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Scalar curvature of definable CAT-spaces
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Abstract. We study the scalar curvature measure for sets belonging to o-minimal structures
(e.g. semialgebraic or subanalytic sets) from the viewpoint of metric differential geometry.
Theorem: Let S be a compact connected definable pseudo-manifold with curvature bounded
from above, then the singular part of the scalar curvature measure is non-positive. The topo-
logical restrictions cannot be removed, as is shown in examples.

1 Introduction

1.1 Plan of the paper and main results. One of the most important and most difficult
problems in subanalytic geometry is to understand the induced length metric of sub-
analytic sets. For instance, the behavior of geodesics remains completely mysterious.
Apart from a theoretical interest, this question has applications even outside mathe-
matics, e.g. in robotics. This paper is devoted to the study of subanalytic sets by
means of integral geometry and metric differential geometry.

In a preceding paper ([2]), we defined a scalar curvature measure for singular
spaces. More precisely, we associated to each compact connected set belonging to
some o-minimal structure (e.g. semialgebraic or subanalytic sets) a signed measure,
called scalar curvature measure, which shares many of the properties of the usual sca-
lar curvature of Riemannian manifolds. One of the main results of [2] was to relate
the scalar curvature measure to curvature bounds in the sense of metric differential
geometry. It has been shown that a lower bound x on the curvature of a compact
connected definable set of dimension m implies the lower bound xm(m — 1) vol(—)
for the scalar curvature measure. This theorem generalizes in a non-trivial way the
easy fact from differential geometry that positive sectional curvature implies positive
scalar curvature.

In this paper, we carry on the study of scalar curvature measure of definable sets.
We will show that the analogous result in the case of negative sectional curvature is
valid under some minor topological restrictions.

The main theorem is the following (see 1.2 for definitions):

Theorem 1.1 (Main Theorem). Let S be a compact connected definable pseudo-manifold
with curvature bounded from above, then the singular part of scal(S, —) is non-positive.
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Remarks. If the dimension of S is m and the upper curvature bound «, then we get an
inequality between signed measures:

scal(S, —) < xm(m — 1) vol(S, —).

This generalizes the classical upper bound for the scalar curvature s < km(m — 1) on
m-dimensional Riemannian manifolds with sectional curvature bounded from above
by .

If S is a pseudo-manifold, then there exists a stratification with the property that
each m — l-stratum is contained in the boundary of exactly two mi-strata. This is
what we really need.

The topological assumption made in the theorem is in general necessary. For
instance, take the closed unit ball in Euclidean space. Being convex, it has non-positive
curvature in the metric sense, but its total scalar curvature is strictly positive because
of the boundary contribution. Another example will be presented in Section 4.

Since everything is done locally, the theorem remains true for closed connected
definable sets S. In this case, scal(S, —) is still a difference of non-negative Borel
measures and scal(S, U) is well-defined for precompact U.

The paper is organized as follows. After giving the basic definitions, we will show
some results about geodesics on definable spaces, which are of independent interest,
see Section 2. The proof of the main theorem is contained in Section 3. It consists of
two steps, one for strata of codimension 1, one for strata of codimension 2. The proofs
in these cases are different, although they share some common features, as the use of
the triangle inequality for angles and the extension property for geodesics. A conse-
quence of one of the obtained formulas is the invariance of the scalar curvature mea-
sure under isometries. Such a result (actually a more general version) was conjectured
by J. Fu. This invariance property is obtained in Section 4. It is the generalization of
the classical fact that the scalar curvature on a Riemannian manifold is an inner
quantity.

The idea behind the proof of the main theorem is to use the fact that, in the situa-
tion we will consider, each geodesic can be extended beyond its endpoints, by prop-
erties of CAT-spaces. In codimension 2, the triangle inequality for angles then yields
that the density at each point of the stratum is bounded from below by 1. In codi-
mension 1, a careful investigation of geodesics and angles between them is necessary.
Again, we will conclude by the triangle inequality for angles that the scalar curvature
measure is non-positive.

