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Rigidity of skew-angled Coxeter groups
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Abstract. A Coxeter system is called skew-angled if its Coxeter matrix contains no entry equal
to 2. In this paper we prove rigidity results for skew-angled Coxeter groups. As a consequence
of our results we obtain that skew-angled Coxeter groups are rigid up to diagram twisting.

1 Introduction

Given a Coxeter matrix M over a set I, the corresponding Coxeter diagram GðMÞ is
the graph ðI ;EðMÞÞ where EðMÞ denotes the set of all 2-element subsets fi; jg of I
such that mij 0y and where each edge is labelled by the corresponding mij . We say
that M is indecomposable if GðMÞ is connected; we say that M is 1-connected if
GðMÞ is connected and if GðMÞ remains connected if one vertex is removed. We
further say that M is edge-connected if M is 1-connected and if GðMÞ stays connected
if the two vertices of an edge are removed. An edge of GðMÞ is called a bridge, if it
is not contained in a circuit of GðMÞ. We say that a Coxeter system is skew-angled if
the associated Coxeter matrix is skew-angled, i.e. contains no entry equal to 2.

Let ðW ;SÞ be a Coxeter system. Following [5] we call a set S 0 HW fundamental if
ðW ;S 0Þ is a Coxeter system. In [3] it is defined what it means for two fundamental
sets to be twist equivalent, see Definition 4.4 of [3] or Section 7 below. It is in partic-
ular very easy to decide whether for two given fundamental sets there exist twist
equivalent sets that have isomorphic Coxeter graphs. Understanding the equivalence
classes of fundamental sets of Coxeter groups would therefore solve the isomorphism
problem. Our main result is the following:

Main Theorem. Suppose that ðW ;SÞ is a skew-angled Coxeter system, let T ¼ SW

denote the set of its reflections and suppose that SHT is a fundamental set. Then the

following hold:

1. There exists a fundamental set S 0 HT that is twist equivalent to S and a bijection

a : S ! S 0 such that a extends to an automorphism of W.

2. If GðW ;SÞ has no bridge, then one can choose S ¼ S 0 and a ¼ idS.



3. If S has at least 3 elements and if GðW ;SÞ is edge-connected, then there exists

w A W such that Sw ¼ S.

Reformulating statement (1) of the main theorem in the language of [3] we get the
following corollary. It implies that Conjecture 8.1 in [3] holds in the skew-angled
case.

Corollary A. Skew-angled Coxeter systems are reflection-rigid up to diagram twisting.

Remark 1. Let ðW ;SÞ be a Coxeter system and let s; t A S be two reflections corre-
sponding to the vertices which are on a bridge of GðW ;SÞ. If there is a non-trivial
reflection-preserving outer automorphism a of hs; ti (like for instance in the case
where st has order 5), then it has an extension to a reflection-preserving auto-
morphism b of W and bðSÞ is not twist equivalent to S because twistings are ‘angle-
preserving’.

If ðW1;S1Þ and ðW2;S2Þ are both skew-angled Coxeter systems then any isomorphism
f : W1 ! W2 maps reflections onto reflections since the parabolic dihedral subgroups
are the maximal finite subgroups and since any automorphism of a dihedral group
D2n with nd 3 maps reflections onto reflections. The theorem therefore gives a solu-
tion to the isomorphism problem for the class of skew-angled Coxeter groups. This
can be rephrased as follows:

Corollary B. Given two fundamental sets S;S 0 in a Coxeter group W such that ðW ;SÞ
and ðW ;S 0Þ are skew-angled, then GðW ;SÞ and GðW ;S 0Þ are twist equivalent.

If ðW ;SÞ is a skew-angled Coxeter system and R is a fundamental set of reflections,
then GðW ;SÞ is twist equivalent to GðW ;RÞ by Corollary A. It is therefore easy to
determine all Coxeter systems ðW 0;S 0Þ such that W 0 is isomorphic to W if we can
guarantee that each fundamental set R in W consists of reflections. This motivates the
definition of reflection-independence. Following [1] we call a Coxeter group reflection-

independent if RJSW for any two fundamental sets S and R of W. Our next result
provides an easy criterion to see whether a skew-angled Coxeter group is reflection-
independent. We call a vertex in a graph G an end-point if it is contained in precisely
one edge; an edge is called a spike if it contains an endpoint.

Theorem (Reflection-independence criterion). Let ðW ;SÞ be a skew-angled Coxeter

system. Then W is reflection-independent if and only if there is no spike whose label is

twice an odd number.

As there are no spikes in an edge-connected graph, Part 3 of the main theorem and
the previous theorem have the following consequence:

Corollary C. Skew-angled Coxeter systems whose diagram has no spike which is la-

belled by twice an odd number are rigid up to diagram twisting (in the sense of [3]);
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they are strongly rigid (in the sense of [3]), if there are at least 3 generators and the

diagram is edge-connected.

Remark 2. Complete graphs on at least 3 vertices are edge-connected and hence one
recovers a slight generalization of a result of A. Kaul in [14]. We have further learned
that F. Haglund [12] has obtained a proof of our main theorem under the additional
assumption that the Coxeter graph is a complete graph.

Remark 3. The theorem about reflection-independence follows from Proposition 9.4
below. This proposition can be used to deduce an algorithm to decide for an arbitrary
Coxeter system ðW ;SÞ whether there is a skew-angled fundamental set R of W.

In Section 2 we fix notation, we recall some definitions concerning the chamber
system associated to a Coxeter system (i.e. its Cayley graph) and we deduce a crucial
fact concerning roots and finite subgroups (cf. Lemma 2.6).

In Section 3 we consider reflections on thin chamber systems and we introduce
geometric sets of roots in a thin chamber system. This notion is motivated by a result
of Tits in [21]. Much of the content of Section 3 is certainly known to the experts as
it is closely related to the results of M. Dyer [8] and V. Deodhar [7] on subgroups
generated by reflections in Coxeter groups; the setup which is used here is however
more similar to the revision of these results due to J.-Y. Hée [13].

In Section 4 we investigate universal sets of reflections in a Coxeter system, i.e. sets
of reflections which constitute a Coxeter system with the subgroup W 0 they generate.
Certain of these universal sets have the property that one can associate a root to each
of its reflections such that the intersection of these roots is a fundamental domain for
the subgroup W 0; these are precisely the geometric sets of reflections.

In Section 5 we recall the definition of strong reflection-rigidity given in [3] and
show that this definition is equivalent to a property of Coxeter systems which can be
expressed by the notion of a geometric set of reflections.

In Section 6 we show that skew-angled Coxeter systems are strongly reflection-rigid
if the underlying diagram is edge-connected by showing that they satisfy the equiva-
lent definition given in Section 5. Here we use a special case of a result of R. Charney
and M. Davis on rigidity of Coxeter groups (cf. [5]).

In Section 7 we use techniques introduced by M. Mihalik and S. Tschantz [15] to
study how splittings of Coxeter groups over finite special subgroups behave with re-
spect to di¤erent fundamental sets.

In Section 8 we give the proof of the main theorem by applying the results of Sec-
tion 6 and Section 7.

In Section 9 we prove Proposition 9.4 which implies the reflection-independence
criterion and which justifies Remark 3.

2 Preliminaries

Graphs. Let X be a set, then P2ðXÞ denotes the set of all subsets of X having cardi-
nality 2. A graph is a pair ðV ;EÞ consisting of a set V and a set EJP2ðVÞ. The
elements of V and E are called vertices and edges respectively.
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Let G ¼ ðV ;EÞ be a graph and let W be a subset of V; then GW denotes the graph
ðW ;P2ðWÞVEÞ.

Let G ¼ ðV ;EÞ be a graph. Let v;w be two vertices of G. They are called adjacent
if fv;wg A E. A path from v to w is a sequence v ¼ v0; v1; . . . ; vk ¼ w, where vi�1 is
adjacent to vi for all 1 c ic k; the number k is the length of the path. The distance

between v and w (denoted by dðv;wÞ) is the length of a shortest path joining them; if
there is no path joining v and w, we put dðv;wÞ ¼ y.

A path v ¼ v0; v1; . . . ; vk ¼ w is said to be closed if v ¼ w; a closed path
v ¼ v0; . . . ; vk ¼ v is called a circuit if v1; . . . ; vk are pairwise distinct and if
kd 2; a circuit v ¼ v0; v1; . . . ; vk ¼ v is called chordfree if E VP2ðfv1; . . . ; vkgÞ ¼
ffv0; v1g; fv1; v2g; . . . ; fvk�1; vkgg.

The relation RHV 	 V defined by R ¼ fðv;wÞ j dðv;wÞ0yg is an equivalence
relation whose equivalence classes are called the connected components of G. A graph
is said to be connected if it has only one connected component.

Let v A V and let W be the connected component of G which contains v. Then v

is called a cut-point of G if GWnfvg is not connected. The graph G is called 1-connected
if it is connected and if there are no cut-points.

Let e A E be an edge of G and let W be the connected component of G which
contains e. Then e is called a cut-edge if GWne is not connected. The graph G is called
edge-connected if it is 1-connected and if there are no cut-edges.

