of length four and angle
type ða1; a2; a3Þ. Thus each ai is at least two.

Case 1: One of the ai ¼ 2. Suppose first that a1 ¼ 2. Then there is a symplecton R0

on fx0; x1; x2g and x?3 VR0 contains a line N. Then, as R0 is a polar space, there is a
point z A x?0 VN, and we have a path ðx0; z; x3; x4Þ of length 3, a contradiction.

Thus a1 0 2 and by symmetry, a3 0 2.
Next suppose a2 ¼ 2. Then there is a symplecton R1 containing fx1; x2; x3g, a line
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M ¼ x?4 VR1 and a point y A x?1 VM. Then ðx0; x1; y; x4Þ is a path of length three
connecting x0 and x4, a contradiction.

Case 2. g has angle type ð3; 3; 3Þ. First choose a symplecton S1 containing the edge
fx1; x2g. Then x?3 VS1 contains a line M. Now, since S1 has polar rank at least three,
M? VS1 is not a clique, while x?3 VS1 is. Thus there exists a point u A S1 VM? � x?3
and so the polar pair ðu; x3Þ lies in a symplecton S2 containing fu; x2; x3g meeting S1

in at least the plane p ¼ hu;Mi. Now x?0 VS1 contains a line N1 on x1, and in the
polar space S1, N?

1 V p must contain a point z. Thus ðx0; zÞ is a polar pair. Now also
(A1) forces x?4 VS2 to contain a line N4 which meets z? in at least a point q. Now
w ¼ ðx0; x1; z; q; x4Þ is a path connecting x0 and x4, of angle type ðb1; b2; b3Þ with
b1 ¼ 2. But that returns us to Case 1 with w replacing g. We have seen that that case
leads to a contradiction.

Thus no such geodesic of length four exists and the proof is complete.
We are now operating under this hypothesis,

(B1) Every point-residual geometry ResðpÞ ¼ ðLp;PpÞ is one of the conclusion geo-
metries of Theorem 2.

(B2) There exists a point p for which ResðpÞ is a geometry Lp � Pp where Lp is a line
and Pp is a polar space of rank kpd 2 that is not a grid.

In Condition (B2) the projective line Lp is thick since we are dealing with the point
residue of a parapolar space with thick lines.

Now suppose L ¼ pq is a line on p. Then L lies in a unique symplecton P of G
which has rank kp þ 1, which is not oriflamme of rank three. It also lies in a unique
plane lying in no such symplecton. Since q is on such a line, and yields a residue in
the conclusion of Theorem 2, it has a residue of shape Lq � Pq, where PqFPp (being
point residue geometries of distinct points of the same symplecton P) and has sym-
plectic rank kp, and Lq has the same cardinality as Lp. Thus we see that ResðqÞF
ResðpÞ.

Lemma 40. G is a parapolar space with all point-residues isomorphic to L� P where L
has a constant cardinality, and P has a uniform polar rank k at least two. If k is greater
than two, then P even has a constant isomorphism type.

Remark. The last sentence follows from an unpublished theorem of Tits. We don’t
actually use this fact.

Lemma 41. The following statements hold:

1. For any symplecton S and point x not in S, x? VS is empty, or is a line.
2. The symplecta are partitioned naturally into two sets as S ¼ DþSþ, where D is

the collection of all oriflamme rank-three polar spaces, and Sþ are the remaining
symplecta (all of rank k). We have the following:

(a) Any two distinct members of Sþ intersect at the empty set or at a single point.

(b) If ðD;SÞ A D�Sþ, then DVS is the empty set or a plane.
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3. The projective planes P of G are also partitioned into two sets:

(a) The Sþ-planes, which are the planes which lie in a (necessarily unique) mem-
ber of Sþ.

(b) The D-planes, which are those planes which lie in no member of Sþ at all.
These are maximal singular subspaces of G.

(c) Every line lies in a unique member of Sþ and in a unique D-plane.
4. If D A D, then the two oriflamme classes of planes of D are the D-planes and the

Sþ-planes which are contained in D. In particular, any two distinctSþ-planes of D
intersect at a single point.

Proof. The symplecta in D can never be isomorphic to those in Sþ, so the two classes
of symplecta can never fuse globally. All of the statements follow from the uniform
local structure of any point-residue. For example, the D-planes and Sþ-planes cor-
respond to the ‘‘horizontal’’ and ‘‘vertical’’ lines respectively in the product geometry
L� P representing a point-residue.

Corollary 42. If two symplecta from Sþ both intersect a common symplecton from D
non-trivially, then the two symplecta either coincide or intersect at a point.

Proof. Suppose S1 and S2 are distinct members of Sþ, which intersect non-trivially a
symplecton D A D. Then by Lemma 41 2(b), the intersections Si VD are planes which
belong to the same oriflamme class of D by Part 4 of Lemma 41. Since the planes
meet at a point, so do S1 and S2.

Lemma 43. Suppose S1, S2 and S3 are pairwise distinct members of S
þ on a common

point p. Suppose R is a member ofSþ which does not contain p. If R intersects S1 and

S2 non-trivially, then it intersects S3 non-trivially.

Proof. Let fxig :¼ Si VR, i ¼ 1; 2. Let’s get rid of an easy case first. Suppose p were
collinear with one of the xi, say x1. Then p? VR is a line L on x1. Since L is not in
S1 (for S1 VR ¼ fx1g), the plane h p;Li has to be the unique D-plane on px1. Then
h p;Li intersects every symplecton of Sþ on p at a line. Therefore L intersects every
symplecton of Sþ on p at a point. Thus there is a point in LVS3 JRVS3. Thus
RVS3 is non-empty.