Acknowledgments. I would like to thank Professor Ludwig Brocker for helpful dis-
cussions and his encouragement and the referee for useful comments.

1.2 Recall of definitions. First, we will introduce spaces with curvature bounded from
above and give some properties that will be needed in the following proof. There is
an excellent book, [4], where the reader can find a systematic treatment of spaces with
curvature bounded from above. The following definitions are taken from Part II of
that book.
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Definition 1.2. A geodesic triangle in an inner metric space consists of three points
A, B, C and geodesic segments [4, B], [B, C] and [C, A] between them. We say that it
satisfies the CAT(x) inequality (x € R), if for all points P € [4, B] and Q € [4, C], we
have d(P, Q) < d(P,Q), where P and Q are points on the sides [4, B] respectively
[4, B] of a comparison triangle 4, B, C in the 2-dimensional space form M, with con-
stant curvature x with d(4, P) = d(A4, P), d(A4,Q) = d(4, Q).

A metric space is called d geodesic if all pairs of points a distance less than d apart
can be joined by a (not necessarily unique) geodesic.

We denote by D, the diameter of M, that is D, = oo for ¥ < 0 and D, = 71? for
x> 0.

Definition 1.3. a) An inner metric space X is called CAT(x) space if it is a D,. geo-
desic space and all geodesic triangles of perimeter less than 2D, satisfy the CAT (k)
inequality.

b) A metric space X is said to be of curvature < if it is locally a CAT(x)-space,
i.e. for every x € X there exists r, > 0 such that the ball B(x,r,), endowed with the
induced metric, is a CAT(x)-space.

Remark 1.4. The initials C, A, T stand for Cartan, Alexandrov and Toponogov.

Recall that in a metric space X, the angle / (4, B,C) is defined as the angle
at A of a comparison trlangle A, B, C in Euclidean space. The Alexandrov angle
between two geodesics c,c’ W1th c(0) =¢'(0) =x is defined as /(¢ c):=
limsup, o £ (x,c(2),c'(2)).

The next few statements are taken from [4]. We will need them in the course of the
proof of our main theorem.

Proposition 1.5. Suppose X is a CAT (x)-space. Then:

« The Alexandrov angle between the sides of any geodesic triangle of perimeter smaller
than 2D, in X with distinct vertices is not greater than the angle between the corre-
sponding sides of its comparison triangle in M>. Moreover, every D, -geodesic metric
space with this property is actually a CAT (i)-space.

« Every local geodesic in X of length at most D, is a geodesic.

« If X is a topological manifold, then each geodesic vy : [a,b] — X can be extended to a
geodesic y: [a — e, b+ ¢ — X for some ¢ > 0. It follows that, if X is complete, any
geodesic can be extended to a geodesic of length Di.

Next, we recall the definition of o-minimal structures. Most propositions about
semialgebraic sets can be deduced from a short list of properties, including the Tarski—
Seidenberg principle (which states that the projection of a semialgebraic set is semi-
algebraic). Each class of sets satisfying these axioms shares automatically many useful
properties with semialgebraic sets, ¢.g. boundedness of number of connected compo-
nents. The definition is the following:
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Definition 1.6. An o-minimal structure is a sequence ¢ = (0,),_; 5 5 . such that:
a) o, is a Boolean algebra of subsets of R".

b) Algebraic subsets belong to o.

c) If Seo, and S’ € gy, then S X S’ € 6,1

d) If S eo,,; then n(S) € g, where n: R""! — R” is the projection on the first n
coordinates.

e) o) consists exactly of finite unions of points and intervals.

Examples 1.7. The smallest example of an o-minimal structure is the set of semi-
algebraic sets.

Globally subanalytic sets form an o-minimal structure. A set is called globally
subanalytic if its closure in the projective space is subanalytic.

Sets definable over Rex, = (R, +, -, <, exp) yield another example of an o-minimal
structure.

The basic reference for o-minimal structures is [21], see also [10]. In the rest of
the paper, we fix an o-minimal system and refer to its elements as definable sets.