We shall need the following facts about 1-connected graphs; the proof is straight-
forward.

Lemma 2.1. Let G ¼ ðV ;EÞ be a 1-connected graph with at least three vertices. Then

i) every edge is contained in a chordfree circuit;

ii) given v;w;w 0 A V such that fv;wg; fv;w 0g A E and such that w0w 0, then there ex-
ists a sequence w ¼ w0;w1; . . . ;wl ¼ w 0 such that fv;wig A E, such that wi�1 0wi

and such that wi�1; v;wi are in a chordfree circuit for 1 c ic l.

Coxeter matrices, Coxeter diagrams and Coxeter systems. Let I be a finite set. A
Coxeter matrix over I is a symmetric matrix M ¼ ðmijÞi; j A I with entries in NU fyg
such that mii ¼ 1 for all i A I and mij d 2 for all i0 j A I . Given a Coxeter matrix M,
we put EðMÞ :¼ ffi; jgH I j 10mij 0yg. The Coxeter diagram associated to M is
the graph ðI ;EðMÞÞ whose edges are labelled by the corresponding mij. The Coxeter
matrix (and the associated Coxeter diagram) is called indecomposable if the associated
diagram is connected.

The incidence diagram associated to a Coxeter matrix M is the graph ðI ;E 0ðMÞÞ
where E 0ðMÞ ¼ ffi; jgH I jmij d 3g and where the edges are labelled by the corre-
sponding mij . The Coxeter matrix (and the Coxeter diagram) is called irreducible if
the associated incidence diagram is connected.

Let M be a Coxeter matrix over I. A Coxeter system of type M is a pair ðW ;SÞ
consisting of a group W and a set S ¼ fsi j i A IgJW such that S generates W and
such that the relations ððsisjÞmij Þi; j A I form a presentation of W. Given a Coxeter system
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ðW ;SÞ, an element of W is called a reflection if it is conjugate in W to an element of
S; the set of all reflections is denoted by T.

Let M be a Coxeter matrix over I. Given a subset J of I, MJ denotes the restriction
of M onto J. Let ðW ;SÞ be the Coxeter system of type M. We put WJ ¼ hsj j j A Ji;
it is a fact that ðWJ ; fsj j j A JgÞ is the Coxeter system of type MJ . The groups WJ are
called the special subgroups of the Coxeter system ðW ;SÞ; a parabolic subgroup is a
subgroup which is conjugate to a special subgroup.

A Coxeter matrix (or diagram) is called spherical if the corresponding Coxeter
group is finite. Given a Coxeter diagram M over I, a subset J of I is called spherical

if MJ is spherical.
We close this subsection by recalling a well known fact [2].

Proposition 2.2. Let M be a Coxeter matrix over a set I and let ðW ;SÞ be the corre-
sponding Coxeter system. Given a finite subgroup U of W, there exists a spherical

subset J of I and an element w A W such that U w is a subgroup of WJ .

The chamber system associated to a Coxeter system. Let ðW ;SÞ be a Coxeter system
of type M where M is a Coxeter matrix over a set I. The chamber system associated
to ðW ;SÞ is the graph C ¼ ðC;PÞ, where C ¼ W and fc; dg A P if c�1d A S. The
vertices of C are called chambers, the edges are called panels. Two chambers c; d are
called i-adjacent if c�1d ¼ si. Since the si generate W the graph C is connected. Note
that we have a natural mapping type : P ! I , defined by typeðfc; dgÞ ¼ i if c�1d ¼ si.
The group W acts from the left (via left translation) on C. This action is regular on
C and type-preserving on P.

Let M; I ; ðW ;SÞ and C ¼ ðC;PÞ be as before, let J be a subset of I and let c A C.
The J-residue of c is the set RJðcÞ :¼ cWJ . A residue is a subset of C which is a J-
residue for some JJ I . A residue is called spherical if it contains only finitely many
chambers. In view of Proposition 2.2 and the regular action of W on C the following
holds.

Lemma 2.3. A subgroup U of W is finite if and only if it stabilizes a spherical

residue.

In view of the previous lemma the following proposition is a consequence of
Proposition 5.5 in [6].

Proposition 2.4. Let ðW ;SÞ be a Coxeter system and let U cW be a finite subgroup

of W. Let SU denote the set of all spherical residues stabilized by U and consider the

graph GU whose set of vertices is SU and where two vertices are joined by an edge if one

contains the other. Then GU is connected.

Let M; I and ðW ;SÞ be as before. Given a reflection t A W , we put
PðtÞ :¼ fp A P j tp ¼ pg and CðtÞ :¼ 6

p APðtÞ p (so CðtÞ is the collection of all cham-
bers c such that c and tc are adjacent).
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Note that for any w A W and t A T we have wPðtÞ ¼ Pðwtw�1Þ and wCðtÞ ¼
Cðwtw�1Þ.

Lemma 2.5. Let ðW ;SÞ be a Coxeter system and let t be a reflection. Then the graph

Ct ¼ ðC;PnPðtÞÞ has two connected components.

Proof. This follows from Proposition 2.6 in [19]. r

The two connected components of Ct are called the roots associated to t. Given a
chamber c and a reflection t, Hðt; cÞ (resp. �Hðt; cÞ) denotes the root associated to t,
which contains c (resp. does not contain c). Given a root a, the reflection to which it
is associated is uniquely determined and it is denoted by ra. Moreover, we denote by
�a the root which is associated to ra and which is not equal to a. The set of roots will
be denoted by FðW ;SÞ.

Roots and spherical residues. Let t A T be a reflection and AJC be a residue. Then t

stabilizes A if and only if both roots associated to t have non-trivial intersection with
A. If this is not the case, then the unique root associated to t which contains (resp.
does not contain) A will be denoted by Hðt;AÞ (resp. �Hðt;AÞ).

Lemma 2.6. Let U cW be a finite subgroup of W and let t A W be a reflection such

that ht;Ui is an infinite group. Then there exists a (unique) root associated to t which

contains each spherical residue stabilized by U.

Proof. We define a graph GU as in Proposition 2.4 from which we know that it is
connected. By Lemma 2.3 there exists a spherical residue A stabilized by U. If t sta-
bilizes A, then the group V :¼ ht;Ui stabilizes A and V is finite (again by Lemma
2.3). Therefore t does not stabilize A which is equivalent to the fact that A is con-
tained in a root associated to t. This root will be called a.

We have to show that any residue fixed by U is contained in a. Let B be a spherical
residue fixed by U. By the argument above it follows that B is contained in a root
associated to t. Suppose now that B is not contained in a, i.e. that B is contained in
�a. As the graph GU is connected (by Proposition 2.4) we can find a spherical residue
B 0 that is stabilized by U such that B 0 V a0q0B 0 V�a. Now U and t stabilize the
spherical residue B 0 and therefore ht;Ui stabilizes B 0. It then follows from Lemma
2.3 that ht;Ui is finite. This yields a contradiction. r

The root of the previous lemma will be denoted by Hðt;UÞ. We also consider pairs
of reflections t; t 0 such that tt 0 has infinite order. For those pairs denote the unique
root associated to t which contains all spherical residues fixed by ht 0i by Hðt; t 0Þ.
Thus Hðt; t 0Þ ¼ Hðt; ht 0iÞ.

The following observation is immediate:

Lemma 2.7. Let ðW ;SÞ be a Coxeter system, let t be a reflection and let U be a finite

subgroup of W such that ht;Ui is infinite. Then each element w A W maps Hðt;UÞ
onto Hðwtw�1;wUw�1Þ.
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3 Reflections of thin chamber systems

Let G ¼ ðV ;EÞ be a graph and let I be a set. An I-labelling of G is a mapping
t : E ! I whose restriction to the set of edges through any given vertex is a bijection.
A thin chamber system over I is a pair C ¼ ðG; tÞ consisting of a connected graph
G ¼ ðV ;EÞ and an I-labelling t of G. Throughout this section C ¼ ðG; tÞ is a thin
chamber system over I.

An automorphism of C is an automorphism of G which preserves the labelling;
thus an automorphism of C fixing a vertex is already the identity. A reflection of C
is an element r A AutðCÞ such that the following conditions hold:

(1) r2 ¼ id0 r and

(2) if Er denotes the set of fixed edges, then the graph ðV ;EnErÞ has two connected
components.

Given a reflection r of C, the two connected components of (2) are called the roots

associated to r and the set CðrÞ :¼ 6
e AEr

e is called the wall associated to r.
A root of C is a subset f of V such that there exists a reflection to which f is asso-

ciated as a root; this reflection is uniquely determined by f and it is denoted by rf.
Given a root f of C, then �f :¼ Vnf is also a root. Given a reflection r and a vertex
v, let Hðr; vÞ denote the root associated to r which contains v. If v 0 is another vertex
then we call v and v 0 r-equivalent if Hðr; vÞ ¼ Hðr; v 0Þ; in this case we write v@r v

0.
In the following lemma we summarize some immediate observations:

Lemma 3.1. (1) Let r be a reflection and a A AutðCÞ. Then r 0 ¼ a � r � a�1 is a re-

flection, aðCðrÞÞ ¼ Cðr 0Þ and aðfÞ is a root associated to r 0 for each root f associated

to r.
(2) Each root is convex, i.e. each path of minimal length between two vertices of a

root f is contained in f. In particular, intersections of roots are connected.