So we may assume that dðp; x1Þ ¼ dðp; x2Þ ¼ 2 in the point-collinearity graph.
If x1 were collinear with x2 then x?1 VS2 would be a line on x2 carrying a point
u of p? VS2. Then u A p? V x?2 JS2, while u A p? V x?1 JS1. This is impossible as
S1 VS2 ¼ fpg.

Thus x1 is not collinear with x2. Select a point t A x?1 V x?2 JR. Then t? VSi
carries a point si of p?, and s1 0 s2. Then there is a symplecton D on p and t, and
D A D since it meets S1 and S2 at lines, at least. Once again, DVR and DVS3

are non-empty, so Corollary 42 can be invoked to yield RVS3 0q in this case as
well.
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Lemma 44. If p is a point and R A Sþ is a symplecton not on p, then there is a sym-
plecton S A Sþ containing p and meeting R non-trivially.

Proof. First suppose p is collinear with a point x of R. By Lemma 41 (3)(c) there is an
element S A Sþ on the line px. Then S VR0q and we are done.

Next suppose dðp; rÞ ¼ 2 for some point r A R. Choose z A p? V r?. Then z? VR
is a line L of R. Choose a point y A RVL? � L (this is possible since R has polar
rank at least three). Then there is a symplecton D :¼fz; yg in D. Now by Lemma
41, Part (3)(c), the line pz lies in a symplecton S of Sþ. But now S VD and RVD are
both non-trivial, so S VR0q by Corollary 42.

So we must assume dðp; rÞd 3 for all points r in R. But by Theorem 39, we must
assume

RJD3ðpÞ: ð6Þ

Let ðp; u; v; rÞ be a geodesic from p to a point r of R. Then there is a sym-
plecton D of D on line vr and meeting R at a plane (Lemma 41 3(c) and 2(b)). Since
Equation (6) implies u? VR ¼ q, one has u B D. Then there is an element S of Sþ

on the line uv (Lemma 41 3(c) again). Now as S and R are elements of Sþ meeting D
non-trivially, there exists a point s A S VR, by Corollary 42. But p? VS is a line on u
carrying a point of s?. Thus dðp; sÞ ¼ 2 against RJD3ðpÞ. The proof is complete.

Lemma 45. There is no symplecton in Sþ which intersects non-trivially all other sym-
plecta from Sþ.

Proof. Suppose R A Sþ has the ‘‘radical’’ property—that RVS0q for all S A Sþ.
Fix a point p in R, and a point r A R� p?. Let T be any symplecton of Sþ on r

with T0R. Then T VR ¼ frg. Choose z A T � r?. We claim that z is not collinear
with any point of R. For if there were such a point, then z? VRV r? would contain a
point in RVT � frg, an absurdity. Thus

z? VR ¼ q:

By assumption all symplecta of Sþ which lie on z must meet R. Let S1 and S2 be
two of these—that is S1 0S2 not in name only. Set fxig :¼ Si VR. Since z? VR ¼ q,
z is distinct from both x1 and x2. If x1 were collinear with x2, then, by Lemma 41 (1),
x1 VS2 contains a line carrying a point w of z?. Then by convexity of S1, the line zw
is in S1 as well as S2, against Lemma 41 (2a). Thus we may assume dðx1; x2Þ ¼ 2.

Now select a point t A x?1 V x?2 JR. Set t? VSi :¼ Ni, and set fyig :¼ z? VNi, i ¼
1; 2. Then t? V z? contains two distinct points y1 and y2, so the convex closure D :¼
ft; zg is a symplecton whose intersection with each Si contains a line zyi. Thus
D A D. Then DVR is a plane p (Lemma 41 2(b)), and so z? V p is a line in z? VR.
But by construction the latter set is empty. Thus no such R exists and the proof is
complete.
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Theorem 46. Under the hypotheses of Lemma 40, the rank-two geometry P� :¼
ðSþ;PÞ is a nondegenerate polar space.

Proof. By Lemmas 43 and 44 P� is a polar space. It is nondegenerate by Lemma 45.

Corollary 47. Under the hypotheses (B1) and (B2) which headed this subsection, G is
the polar Grassmannian of lines of a non-degenerate polar space P� of rank at least
four. Otherwise the nature of P� is arbitrary.

Theorem 1 has now been proved in the two cases in which all singular subspaces
have finite projective rank and otherwise.

Remark. By now the reader has noticed how the phantom hypotheses of finite sin-
gular rank weave in and out of the two theorems. How they weave in is as dramatic as
how they weave out. The authors do not have a good explanation for this. To a large
extent the assumption is in when the proof wishes to invoke one of the following: (1)
the Cohen–Cooperstein theorem in some form (for example, Theorem 15, though free
of the assumption of constant symplectic rank, uses the Cohen–Cooperstein Theorem)
or (2) the theory of locally truncated geometries—while still struggling to maturity—
requires Tits’ ‘‘Local Approach Theorem’’ in order to say anything useful. Indeed, it
would not be unfair to say that this theory is the major application of that beautiful
theorem. But its application requires the covering chamber system C of CðFÞ to be
residually connected so that the functor G can be applied. That in turn requires a finite
Coxeter matrix, and that means finite rank.

Theorem 2 uses the Cohen–Cooperstein theory only under a very special low-
diameter circumstance in which x? VS is always non-empty. If it were possible to
prove finite singular rank in such a special case, one could dispense with the finite
singular rank assumptions altogether in both Theorems 1 and 2. It is worth men-
tioning.
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