Definition 1.8. Let S = IR” be a compact connected definable set. Then the restriction
of the Euclidean metric of IR” defines a metric on S, also called Euclidean metric and
denoted by d,. In general, d, is not a length metric, but it induces a unique length
metric on S, which we will denote by d;. It is called inner metric of S.

Let 6(7,T') := sup,e7, o= d(v; T') denote the “distance” of vector subspaces
of R". Then T is contained in 7’ if and only if 6(7,T’) = 0. It is easy to see that
O(T,T") = || 7|, where IT7 denotes the projection on T and I17, the projection
on the orthogonal complement of 7.

Definition 1.9. A stratification S = | ). X’ of a closed subset of R" is called Verdier-
stratification if for any pair X', X/ of strata with X’ = 0X/ and each x € X’ we have
the following Verdier condition: There are a real number C > 0 and a neighborhood
U of x such that 6(7,X", T,X/) < C|lp—q| for pe X'NU,qe X' NU.

Given a Whitney-stratification S = UX’ < R” of a compact definable set, we
denote by Nor, S =« R" x § "=l = IR?" the set of unit vectors normal to some stratum.
Nor, Ty X7/, X' = X/ denotes the set of limits of unit normal vectors of X7 with foot-
points tending to points X’. A more detailed description of these sets and their rela-
tions can be found in [16].

Definition 1.10. We call a Whitney-stratification S = UX’ = R” of a compact defin-
able set tame if there is a stratification UN# of the unit normal space Nor,S <
R” x §"! < R?" satisfying the following two conditions:
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a) {N*} is compatible with the sets Nor, Tx: X7, where X’ = X/. This means that
each of the latter sets is a union of strata.

b) The projection z : Nor, S — S, (x,v.) — x is a submersion on each stratum.

Remark 1.11. Let S be a compact definable set. Then it admits stratifications of each
of the above types, as was proven by Ta Lé Loi ([18]) for Verdier stratifications and
by Brocker—Kuppe ([5], [16]) for tame stratifications.

If one defines scalar curvature measure in the integral geometric setting, then one
needs tame stratifications from the very beginning. However, in this paper, we define
scalar curvature measure by an explicit formula and will need tame stratifications
only for some technical arguments in the proof of the main theorem.

We now come to the definition of the scalar curvature measure of definable sets.
At first look, this seems to be an ad hoc definition, but it is shown in Theorem 1.2
of [2] that this definition coincides with a more natural definition coming from inte-
gral geometry. Since we do not want to go into details on integral geometry (such as
Lipschitz—Killing curvatures), we define the scalar curvature measure from the very
beginning by the formula below.

Definition 1.12. Let S be a compact connected definable set of dimension m with a
stratification S = Ui X'. Then we define a (signed) Borel measure by setting for each
Borel subset U = S

k

s(x) dvol,,(x) + 2 J Z tr 11, dvol,,—; (x)

scal(S, U) := J i
i

unxym
1 (_1)]77
+4HJ 35 210e(S, %) = On(S, x) | dvolya(x).
UnNxm-2 2 2

Here, wy,wy,...,w; denote the normal vectors of X”~! in direction of the highest
dimensional strata and tr 7], is the trace of the second fundamental form of X m=1
in direction w; (I, = —Vw;). By x15.(S, x) :== x(H.(S, S\{x})) we denote the local
Euler-characteristic of .S at x with respect to Borel-Moore homology. 6,,(S, x) denotes
the m-dimensional density of S at x.

Remark 1.13. The scalar curvature measure is independent of the chosen stratifica-
tion. See [16] or [5] for details.

Examples 1.14. A Riemannian manifold has positive or negative scalar curvature
measure if and only if its usual scalar curvature is positive or negative respectively.

A Riemannian manifold with boundary has positive or negative scalar curvature
measure if and only if its scalar curvature is positive or negative and the mean cur-
vature of the boundary is positive or negative respectively.