Let X be a subgroup of AutðCÞ and let ReflðXÞ denote the set of all reflections
contained in X. Given v; v 0 A V we say that v and v 0 are X-equivalent if v@r v

0 for all
r A ReflðXÞ and we write v@X v 0 in this case. If v A V then a reflection r is called an
X-wall of v if r A ReflðXÞ and if there is a vertex v 0 @X v which is in CðrÞ. The fol-
lowing proposition is a direct consequence of Proposition 1 in [13]:

Proposition 3.2. Let X and ReflðXÞ be as above and let v0 A V . Let R0 denote the set

of X-walls of v0, let W :¼ hR0i and let l : W ! N be the length function with respect

to the generating set R0. Then the following holds:

a) ReflðXÞJW and ðW ;R0Þ is a Coxeter system;

b) for each r A R0 and each w A W one has lðrwÞ ¼ lðwÞ þ 1 if and only if wv0 @r v0

and lðrwÞ ¼ lðwÞ � 1 if and only if wv0 Rr v0;

c) the action of W is sharply transitive on the X-equivalence classes of V.

We shall need also the following observation:
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Lemma 3.3. The situation being as in the previous proposition let D :¼ fv AV j v@X v0g.
Then D ¼ 7

r AR0
Hðr; v0Þ.

Proof. Let D 0 :¼ 7
r AR0

Hðr; v0Þ. It is clear that DJD 0 since D ¼ 7
r AReflðX ÞHðr; v0Þ.

Let v A D 0nD. As v A D 0 there exists a path v0 ¼ x0; . . . ; xk ¼ v in D 0 joining v0 and v

by the second part of Lemma 3.1. Let 0 < ic k be minimal for the property that xi is
not in D. It follows that there is a reflection r A X switching xi�1 and xi. As xi�1 is X-
equivalent with v0 and xi�1 A CðrÞ, it follows that r A R0 which implies xi B D 0. This
contradicts the fact that the path x0; . . . ; xk is contained in D 0. Hence D 0nD ¼ q and
we are done. r

Given any group G acting on a set M, then we call F JM a prefundamental

domain if gF VF 0q implies g ¼ 1; we call F a fundamental domain if it is a pre-
fundamental domain and if M is the union of the gF where g runs through G.

We obtain the following consequence from Proposition 3.2:

Corollary 3.4. The situation (and notation) being as in Proposition 3.2 set

D :¼ fv A V j v@X v0g. Then D ¼ 7
r AR0

Hðr; v0Þ and D is a fundamental domain

for the action of W on V. Moreover, if r A R0 and w A W , then wDJHðr; v0Þ or

wDJ�Hðr; v0Þ; in the first case we have lðrwÞ ¼ lðwÞ þ 1, in the second we have

lðrwÞ ¼ lðwÞ � 1. Finally, if r is a reflection in X, then there exists a reflection r0 in

R0 which is W-conjugate to r.

A geometric pair of roots in G is a set of two roots f0 f 0 such that fV f 0 is a
fundamental domain for the group hrf; rf 0i.

Lemma 3.5. Let f1 0 f2 be a geometric pair of roots and let D ¼ f1 V f2. Put ri :¼ rfi
for i ¼ 1; 2 and X :¼ hr1; r2i. Let l : X ! N denote the length function with respect

to the generating set fr1; r2g. Then D is an X-equivalence-class and the following holds

for i ¼ 1; 2 and all x A X : xDJ fi or xDJ�fi, lðrixÞ ¼ lðxÞ þ 1 if xDJ fi and

lðrixÞ ¼ lðxÞ � 1 if xDJ�fi.

Proof. Let v0 A D and let R0 be the set of X-walls of v0. Since the group X is gen-
erated by reflections it follows by Proposition 3.2 that ðX ;R0Þ is a Coxeter system
and that R0 J fr1; r2gX . We conclude that R0 has precisely two elements. Put
D 0 ¼ 7

r AR0
Hðr; v0Þ; it follows from Lemma 3.3 that D 0 ¼ fv A V j v@X v0g. There-

fore D 0 JD. On the other hand D 0 and D are fundamental domains for the action of
X on V and therefore equality holds. Hence D is an X-equivalence class. Let r A R0;
as r is an X-wall of v0 there is an element v A CðrÞVD 0. Thus v A CðrÞVD and rðvÞ
is not in D 0 ¼ D; thus there exists an i A f1; 2g such that rðvÞ A �fi. As v A fi and
v A CðrÞ we conclude that r ¼ ri. This shows R0 ¼ fr1; r2g and the assertions of the
lemma follow now from Corollary 3.4. r

A set of roots F is called 2-geometric, if each 2-element subset of F is a geometric
pair of roots; it is called geometric if it is 2-geometric and if 7

f AF f0q.
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The definition of a geometric set of roots is motivated by the following proposition
which is a consequence of Lemme 1 in [21] and the previous Lemma 3.5.

Proposition 3.6. Let F be a geometric set of roots. Let D ¼ 7
f AF f, put

R0 ¼ frf j f A Fg and W ¼ hR0i. Then ðW ;R0Þ is a Coxeter system and D is a funda-

mental domain for the action of W on V. If v0 A D, then R0 is the set of W-walls of v0.

Lemma 3.7. Let f1 0 f2 be a geometric pair of roots. If �f1 0 f2 is also a geometric

pair of roots, then rf1
commutes with rf2

; in this case f1 0�f2 and �f1 0�f2 are also

geometric pairs. If D :¼ �f1 V�f2 0q, then rf1
and rf2

generate a finite group and

�f1 0�f2 is a geometric pair as well.

Proof. Set r1 ¼ rf1
, r2 ¼ rf2

and D ¼ f1 V f2. Let X ¼ hr1; r2i and let l : X ! N de-
note the length function corresponding to the generating set fr1; r2g. For i ¼ 1; 2 and
each x A X we have lðrixÞ ¼ lðxÞ � 1 if and only if xDJ�fi and lðrixÞ ¼ lðxÞ þ 1 if
and only if xDJ fi by Lemma 3.3.

Suppose that �f1 0 f2 is a geometric pair of roots. Then f1 V f2, �f1 V f2,
r2ðf1 V f2Þ ¼ r2f1 V�f2 and r2ð�f1 V f2Þ ¼ r2ð�f1ÞV�f2 are X-equivalence classes
which constitute a partition of V and hence X has 4 elements. Hence r1 commutes
with r2 and fr1; r2g is the set of reflections of X. Thus f1 V f2, f1 V�f2, �f1 V f2 and
�f1 V�f2 are the four X-equivalence classes of V which shows that the four pairs
involved are geometric.

Now suppose that D 0 ¼ �f1 V�f2 0q and choose v A D 0. There exists x A X
such that v A xD. It follows that xDJD 0 and therefore lðr1xÞ ¼ lðr2xÞ ¼ lðxÞ � 1
which implies that X is finite. Suppose that there is v 0 A D 0 and let x 0 A X be the
unique element such that v 0 A x 0D. Then lðr1x

0Þ ¼ lðr2x
0Þ ¼ lðx 0Þ � 1 and therefore

x ¼ x 0 beause the longest element in X is unique. This shows that D 0 ¼ xD is a fun-
damental domain for X. Hence �f1 0�f2 is a geometric pair. r

4 Universal and geometric sets of reflections

Throughout this section ðW0;S0Þ is a Coxeter system, T denotes the set of its re-
flections, C ¼ ðC;PÞ is the associated chamber system and F denotes the set of roots.
Note that the pair C ¼ ðC; typeÞ is a thin chamber system over I in the sense of the
previous section. Moreover, the elements of T are reflections of the thin chamber
system C in the sense of the previous section.

Let R be a subset of T. Then we put MðRÞ ¼ ðoðrr 0ÞÞr; r 0 AR where oðrr 0Þ denotes
the order of rr 0. The set R is called universal if ðhRi;RÞ is a Coxeter system.

Let C be a set of roots. We put RðCÞ :¼ frc jc A Cg and MðCÞ :¼
ðoðrcrc 0 ÞÞc;c 0AC.

A set R of reflections will be called geometric (resp. 2-geometric) if there exists a
geometric (resp. 2-geometric) set C of roots such that R ¼ RðCÞ; it will be called
sharp-angled if each 2-element-subset of R is geometric. We note that ‘sharp-angled’
is weaker than ‘2-geometric’.

The following observation is immediate from the definitions:
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Lemma 4.1. Let R (resp. C) be a geometric set of reflections (resp. roots) and let

R 0 JR (resp. C 0 JC). Then R 0 (resp. C 0) is a geometric set of reflections (resp.
roots).

Proposition 4.2. Let RJT be a set of reflections and let X ¼ hRi. Then there exists

a geometric set or reflections R0 such that hR0i ¼ X and X VT ¼ RX
0 .