For a compact Riemannian manifold S, scal(S, S) is called the total scalar curva-
ture. The Einstein—Hilbert functional of S is the functional that associates to a metric
the total scalar curvature.
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The scalar curvature measure of the surface of a cube is concentrated in its vertices.
The scalar curvature measure of a vertex is 47z(1 — %) = n. The total scalar curvature
equals 87 = 4my. This is the Gauss—Bonnet-formula, which remains true in this set-
ting. See [5] for details.

2 Law of reflection

Not much is known about the behavior of geodesics on definable sets. Approaching
the boundary of a highest dimensional stratum, the differential equation for geodesics
becomes singular. However, using some metric arguments and sufficiently good strat-
ifications, we are able to show a law of reflection that will be important later on.

Proposition 2.1. Let S be a compact definable set of dimension m with a fixed tame strat-
ification, X""~' and X™ strata of dimension m — 1 respectively m with X"~' < X,
Then there is a definable subset E of X"~ of dimension smaller than m — 1 such that for
each point P € X"\ E the following two conditions are satisfied:

» The tangent map extends continuously from X™ to P, i.e. there is a unique m-
dimensional space T such that ToX™ — T for Q — P.

* Near P, Verdier’'s condition is satisfied.

Proof- We can refine the given stratification to a stratification satisfying Verdier’s con-
dition. Therefore, if we remove some strata of smaller dimension, Verdier’s condition
will be satisfied on X!

On the other hand, the set of limit tangent spaces of X has dimension less than
m in the Grassmannian of pointed m — 1 dimensional affine subspaces of R” (see
[16]). We denote for each x e X1\ X! the set of limit tangent spaces at x by
Tiim, xX . Then Ty X" = UXE Ty Tiim xX ™. We therefore see that the dimension
of Tiim. » X has to be 0 almost everywhere. As a consequence of Hardt’s Theorem
(see for instance [10], Theorem 5.22), this dimension is a definable function of x. It
follows that it is 0 outside a set of smaller dimension. With X" being locally con-
nected, Tjim, pX"™ is connected for each P e X m=1 Therefore, if it is 0-dimensional,
it consists only of a single space which implies that the tangent map extends contin-
uously to P. O

Proposition 2.2. Let X" and X"~' be two strata as above. Suppose that the tangent
map extends continuously from X™ to P with limit tangent space T. Then we can
describe X™ (locally at P) in the following way: There are an orthonormal base of R"

with associated coordinates {x, ..., x,} and smooth functions g, f such that:
TP/Ym_1 = {xm =Xmpl =0 = Xy = O}
T= {xn1+1 = X2 = = Xy = 0}

X™ is the graph of f over the open set U = {(x1,...,Xm) € T : X > g(X1,. ..y Xpu—1)}-
The derivatives of f, % (Q) tend to 0 for Q — P.
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Proof. Remember that X! is smooth. The tangent space Tp X! is included in T,
hence the projection of X”~! to T will be a smooth hypersurface of T which can be
written as the graph of a smooth function g. If we choose first a coordinate system on
TpX™~! extend it to a coordinate system of 7" and finally to one of R”, we get auto-
matically the first two conditions.

By our assumption, the tangent space TpX™ will be close to T in the Grassman-
nian. Therefore, the projection from X’ to T is a bijective smooth map. By simple
topological reasons, its image must be one of the sets {x, > g(xi,...,xu_1)} or
{xm < g(x1,...,%u-1)}. Changing the signs of the coordinate x,, and of g, we can
suppose that this image is U = {x,,, > g(x1,...,Xu_1)}. Since X™ is smooth, we get
some smooth function f such that X is the graph of f over U. The partial deriva-
tives of f tend to 0 as follows easily from the uniqueness of the limit tangent space.

O

Remark. We can extend f to a continuous function (also denoted by f) on U =
U Ugraphg. The graph of f over the set graph g is nothing else than X”~!. Since
X ™1 is smooth, f |araph g 15 smooth. We know furthermore that 7pX m=1 = T which
yields that all derivatives of [/, vanish at 0.

Proposition 2.3. Same situation as above. Let A € X™, P € X" be points such that
di(A,P) < d;i(A, P') for all points P' € X"~'. Further suppose that the tangent map
extends continuously from X™ to P. Choose a geodesic y between P and A, parame-
terized by arclength and with y(0) = P. Let w € T be the vector which is given in our
coordinate system by (0,...,0,1). Then

@) — P

lim ——=w.
o—0 o

Proof. We argue by contradiction. Suppose there exist a vector w’ # w and a sequence
of real numbers oy > o > --- — 0 such that

. i)— P
lim o) =P w'.
I— 00 o

(o)) — P—ow’

o

Set = ’

. Then r; — 0. By the triangle inequality we get

rio; = de(y(oc,-),P) — OC,'HW/”.

By some easy arguments using Whitney’s condition B, we see that lim; ., (@), P)

limiﬁww = 1. So we easily get |w']| = 1. I
On the other hand, we always have d; > d,. It follows ||y(a;) — P|| < o; and

(o) — PH p(oi) —

o

)l < [ - +

i

]
<r+1

Since r; — 0, it follows ||w’|| < 1 and finally ||w’|| = 1.
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Next, T is the unique limit tangent space and therefore w’ € T. Since w’ # w, some
of the first m — 1 coordinates of w’ must be non-zero. Suppose without loss of gener-
ality that w’ = (wy,...,wy,,,0,...,0) with w; # 0.

Now, y(o;) has coordinates (/y,. .., h,,0,...,0) with h; = a;w; 4+ o(a;). The line L;
that joins this point with the point P’ = (hy,...,yu_1,9(h1, ..., y_1),0,...,0) has
length /; = g(h1, ..., hm—1) — hy. Since the derivatives of g at 0 vanish, it follows that

i

o

lim

i— o0

= |wu| < 1.

For i sufficiently big, the function f* will have arbitrarily small derivatives on L;. It
follows that the length of the pre-image of L; under the projection to 7', which is a
curve in X, has a length which is close to the length of L;, hence strictly smaller than
a;. This is a contradiction, since we have supposed that there is no point on X!
with smaller distance to 4 than P, but P’ would be such a point. O

A similar proof will yield the following:

Proposition 2.4 (Law of reflection). Let S be a compact connected definable set of
dimension m with a fixed tame stratification and X"~' an m — 1 stratum neighboring
exactly two m-strata X|", X]". Let y be a geodesic such that y(a) € X|" for « <0, P =
7(0) € X! and such that y can be extended beyond P. We assume that the tangent
map extends continuously from X", X" to P. We choose for each stratum X" a repre-
sentation as in Proposition 2.2. Since both T\ and T, contain TpX m=1 e can suppose

that the coordinates xi, ... ,Xp_1 coincide on TpX"~'. Let wi = (ay,...,ap,0,... ,0),
be a tangent vector of y|_. Then, if wy is not contained in TpX ™, y|_, has a unique
tangent vector wy at P which is given by wy = (—ai, ..., —apu_1,an,0,...,0),.

Remarks. a) If w; is contained in 7pX m=1"the same holds true for w,, for otherwise
we could apply the proposition with the reversed geodesic.

b) If w is not contained in TpX™~!, both sides of y have unique tangent vectors.
(Just apply the proposition twice.) It follows that y(a) = P+ aw; + o(a) and p(—a) =
P + awy + o(«) for small positive a.

Proof of the proposition. Assume first that there is a sequence o; > oz > -+ — 0 such
that y(«;) € X{" for each i. Then the set

has an accumulation point w’ of norm 1 (this follows from arguments as in Proposi-
tion 2.3). By choosing a subsequence of {o;} (which for simplicity we call again o) we
can thus suppose that

y(a;) = P+ ow’ + o(a;).