Proof. The group X is generated by ReflðX Þ and therefore we have W ¼ X in Prop-
osition 3.2 and Corollary 3.4. Let v0;D and R0 be as in Corollary 3.4 and put
C :¼ fHðr0; v0Þ j r0 A R0g. We claim that R0 is geometric.

Let r0 0 r 00 A R0. We have to show that f :¼ Hðr0; v0Þ and f 0 :¼ Hðr 00; v0Þ consti-
tute a geometric pair. Obviously f0 f 0. Let Y be the group generated by r0 and
r 00 and let D 0 ¼ fV f 0. Suppose that yðD 0ÞVD 0 0q for some y A Y . If l : W ! N
denotes the length function with respect to the Coxeter sytem ðW ;R0Þ it follows that
lðr0yÞ ¼ lðr 00yÞ ¼ lðyÞ þ 1. The length function on Y with respect to fr0; r

0
0g is ob-

tained by restricting l to Y because ðX ;R0Þ is a Coxeter system by 3.2. Therefore
it follows that y is the identity. This shows that D 0 is a prefundamental domain for
the action of Y on C. As D 0 contains a Y-equivalence class of C and as each Y-
equivalence class is a fundamental domain by Corollary 3.4 (applied to Y ), it follows
that D 0 is a fundamental domain for Y. r

In the following three lemmas we summarize basic observations on subgroups gen-
erated by 2 reflections; the first two of them are immediate consequences of Lemma
3.7.

Lemma 4.3. Let t0 t 0 be two reflections of the Coxeter system ðW ;SÞ, and suppose

tt 0 ¼ t 0t. If a is a root associated to t and if a 0 is a root associated to t 0, then aV a 0 is
a fundamental domain for ht; t 0i. In particular the set ft; t 0g is geometric.

Lemma 4.4. Let t0 t 0 be two reflections of the Coxeter system ðW ;SÞ and suppose

that ft; t 0g is geometric and that tt 0 has finite order strictly greater than 2. If a is a root
associated to t, then there is a unique root a 0 associated to t 0 such that aV a 0 is a fun-

damental domain for the group ht; t 0i; in this case the set �aV�a 0 is a fundamental

domain for ht; t 0i as well.

Lemma 4.5. Let t0 t 0 be two reflections and suppose that tt 0 has infinite order. Then
Hðt; t 0ÞVHðt 0; tÞ is a fundamental domain for the group ht; t 0i. In particular, the set
ft; t 0g is geometric. Moreover we have �Hðt; t 0ÞJHðt 0; tÞ, �Hðt 0; tÞJHðt; t 0Þ and
�Hðt; t 0ÞV�Hðt 0; tÞ ¼ q; in particular, Hðt; t 0Þ0Hðt 0; tÞ is the only geometric pair

of roots associated to ft; t 0g.

Proof. By Proposition 4.2 there exists a geometric set of reflections R0 such that
X :¼ ht; t 0i ¼ hR0i. As X is an infinite dihedral group, it follows that R0 is X-
conjugate to ft; t 0g. Hence ft; t 0g is a geometric set of reflections. Hence there is
a geometric pair of roots f0 f 0 such that rf ¼ t and rf 0 ¼ t 0; as tt 0 has infinite
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order it follows from Lemma 3.7 that �fV�f 0 ¼ q. As Hðt; t 0ÞVHðt 0; tÞ0q0
Hðt; t 0ÞV�Hðt 0; tÞ and Hðt 0; tÞV�Hðt; t 0Þ0q we conclude that f ¼ Hðt; t 0Þ and
f 0 ¼ Hðt 0; tÞ. The remaining assertions in the statement are now immediate. r

Lemma 4.6. Let t; t 0; t 00 be three pairwise distinct reflections of a Coxeter system ðW ;SÞ
and suppose that tt 0; tt 00 have infinite order and that Hðt; t 0Þ0Hðt; t 00Þ. Then t 0t 00 has
infinite order. Moreover, if t 0 ¼ s0; s1; . . . ; sk ¼ t 00 is a sequence of reflections with the

property that si�1si has finite order for 1 c ic k, then tsl has finite order for some

l A f1; . . . ; k � 1g.

Proof. Suppose t 0t 00 has finite order. Then there is a spherical residue A stabilized
by ht 0; t 00i; as A is stabilized by t 0 and by t 00 it follows that A is contained in
Hðt; t 0ÞVHðt; t 00Þ. As Hðt; t 0Þ ¼ �Hðt; t 00Þ, this intersection is empty and we have a
contradiction. The second assertion is an immediate consequence of the first. r

Lemma 4.7. Let RJT be a finite sharp-angled set of reflections, suppose that MðRÞ
is irreducible and let C;C 0 be 2-geometric sets of roots such that R ¼ RðCÞ ¼ RðC 0Þ.

a) If CVC 0 0q, then C ¼ C 0.

b) If CVC 0 ¼ q, then C 0 ¼ f�c jc A Cg and rr 0 has finite order for all r; r 0 A R.

Proof. This is a consequence of Lemmas 4.4 and 4.5. r

Lemma 4.8. Let RJT be a geometric set of reflections, suppose that MðRÞ is irre-
ducible and let C0C 0 be geometric sets of roots such that R ¼ RðCÞ ¼ RðC 0Þ. Then
MðRÞ is spherical.

Proof. By Part b) of the previous lemma we have C 0 ¼ �C and as D ¼ 7
c AC c0

q07
c AC �c ¼ D 0 we can find a chamber c in D 0. As D is a fundamental domain

for W ¼ hRi, it follows that there exists w A W such that c A wðDÞ. By Proposition
3.6 R is the set of W-walls of any element in D; from Corollary 3.4 it follows that
lðrcwÞ ¼ lðwÞ � 1 for all c A C where l denotes the length function for the Coxeter
system ðW ;RÞ. This shows that W is finite and the claim follows. r

Proposition 4.9. Let R be a geometric subset of T. If MðRÞ is non-spherical and irre-

ducible then there is a unique geometric set of roots C such that RðCÞ ¼ R.

Proof. This is an immediate consequence of Lemma 4.8. r

In the situation of the previous proposition the unique geometric set of roots will
be denoted by CðRÞ; for each element r A R, the unique root associated to r which
is in CðRÞ will be denoted by Hðr;RÞ.

Lemma 4.10. Let C ¼ C 0 U fpg be a geometric set of roots such that MðCÞ is

not spherical and irreducible and that MðC 0Þ is spherical. Set t ¼ rp and
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U ¼ hrc 0 jc 0 A C 0i. Then p ¼ Hðt;UÞ. In particular, if A is a spherical residue stabi-

lized by the group U, then A is contained in p.

Proof. Let A be a spherical residue stabilized by U. If there is an infinity in MðCÞ
then there is a root c 0 A C 0 such that rprc 0 has infinite order. As p0c 0 is a geometric
pair of roots, it follows that p ¼ Hðrp; rc 0 Þ ¼ Hðrp;AÞ by Lemma 4.6. Thus we can
assume that all entries in MðCÞ are finite.

As C 0 is a geometric set of roots and as the group U stabilizes A it follows that
7

c 0AC 0 c
0 VA is a fundamental domain for the action of U on A; in particular, it is

not empty. It follows therefore that ð7
c 0AC 0 �c 0ÞVA is not empty.

Suppose now that p ¼ �Hðt;UÞ. Then AJ�p and by the considerations above
it follows that 7

c 0AC 0 �c 0 V�p ¼ 7
c AC �c is not empty. On the other hand

f�c jc A Cg is 2-geometric because C is geometric; hence f�c jc A Cg is geometric.
As C is geometric and MðCÞ is not spherical we obtain a contradiction to Lemma
4.8. Thus p ¼ Hðt;UÞ and A is contained in Hðt;UÞ. r

5 Strong reflection-rigidity

We recall the definition of a strongly reflection-rigid Coxeter system as it is given in
[3]: A Coxeter system ðW ;SÞ is called strongly reflection-rigid if the following holds
for each Coxeter system ðW 0;S 0Þ (whose set of reflections is denoted by T 0): Given
an isomorphism a : W ! W 0 with aðSÞJT 0, then aðSÞ is W 0-conjugate to S 0. We
call a Coxeter diagram strongly reflection-rigid if the associated Coxeter system is
strongly reflection-rigid.

Lemma 5.1. Let ðW ;SÞ be a Coxeter system, let T denote the set of reflections, let
RJT be universal and suppose that MðRÞ is strongly reflection-rigid. Then R is geo-

metric.

Proof. Let W 0 be the subgroup generated by R and let T 0 ¼ T VW 0 denote the set of
reflections in W 0. By Proposition 4.2 there is a geometric set of reflections R 0 such
that W 0 is the group generated by R 0 and such that T 0 is the set of reflections of
the Coxeter system ðW 0;R 0Þ. Now the identity on W 0 is an isomorphism mapping R

onto a subset of T 0. As MðRÞ is strongly reflection-rigid it follows that we can find

w 0 A W 0 such that R 0 ¼ Rw 0
. This shows that R is geometric. r

We say that a Coxeter diagram M satisfies Condition (F) if the following is
satisfied:

(F) Each universal set R of reflections in a Coxeter system ðW ;SÞ with MðRÞ ¼ M

is geometric.

Proposition 5.2. A Coxeter diagram is strongly reflection-rigid if and only if it satisfies

Condition (F).
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Proof. Suppose that M satisfies condition (F), let ðW ;SÞ be a Coxeter system of type
M, let ðW 0;S 0Þ be an arbitrary Coxeter system whose set of reflections is T 0 and let
a : W ! W 0 be an isomorphism such that aðSÞJT 0. Then aðSÞ is a universal sub-
set of reflections in W 0 and as M satisfies Condition (F), it follows that aðSÞ is a ge-
ometric subset of T 0. Let C 0 JFðW 0;S 0Þ be a geometric set of roots such that
aðSÞ ¼ RðC 0Þ. According to Proposition 3.6 D 0 ¼ 7

c 0AC 0 c
0 is a fundamental do-

main for the action of W 0 on its chamber system. This means that D 0 consists of one
chamber and hence aðSÞ is W 0-conjugate to S 0. This shows one direction; the other
direction is provided by the previous lemma. r

Let ðW ;SÞ be a Coxeter system and let T be the set of reflections of ðW ;SÞ; we
call a subset R of T a chordfree circuit if the Coxeter diagram associated to MðRÞ is
a chordfree circuit.

Lemma 5.3. Let ðW ;SÞ be a Coxeter system, let T denote the set of its reflections and

let RJT be a universal set of reflections which is a chordfree circuit and which gen-

erates an infinite group. Then R is geometric.

Proof. Since R is a cordfree circuit and hRi is infinite it follows that hRi is a co-
compact reflection group of the hyperbolic plane H2 or the Euclidean plane E2, see
for example [23]. In particular hRi acts e¤ectively, properly and cocompactly on a
contractible manifold. The main result of [5] then implies that the Coxeter system
ðhRi;RÞ is strongly reflection-rigid. Thus MðRÞ is strongly reflection-rigid and R is
geometric by Proposition 5.2. r

6 The edge-connected case

Throughout this section we have the following setup: ðW ;SÞ is a Coxeter system, T is
the set of its reflections and RJT is a universal set of reflections such that jRjd 3,
such that MðRÞ is skew-angled and such that the Coxeter diagram associated to
MðRÞ is edge-connected.

The goal of this section is to prove the following

Theorem 6.1. The set R is geometric.

In view of Proposition 5.2 the previous theorem has following consequence.

Corollary 6.2. A skew-angled, edge-connected Coxeter diagram of rank at least 3 is

strongly reflection-rigid.

Lemma 6.3. Given three pairwise distinct elements r; s; t A R, the product rsrt has infi-
nite order.

Proof. If the order of all products rs; rt; st is 3, then the three reflections generate the
a‰ne Coxeter group ~AA2 and the claim can be proved by considering the action of this
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group on the Euclidean plane. In the remaining cases one uses the solution of the
word problem in Coxeter groups (cf. [20]). r

Since in the skew-angled case any chordfree circuit of a universal set generates an
infinite group we have the following consequence of Lemma 5.3:

Lemma 6.4. Each chordfree circuit X JR is geometric.

It is further clear that for any chordfree circuit X JR the Coxeter matrix MðXÞ is
irreducible. It follows that there exists a unique geometric set of roots CðXÞ such that
X ¼ RðCðX ÞÞ (by Proposition 4.9). We recall that for each reflection r A X the root
which is contained in CðXÞ and associated to r is denoted by Hðr;XÞ.

Lemma 6.5. The set R is sharp-angled.

Proof. Let r; s be two distinct reflections in R. If rs has infinite order, then there is
nothing to prove (by Lemma 4.5); if rs has finite order, then, by Lemma 2.1 i), we can
find a chordfree circuit X JR containing s and r as MðRÞ is edge-connected. By the
previous lemma we know that X is geometric therefore fr; sgJX is geometric by
Lemma 4.1. r

Proposition 6.6. Let r; s A R be two distinct reflections such that rs has finite order and

let C;C 0 be two chordfree circuits of R which contain r and s. Then Hðr;CÞ ¼ Hðr;C 0Þ.

Proof. Let C ¼ fr ¼ t0; t1; . . . ; tk ¼ sg and C 0 ¼ fr ¼ t 00; t
0
1; . . . ; t

0
l ¼ sg.

Suppose first that t1 ¼ t 01. Then the group hr; s; t1i is infinite and the set
X ¼ fr; s; t1g is geometric, because it is a subset of the geometric set C (cf. Lemmas
4.1 and 6.4). This shows Hðr;CÞ ¼ Hðr;XÞ ¼ Hðr;C 0Þ.

Suppose now that t1 0 t 01. As MðRÞ is edge-connected we can find a sequence t1 ¼
s0; s1; . . . ; sm ¼ t 01 such that si B fr; sg and such that si�1si has finite order for any
1 c icm.

Assume now that Hðr;CÞ ¼ �Hðr;C 0Þ. As fHðr;CÞ;Hðs;CÞg and
fHðr;C 0Þ;Hðs;C 0Þg are both geometric pairs of roots, it follows from Lemma 4.4
that Hðs;CÞ ¼ �Hðs;C 0Þ. Applying Lemma 4.10 twice it follows that Hðs; hr; t1iÞ ¼
Hðs;CÞ ¼ �Hðs;C 0Þ ¼ �Hðs; hr; t 01iÞ. Now we apply Lemma 2.7 with w :¼ r to
obtain Hðrsr; hr; t1iÞ ¼ �Hðrsr; hr; t 01iÞ. By Lemma 6.3 we know that rsrt1 and rsrt 01
have both infinite order and therefore we obtain Hðrsr; t1Þ ¼ �Hðrsr; t 01Þ. By the
second part of Lemma 4.6 there is an index j such that rsrsj has finite order which
yields a contradiction to Lemma 6.3.

Hence Hðr;CÞ ¼ Hðr;C 0Þ and we are done. r

Corollary 6.7. Given r A R and two chordfree circuits C;C 0 JR which contain r, we
have Hðr;CÞ ¼ Hðr;C 0Þ.

Proof. By Proposition 6.6 the assertion is true if there is a reflection s di¤erent from r

which is contained in C and C 0. If there is no such reflection we choose s A C, s 0 A C 0
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such that sr and rs 0 have finite order. Considering a sequence s ¼ s0; . . . ; sl ¼ s 0 as in
Lemma 2.1 ii), the claim follows by an obvious induction. r

Given a reflection r A R, we define the root cr by choosing a chordfree circuit
CJR which contains r and setting cr ¼ Hðr;CÞ, and we put C ¼ fcr j r A Rg; the
previous corollary ensures that the roots ðcrÞr AR are well-defined, and as each edge
of the diagram MðRÞ is contained in a chordfree circuit (by Lemma 2.1 i)) we have
the following.

Lemma 6.8. If r0 s A R are such that rs has finite order, then fcr;csg is a geometric

pair of roots.

We will now prove the same result for two reflections in R whose product has in-
finite order:

Lemma 6.9. Let r; s; t; t A R be pairwise distinct reflections such that tr; ts; tt have finite
order and such that sr has infinite order and suppose that there are two chordfree cir-

cuits X ;X 0 JR containing fr; t; tg and fs; t; tg respectively. Then Hðr; sÞ ¼ cr.

Proof. Let X 0 ¼ ft; t ¼ s 00; s
0
1; . . . ; s

0
l ¼ sg. By Lemma 6.3 it follows that sttt and rttt

have infinite order. As X is a chordfree circuit it follows from Lemma 4.10 that
cr ¼ Hðr;X Þ ¼ Hðr; ht; tiÞ ¼ Hðr; tttÞ.

Suppose that cr ¼ �Hðr; sÞ. Then Hðr; tttÞ ¼ �Hðr; sÞ. Setting sj ¼ ts 0j t for

0 c jc l and slþ1 ¼ s we have Hðr; s0Þ ¼ Hðr; tttÞ ¼ �Hðr; sÞ ¼ Hðr; slþ1Þ and
si�1si is of finite order for 1 c ic l þ 1. It follows by Lemma 4.6 that rsk has finite
order for some k A f1; . . . ; lg. This contradicts Lemma 6.3 because rsk ¼ rts 0kt. r

Lemma 6.10. Let r; t; s A R be such that rt and st have finite order and such that rs has

infinite order. Then cr ¼ Hðr; sÞ.

Proof. By Lemma 2.1 there exists a sequence r ¼ s0; . . . ; sl ¼ s such that tsi has finite
order, such that si�1 0 si and such that fsi�1; t; sig is contained in some chordfree
circuit Xi for 1 c ic l. We choose such a sequence with l minimal.

If l ¼ 1 we have cr ¼ Hðr;X1Þ ¼ Hðr; sÞ because s A X1 (cf. Lemma 4.10). If l ¼ 2
the assertion follows by the previous lemma.