Let w’ be given in coordinates by w’' = (a{,d5,...,a,,,0,...,0). Let II; be the pro-

Y mo

jection of IR” to T7. Since all derivatives of g at 0 vanish, the line between the points
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I y(e;) and IT;p(—a;) lies entirely in U for o; small enough. Its length is given by
ail|w’ — w|| + o(e;). The pre-image of this line yields a curve between y(o;) and
y(—0;) of length bounded by

(1 o(D) (eillw’ = wil + o(0)) = oul|w" = wl + o(20:).

This follows from the fact that the derivatives of f tend to 0 for o; — 0.
On the other hand, y is a geodesic between y(«;) and y(—o;) which shows

di(y(oi), (=) = 20

From both inequalities we easily deduce ||w’ — w| > 2. This is a contradiction,
since w’ and w both have norm 1 and have coordinates a,, > 0 respectively a/, > 0.
Our assumption was wrong, therefore y(o) € X;” for « in an interval (0,¢), ¢ > 0.

Take w” and a sequence oy > oy > --- — 0 with

(o) = P+ ow” + o(a;).

We shall show that w” = w».

Again, ||w”|| = 1 by easy arguments.

Consider in R” the points (ay,...,a,) and (a{,...,a,,_,,—a,,). Since a,, > 0 and
a,, >0, the line between these points intersects the set {x,, =0} in a point b =
(b1y...,bn-1,0).

For o; small, the line in 77 between IT;y(—a;) and (b, ¢1(b),0,...,0), lies in U
and has a certain length /;, while the line between ITry(o;) and (b, g2(5),0,. .., 0), lies
in U, and has a certain length /,. From the fact that g is smooth with vanishing deriv-
atives at 0, we deduce that

h+h=u|(a—aj,... an1—a, ,am+a,)|+o(e).

Again, we can lift the union of these lines by I1; and I1; to get a curve joining y(;)
and y(—a;) whose length is bounded by

will(ar —ay,... amr —ay,_y,am +a,)|| + oa;).

This cannot be smaller than d;(y(«;), y(—a;)) = 2a; since y is a geodesic between both
points. We deduce that

(a1 —ay,....am—1 —a, y,am+a,)| = 2.

Finally, it follows that a] = —ay,a} = —as,...,a), | = —an-1,a,, = ay. O
Proposition 2.5. Let S be a compact definable set of dimension m with a fixed tame
stratification. Suppose S has the geodesic extension property and X' is a stratum
neighboring exactly two strata X", XJ" of highest dimension. Then at a dense set of
points P e X" there is a geodesic y passing through both sides of X"~ that has
unique tangent vectors at P which are furthermore orthogonal to TpX ™.
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Proof. Choose some point A4 € X" near X"~! and the point P which is the nearest to
A in the inner metric. It is clear that there is a dense subset of points P arising in this
way. So we can furthermore assume that P satisfies both conditions of Proposition
2.1 and we can apply Propositions 2.4 and 2.3.

Choose a geodesic between 4 and P and extend it beyond P to a geodesic y. We
can reparameterize by arclength such as to have y(0) = P, y(—d;(4, P)) = A. By Pro-
position 2.4, y(a) € X" for small positive o. We know by Proposition 2.3 that y|_, has

a unique tangent vector w; = (0,...,0,1), (the index refers to the coordinate system).
We can therefore apply Proposition 2.4 to see that y., must have w, = (0,...,0,1),
as unique tangent vector. This finishes the proof of the proposition. O

3 Proof of the Main Theorem

We recall that the Main Theorem states that a compact connected definable set
of dimension m which is a pseudo-manifold with curvature bounded from above
by x has scalar curvature bounded from above by xm(m — 1), which means that
scal(S, —) < km(m — 1) vol(S, —). Before turning to the proof, we will give two easy
examples.

Example 3.1. Let S be a connected two-dimensional piecewise linear space. Suppose
that S is a topological manifold. Then the following statements are equivalent:

a) S is a metric space of curvature <O0.

b) For every vertex v of S, the link of .S at v is a CAT(1)-space.
c) The density at each vertex is at least 1.

d) scal(S,—) <0.