Suppose l > 2. Then rsj has infinite order for 2 c jc l by the minimality of
l and cr ¼ Hðr; s2Þ by the previous lemma. Suppose now that Hðr; sÞ ¼ �cr.
Then there exists j A f3; . . . ; lg such that Hðr; sj�1Þ ¼ �Hðr; sjÞ. Let Xj ¼
ft; sj�1 ¼ s0; . . . ; sk ¼ sjg; by Lemma 4.6 there exists i A f1; . . . ; kg such that rsi has
finite order. Choosing i A f1; . . . ; kg maximal for this property, we obtain a chordfree
circuit ft; r; si; siþ1; . . . ; sk ¼ sjg contradicting the minimality of l. r

Proposition 6.11. Let s; r A R be such that sr has infinite order. Then cr ¼ Hðr; sÞ and
cr Vcs is a fundamental domain for hr; si. In particular, fcr;csg is geometric.
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Proof. As the Coxeter diagram associated to MðRÞ is connected, we have a sequence
r ¼ s0; . . . ; sk ¼ s in R such that si�1si has finite order for 1 c ic k; we choose a se-
quence with k minimal. The minimality of k implies that rsi has infinite order for
2 c ic k. The previous lemma yields cr ¼ Hðr; s2Þ. As Hðr; si�1Þ ¼ Hðr; hsi�1; siiÞ ¼
Hðr; siÞ for 3 c ic k (by Lemma 4.10) an obvious induction shows Hðr; sÞ ¼ cr.

In view of Lemma 4.5 the second assertion is an immediate consequence of the
first. r

Corollary 6.12. Let r0 s A R be such that rs has finite order, let A be a spherical resi-

due stabilized by hr; si and let t A Rnfr; sg. Then AJct and 7
c AC c0q.

Proof. If rt and st have finite order, then fr; s; tg is a chordfree circuit. Therefore it
follows from Lemma 4.10 that ct ¼ Hðt; hr; siÞ and hence AJct.

If rt has infinite order, then ct ¼ Hðt; rÞ by the previous proposition and as r sta-
bilizes A it follows that AJct. If st has infinite order the same argument applies and
the first assertion is proved.

As A is a spherical residue stabilized by r and s it follows that Y ¼ AVcr Vcs0q
and as AJct for all t A Rnfr; sg it follows that q0Y J7

c AC c. r

Proof of Theorem 6.1. It follows from Lemma 6.8 and Proposition 6.11 that the set
C ¼ fcr j r A Rg is 2-geometric. Moreover, by Corollary 6.12 we have 7

r AR cr0q
and therefore C is geometric; as R ¼ RðCÞ it follows that R is geometric.

7 Visual decompositions and diagram twisting

We study decompositions of Coxeter groups as fundamental groups of graphs of
groups. We therefore apply the ideas of M. Mihalik and S. Tschantz [15]. Suppose
that ðW ;SÞ is a Coxeter system. Following [15] we call a splitting of W as a funda-
mental group of a graph of groups A visual (with respect to S) if every edge and
vertex group is special, i.e. is generated by a subset of S. It is clear that A must be a
tree of groups since W is generated by elements of finite order and therefore admits
no non-trivial homomorphism to Z; W can therefore not be an HNN-extension. We
use the following facts from [15], the second is actually a corollary of the first. Note
that the definition of TS in Proposition 7.1 below makes sense since any s A S is of
finite order and therefore acts with a fixed point. The fact that W acts without fixed
point guarantees its uniqueness.

Proposition 7.1 (Mihalik, Tschantz). Suppose that ðW ;SÞ is a Coxeter group that acts
simplicially without inversion on a simplicial tree T such that W fixes no vertex of T.
Then

W ¼ p1ðAÞ

where A ¼ ðTS; fGe j e A ETSg; fGv j v A VTSg; ffe j e A ETSgÞ is the graph of groups

where the objects are defined as follows: TS HT is the unique minimal tree such that
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for any s A S there exists x A TS such that sx ¼ x. The vertex and edge groups are de-

fined as Ge ¼ hs A S j se ¼ ei for each edge e of TS and Gv ¼ hs A S j sv ¼ vi for each

vertex v of TS. All boundary monomorphisms are simply the inclusion maps.

Suppose now that a Coxeter group splits as a proper amalgamated product
W ¼ A �C B. Then W acts on the associated Bass–Serre tree T. Since the amalga-
mated product is proper it follows that W acts without a fixed point. Proposition 7.1
therefore guarantees that W splits visually over a subgroup that fixes an edge of T.
Since any edge stabilizer is conjugate to C we have the following:

Theorem 7.2 (Mihalik, Tschantz). Let ðW ;SÞ be a Coxeter group and suppose that W
splits as a proper amalgamated product W ¼ A �C B. Then there exists a proper de-

composition W ¼ A 0 �C 0 B 0 that is visual with respect to S such that C 0 is conjugate to
a subgroup of C.

We recall the notion of diagram twisting as defined in [3]. Note that the operations
we describe here are only a subset of the operations defined in [3], but that they co-
incide when we restrict our attention to skew-angled Coxeter groups.

Suppose that a Coxeter group ðW ;SÞ splits visually as an amalgamated product
W ¼ A �C B where C is a finite subgroup. This means that we have sets S1;S2 HS

such that A ¼ hS1i, B ¼ hS2i and C ¼ hS1 VS2i. Let w be the longest element of
the Coxeter group ðC;S1 VS2Þ. This implies that wðS1 VS2Þw�1 ¼ S1 VS2. It follows
that

W ¼ A �C B ¼ A �wCw�1 wBw�1 ¼ A �C wBw�1

where W ¼ A �C wBw�1 is visual with respect to the set S1 UwS2w
�1 which is fun-

damental. This is clear since wS2w
�1 is obviously fundamental for wBw�1 and since

S1 VS2 ¼ S1 VwS2w
�1 is fundamental for C ¼ AVB ¼ AVwBw�1. We say that the

fundamental sets S and S ¼ S1 UwS2w
�1 are elementarily equivalent. We further say

that fundamental sets S and S are twist equivalent if there exists a finite sequence of
fundamental sets S ¼ S1;S2; . . . ;Sk�1; S ¼ Sk such that S i and Siþ1 are elemen-
tarily equivalent for 1 c ic k. Note that we do not require the amalgamated product
to be proper, i.e. possibly A ¼ C. This implies that conjugate fundamental sets are
equivalent.

The names diagram twisting and twist equivalent stem from the fact that the dia-
grams GðW ;SÞ and GðW ; SÞ are related by a twisting operation. Namely both
GðW ;SÞ and GðW ; SÞ are obtained from GðA;S1Þ and GðB;S2Þ by identifying the
subdiagrams GðC;S1 VS2Þ. In the first case the identification is the identity, in the
second by the automorphism induced by conjugation with the longest element of C.

Remark. Suppose that ðW ;SÞ, W ¼ A �C B and S1 and S2 are as above. Instead of
replacing S ¼ S1 US2 by S1 UwS2w

�1 we can replace it by w�1S1wUS2. The result-
ing diagram is clearly isomorphic to the first one since the two sets are conjugate.
Since any finite special subgroup is generated by either a subset of S1 or of S2 this
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implies that any twisting operation on the diagram level can be realized such that any
finite given spherical subset of S is preserved.

This implies that the twist equivalences preserve angles, i.e. that if a fundamental
set S is obtained from a fundamental set S of W then any generating pair fs1; s2gHS

of a finite dihedral group gets replaced with a pair fs1; s2gH S such that fs1; s2g and
fs1; s2g are conjugate in W.

The proof of the main theorem is by induction on #S, the cardinality of S. We can
assume that GðW ;SÞ is not edge-connected otherwise the results follows from Section
6. In the case that GðW ;SÞ is not edge-connected W decomposes visually as an
amalgamated product A �C B where A, B and C are special subgroups of ðW ;SÞ and
C is either trivial or of order 2 or dihedral. In particular the Coxeter generating sets
of A and B are of smaller cardinality than S, i.e. we can assume that the respective
results hold for each factor. We therefore need to study how a given visual splitting
behaves with respect to another fundamental set.

Crucial to our arguments later is the following lemma which is a consequence of
the work of V. V. Deodhar [6].

Lemma 7.3. Let ðW ;SÞ be a Coxeter system and suppose that the decomposition

W ¼ G1 �C1
G2 �C2

G3 is visual with respect to S. Suppose further that C1 is finite and

that g2C2g
�1
2 ¼ C1 for some g2 A G2 ( possibly C1 ¼ C2 and g2 0 1). Then there exists

a fundamental set S 0 such that S is twist equivalent to S 0 and such that the splitting

W ¼ G1 �C1
G2 �g2C2g

�1
2
g2G3g

�1
2 ¼ G1 �C1

G2 �C1
g2G3g

�1
2 is visual with respect to S 0.

Proof. By assumption C1 and C2 are special subgroups of the Coxeter group
ðG2;S

0Þ where S 0 ¼ S VG2. By Proposition 5.5 of [6] there exist sequences C1 ¼
U1;U2; . . . ;Uk�1;Uk ¼ C2 and W1; . . . ;Wk�1 of finite special subgroups of ðG2;S

0Þ
such that Ui;Uiþ1 HWi, such that Ui ¼ wiUiþ1w

�1
i where wi is the longest element

of Wi and such that g2 ¼ w1 � . . . � wk�1. This clearly implies that the k � 1 diagram
twists give the assertion of the lemma. r

Lemma 7.4. Let ðW ;SÞ be Coxeter system and C be a finite special subgroup such that

W does not split over a proper subgroup of C. Then there exists a finite decomposition

W ¼ �C
i A I

Gi such that the following hold:

1. Gi does not split over a subgroup of C for i A I .

2. W ¼ �C
i A I

Gi is visual with respect to a fundamental set S
0 that is twist equivalent to S.

Proof. We start with the trivial splitting, i.e. we put G1 ¼ W . In particular we have
a fundamental set S 0 ¼ S that is twist equivalent to S and a splitting W ¼ �C

i A I
Gi that

is visual with respect to this fundamental set.
If none of the Gi splits over a subgroup of C there is nothing to show. If some Gi

splits over a subgroup of C we show how to replace S 0 by a twist equivalent set again
denoted by S 0 and how to refine the splitting W ¼ �C

i A I
Gi by replacing Gi by two new

factors such that the obtained splitting is visual with respect to the new fundamental
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set. Since S is finite this process terminates and yields a decomposition and a set S 0

with the desired properties.
Suppose that there exists i A I such that Gi splits over a subgroup of C. If Gi splits

over a proper subgroup C 0 of C then W also splits over C 0 since both C and C 0 are
finite which contradicts our assumption. It follows that Gi splits over C. Theorem 7.2
implies that Gi splits visually over a subgroup C 0 that is conjugate to C. Lemma 7.3
now guarantees that we can replace S 0 with a equivalent set such that C 0 ¼ C. This
means that we can refine the visual splitting by replacing Gi with two factors. r

Lemma 7.5. Let ðW ;SÞ and C be as in Lemma 7.4. Choose a set S 0 and a decomposi-
tion W ¼ �C

i A I
Gi as in the conclusion of Lemma 7.4. Let SHT be a fundamental

set of generators of W. Then there exists a fundamental set S 0 that is equivalent to S

such that the splitting W ¼ �C
i A I

Gi is visual with respect to S 0.

Proof. We consider the amalgamated product W ¼ �C
i A I

Gi as the graph of groups

whose underlying graph has vertex set fxgU I , edge set f½x; i� j i A Ig, vertex groups
Gi for i A I and Gx ¼ C and all edge groups equal to C. The boundary monomor-
phisms are the inclusion maps. We consider the action of W on the Bass–Serre tree T
with respect to this splitting.

We assume that among all sets that are equivalent to S the set S is the one
such that the tree T

S
(of Proposition 7.1) has the smallest complexity, i.e. the

least number of edges. We choose the associated graph of groups A ¼
ðT

S
; fGe j e A ETS

g; fGv j v A VTS
g; ffe j e A ETS

gÞ as in Proposition 7.1.

Claim 1. Ge ¼ StabW ðeÞ for every edge e A ET
S
.

Proof. Suppose that Ge is a proper subgroup of StabW ðeÞ for some e A ET
S
. This

implies that W splits over a proper subgroup of StabW ðeÞ. Since the stabilizer of any
edge is conjugate to C this implies that W splits over a proper subgroup of C which
contradicts our assumption. This proves the claim.

Claim 2. If v A VT
S
, e1; e2 A ET

S
and e1 0 e2 then e1 and e2 are not Gv-equivalent.

Proof. Suppose that e1 and e2 are Gv equivalent, i.e. that there exists a gv A Gv such
that gve1 ¼ e2. Since our ambient space is a tree we can clearly assume that both e1

and e2 are incident with v. Since Ge1
and Ge2

are the full edge stabilizers of e1 and e2

we have Ge1
¼ g�1

v Ge2
gv. After collapsing all edges in the graph of groups except e1

and e2 we see that W splits as an amalgamated product W ¼ W1 �Ge1
W2 �Ge2

W3.

Because of Lemma 7.3 we can pass to an equivalent set S 0 such that the splitting
W ¼ W1 �Ge1

W2 �Ge2
�W3 ¼ W1 �Ge1

W2 �g�1
v Ge2

gv g
�1
v W3gv is visual with respect

to S 0. It is clear that the tree T
S 0 is contained in the tree T1 V g�1

v T2 where T1 is the
component of T

S
� e2 that contains v and T2 is the component that does not contain

v. (Note that T1 V g�1
v T2 is connected since both sets contain the terminal vertex of e1
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di¤erent from v). The tree T1 V g�1
v T2 however has smaller complexity than T

S
which

contradicts the minimality assumption. Thus the claim is proven.
The two claims imply that W is controlled by the tuple ðT

S
;T

S
; fGv j v A VTSg;q)

in the sense of [9]. It therefore follows from Proposition 5 of [9] that the splitting as-
sociated to T

S
is the induced splitting of W, i.e. the splitting that W inherits from the

action on the tree. Since the group action stems from a decomposition of W itself the
induced splitting must recover the original splitting of W. It follows that after con-
jugation the claim of the lemma holds. r

8 The proof of the main theorem

In this section we give the proof of the main theorem. If GðW ;SÞ is edge-connected
then the three conclusions of the main theorem follow directly from Theorem 6.1.

We first show that the first two conclusions hold if GðW ;SÞ is 1-connected, i.e. that
any fundamental set of reflections is twist equivalent to S. Since twist equivalence is
an equivalence relation we can clearly also modify S within its equivalence class. The
proof is by induction on #S, the cardinality of S.

If GðW ;SÞ is edge connected there is nothing to show, i.e. we can assume that
GðW ;SÞ contains a cut edge. It follows that W splits visually (with respect to S) as an
amalgamated product A �D2n

B. Now W does not split over a proper subgroup of
D2n since then W would split visually over the trivial group or a group of order 2 by
Theorem 7.2 which contradicts our assumption that GðW ;SÞ is 1-connected.

Let now W ¼ �D2n

i A I
Gi be a maximal decomposition as in the conclusion of Lemma

7.4. After replacing S and S by equivalent sets we know that this decomposition is
visual with respect to S and S because of Lemma 7.5. After joining factors we have
a new decomposition A �D2n

B that is visual with respect to both S and S. This
means there are sets SA;SB;SC ; SA; SB and SC such that S ¼ SA USB, SC ¼ SA VSB,
S ¼ SA U SB, SC ¼ SA V SB, that A ¼ hSAi ¼ hSAi, B ¼ hSBi ¼ hSBi and C ¼
D2n ¼ hSCi ¼ hSCi. Clearly GðA;SAÞ and GðB;SBÞ are also 1-connected. By in-
duction we know that SA and SA are equivalent. Since twist equivalence preserves
angles (use the remark of Section 7 after Theorem 7.2) this implies that SC ¼ fs1; s2g
and SC ¼ fs1; s2g are conjugate in C, i.e. that s1s2 and s1s2 are rotations about the
same angle. It follows that after conjugating S with an element of C, i.e. after some
twisting operations, we can assume that SC ¼ SC .

By induction we know that SA is equivalent to SA and that SB is equivalent to SB,
i.e. GðA;SAÞ can be obtained from GðA; SAÞ by a finite number of twisting operations

and GðB;SBÞ can be obtained from GðB; SBÞ by a finite number of twisting oper-
ations. Since C is a dihedral group, the subdiagrams of GðA; SAÞ and GðB; SBÞ cor-
responding to C are preserved by the twists.

After these operations we have sets SA and SB that contain SC and are conjugate
to SA and SB, respectively. Since the subgroup SC is dihedral and since in skew-
angled Coxeter groups edges are in 1-to-1 correspondence with conjugacy classes of
parabolic dihedral groups and parabolic dihedral groups are self-normalizing it fol-
lows that the conjugacy factors must lie in C ¼ hSCi. As this conjugation must
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further preserve SC , it must either be the longest element in C or be trivial. This im-
plies that possibly after twisting along SC we have S ¼ SA USB ¼ SA U SB.

We proceed with the case where GðW ;SÞ is connected but not 1-connected and
contains no bridge. Again we have to show that any fundamental set of reflections
if twist equivalent to S. The proof is again by induction on the complexity of the
Coxeter system.

Clearly W splits visually over a subgroup of order 2. As before we find a decom-
position W ¼ A �C B that is visual with respect to S and S after replacing them by
twist equivalent sets. We choose SA;SB;SC ; SA; SB and SC as before. Since C is of
order 2 we clearly have SC ¼ SC ¼ fcg for some reflection c A S.

It is clear that neither GðA;SAÞ nor GðB;SBÞ contains a bridge, i.e. the induction
hypothesis holds. As before we see that we can replace SA and SB by equivalent sets
again denoted by SA and SB such that fcgH SA, fcgH SB and that SA is conjugate
to SA and SB is conjugate to SB. We give the argument for SA, the case of SB is
analogous. Suppose that the conjugacy factor is a, i.e. aSAa

�1 ¼ SA. Since C is spe-
cial with respect to SA we have c A SB, since c A SA we have that aca�1 A SA. We now
see as in the proof of Lemma 7.3 that we can perform the conjugation with a by a
sequence of twisting operations along dihedral groups. Since at every step c is one of
the generators of the relevant dihedral groups, c is preserved during this process and
we obtain that S is equivalent to S.

It remains to show that if we admit bridges we still get that after equivalence of S
and S we have that GðW ;SÞ and GðW ; SÞ are isomorphic. Again the proof is by in-
duction on #S. We can clearly assume that GðW ;SÞ is not 1-connected since we have
shown the stronger result for this case. It follows that W splits visually over CGZ2

and we obtain as in the case before that we can assume that W ¼ A �C B is visual
with respect to S and S. Choose SA;SB;SC ; SA; SB and SC as before. By induction
we know that after some twisting operations that preserve SC we have that GðA;SAÞ
is isomorphic to GðA; SAÞ and that GðB;SBÞ is isomorphic to GðB; SBÞ.

It follows that GðW ;SÞ and GðW ; SÞ are both obtained from GðA;SAÞ and
GðB;SBÞ by identifying a vertex v1; v

0
1, respectively, of GðA;SAÞ with a vertex v2; v

0
2

respectively, of GðB;SBÞ. Since the twists preserve conjugacy classes of reflections by
hypothesis it follows that vi and v 0i must be connected by a path with odd labels only
for i ¼ 1; 2. It follows that we obtain GðW ;SÞ from GðW ; SÞ by a finite number of
twists.

If GðW ;SÞ is not connected then we have a free product and the result follows
immediately from the above and the work of Fouxe-Rabinovitch on automorphisms
of free products [10], [11].

9 Reflection-independence

In this section we will use the following observation which is an immediate conse-
quence of [4]:

Lemma 9.1. Let ðW ;SÞ be a Coxeter system, let s A S and suppose that S is the dis-

joint union of S1 and S2 where S1 is the set of all elements in S which commute with
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s and where S2 is the set of all elements s 0 A S such that ss 0 has infinite order. Then
CW ðsÞ :¼ fw A W j sw ¼ wsg is the special subgroup generated by S1. In particular,
ðCW ðsÞ;S VCW ðsÞÞ is a Coxeter system.

For the rest of this section we assume that ðW ;SÞ is a skew-angled Coxeter system
and T is its set of reflections.

For all s0 s 0 such that ss 0 has finite order, we have a longest element rðs; s 0Þ in the
corresponding dihedral group, which is an involution. If the order of ss 0 is odd, then
rðs; s 0Þ is a reflection. Using the geometric representation of W it is easily verified that
this is not the case if the order of ss 0 is even. A rotation is an element in W which
is conjugate to rðs; s 0Þ such that ss 0 has even order; the set of rotations in W (which
depends of course on S) is denoted by RotðW ;SÞ. As a consequence of a result of
Richardson [18] the set of involutions in W is the disjoint union of the set of reflec-
tions and the set of rotations.

Lemma 9.2. Let s0 s 0 A S be such that ss 0 has finite and even order and put a ¼ rðs; s 0Þ.
Then X ¼ hs; s 0i is the only spherical residue in the chamber system C ¼ ðC;PÞ asso-
ciated with ðW ;SÞ which is stablized by a.

Proof. Suppose that there exists a spherical residue Y 0X stabilized by a. By Prop-
osition 2.4 there is a sequence X ¼ R0;R1; . . . ;Rk ¼ Y such that Ri 0Riþ1 and
Ri JRiþ1 or Riþ1 JRi for i ¼ 1 . . . k and such that each Ri is stabilized by a. As
X 0Y we can assume that Y ¼ R1. As ðW ;SÞ is assumed to be skew-angled the
group hs; s 0i is maximal finite and hence X is a maximal spherical residue of C.
It follows that Y is properly contained in X. As X has rank 2 the residue Y has
rank one or it is a chamber; hence a is a reflection or a ¼ idC . This contradicts
a A RotðW ;SÞ. r

Lemma 9.3. Let s; s 0; a and X be as in the previous lemma. Then

X ¼ fw A W j aw ¼ wag and if r A W is any involution such that ar has finite order,
then r A X .

Proof. If w A W centralizes a then a fixes the spherical residue wðXÞ; hence wðXÞ ¼ X

by the previous lemma; this means w A X .
If r A W is an involution such that ra has finite order, then hr; ai is a finite group,

which stabilizes a spherical residue Y. By the previous lemma Y ¼ X and as a is in
the center of X the claim follows. r

Proposition 9.4. Let RJW be fundamental and suppose that a A R is in RotðW ;SÞ.
Then the following holds:

(1) X :¼ fw A W j aw ¼ wag is a dihedral group whose order is 4m for some odd m > 2
and X is a maximal finite subgroup of W.

(2) There are precisely 3 elements in R 0 :¼ RVX and ðX ;R 0Þ is a Coxeter system;
moreover, the set R 0nfag consists of two reflections t1 0 t2 which generate a di-

hedral group Y of order 2m.
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(3) Let b A XnY be an involution. If o is an involution in W such that bo has finite

order, then o A X .

(4) There exists a spike labelled by 2m in GðW ;SÞ.

(5) The edge ft1; t2g is a bridge of G 0 where G 0 is the graph obtained from the diagram

GðW ;RÞ by removing the vertex a.

Proof. As a is a rotation it follows from Lemma 9.3 that X is a finite parabolic sub-
group of rank 2 with respect to the skew-angled system ðW ;SÞ. Thus X is a dihedral
group and X is a maximal finite subgroup of W. Again by Lemma 9.3 it follows that
an involution o in W with the property that ao has finite order already commutes
with a; this is in particular true for each involution in R and hence we can apply
Lemma 9.1. We conclude that ðX ;R 0Þ is a Coxeter system where R 0 ¼ RVX . As X is
a finite dihedral group and there is a central involution in R 0 which has a complement
in X we conclude that the order of X is divisible by 4 but not by 8. As X is a parabolic
subgroup for the skew-angled system ðW ;SÞ it cannot have order 4. Moreover, a is
the only rotation in X and therefore R 0nfag consists of two reflections t1 0 t2 which
generate a dihedral subgroup Y of order 2m. This completes the proof of Assertions
(1) and (2).

As X is the centralizer of a it follows from Lemma 9.3 that ra has infinite order for
all r A R 00 :¼ RnR 0. Let Y be the subgroup of W generated by t1 and t2. As there are
no relations between a and the elements of R 00 it follows that W ¼ X �Y Z where
Z ¼ hRnfagi. Let b be an involution in XnY ; as Y has a central complement in X of
order 2 it follows that b is not conjugate in X to an involution in Y. Let o be an in-
volution in W such that bo has finite order. Then U :¼ hb;oi is a finite group. The
group W acts on the Bass–Serre tree T corresponding to the amalgamated product
W ¼ X �Y Z and therefore U stabilizes a vertex of T. But the only vertex stabilized
by b is the vertex v with Stab v ¼ X because b is not conjugate in X to an element of
Y; it follows that o fixes v, i.e. that o is an element of X. This completes (3).

As X is a maximal finite group, it is a parabolic subgroup of rank 2 with respect to
the system ðW ;SÞ. Therefore there exists an element w A W such that X 0 :¼ wXw�1

is a special subgroup of rank 2 with respect to ðW ;SÞ; put Y 0 ¼ wYw�1. It follows
that S VX 0 ¼ fs; s 0g for some s; s 0 A S. Without loss of generality we can assume that
s B Y 0 as S VX 0 generates X 0 and Y 0 is a proper subgroup of X 0. Let now s 00 A S be
such that ss 00 has finite order. Then w�1ss 00w ¼ w�1sww�1s 00w has finite order as well
and, as s is not in Y 0, b :¼ w�1sw is not in Y. As o :¼ w�1s 00w is an involution, Part
(3) yields o A X and therefore s 00 A X VS ¼ fs; s 0g. This proves that s 0 is the only
element in S with which s is connected in the graph GðW ;SÞ. As X has order 4m
and as X 0 ¼ hs; s 0i is conjugate to X Part (4) follows.

By (4) the group W can be written as a visual amalgamated product
W ¼ hSnfsgi �hs 0i X 0 with respect to S. As in the proof of the main theorem we see
that this splitting is also visual with respect to R for some fundamental set R that is
twist equivalent to R. As R 0 ¼ fa; t1; t2gHR is spherical it is conjugate to a spherical
subset R 0 ¼ wfa; t1; t2gw�1 of R. In particular R 0 generates a conjugate of X 0. As no
other spherical subset of R generates a subgroup conjugate of X 0 and as the above
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splitting is visual with respect to R it follows that X 0 ¼ hR 0i. As waw�1 is not a re-
flection of ðW ;SÞ it follows that either s 0 ¼ wt1w

�1 or that s 0 ¼ wt2w
�1. Removing

the vertex waw�1 form the graph GðR;RÞ clearly yields a graph such that the edge
fwr1w

�1;wr2w
�1g is a spike and therefore a bridge. As twist equivalence preserves the

property that an edge is a bridge this implies (5). r
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