The equivalence between a) and b) is remarked in [4], Theorem 5.2., the equivalence
between b) and c¢) comes from the fact that a one-dimensional space is CAT(1) if and
only if there are no loops of length smaller than 2z. The equivalence between c) and
d) is clear by definition.

Example 3.2. Let us generalize this example to the higher dimensional case. S is now
a piecewise linear manifold which is supposed to be a topological manifold and to
have curvature bounded from above by 0.

Let m denote the dimension of S. The scalar curvature measure is concentrated on
simplices of dimension m — 2. Locally at a point P of such a simplex, S is the product
of the normal section and IR”~2. Consequently, the normal section is (at least locally)
a convex subset of S and thus a CAT(0)-space in a neighborhood of P (see also
Example II 1.15 of [4]). Since it is a two-dimensional space, this is by the preceding
example equivalent to the density at P being at least 1, which implies non-positive
scalar curvature measure by Definition 1.12.

Proof of Theorem 1.1. Let S be a compact connected definable pseudo-manifold of
dimension m which has curvature bounded from above by x. Choose a tame stratifi-
cation S = UX ' of S. By the topological condition, refining this stratification if nec-
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essary, we can assume that each stratum of codimension 1 lies in the boundary of
exactly two m-strata, hence in Formula 1.12 we have k = 2.

Furthermore, by Thom’s Isotopy Lemma ([20], [14]), we get for each point
x e X™ 2 that y,.(S,x) = (—1)". In view of Definition 1.12, we have to show that
for each Borel subset U — S, the expression

scal(S,U) = J s(x) dvol,, (x) + 2J tr [Ty, 4y, dVOl,,—1(X)

unxm unxm-1

+ 4ﬂJ (1 =6,,(S,x))dvol,_»(x)
Unxm-2
is bounded from above by xm(m — 1) vol(U).

This can be done for each stratum dimension separately, the codimension 0 case
being trivial (the CAT (x)-condition implies s(x) < xkm(m — 1) on the smooth part).
For strata of codimension 1 and 2, we will show the non-positivity of the scalar cur-
vature measure in Propositions 3.3 and 3.6. O

3.1 Strata of codimension 1. The aim of this section is the proof of the following:

Proposition 3.3. If S is a compact connected definable set of dimension m which is a
CAT(x)-space for some i (with respect to the inner metric) and X' an m — 1-stratum
on the boundary of exactly two m-strata, then scal(S, —)|yw1 <0

We recall that scal(S, —)| ;.1 is given by integration of the definable function /4 :=
2tr 11,4y, on X~ 1. To show that scal(S, —)| y.1 < 0, it is therefore enough to estab-
lish that #(P) < 0 on a dense subset of X”~!. We are going to prove that 4#(P) <0
for all points P € X”~! such that:

a) The tangent map can be extended continuously from both X", X7" to P.
b) The stratification satisfies Verdier’s condition near P.
c) There is a geodesic passing through P as in Proposition 2.5.

Let S have curvature < and let S = UX ' be a tame stratification of S and X! a
stratum neighboring exactly two m-strata. Then by Propositions 2.1 and 2.5, the set
of points P € X! satisfying the above three conditions is a dense subset of X"~!.

Let us fix such a point P. We find a geodesic y consisting of two geodesic arcs y;, 7,
such that y, lies entirely in X" and such that

yiler) = P+ oowi + ri(2)

for small positive o and where r; denotes a function with lim,_.o "'S‘) = 0. Further-
more, w; L TpX"~! and ||w;]| = 1.
Choose real functions ¢, & : (0,00) — (0, c0) such that for i = 1,2

a) ¢ is monotonically increasing,
b) lim,_¢é&(x) =0,

c) # < &(a).
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We carry out the following construction for both X|” and X7". In order to simplify
the notation, we omit indices. We write y in place of y; and so on. The well defined
limit tangent space of X at P is denoted by 7.

Apply Proposition 2.2 to the stratum X™ and the point P. This yields a system of
coordinates xi, ..., X,, a set

U = {(¥1y. 1) € R 5 X > (51,0, Xp 1)} € T = {1 =+ = 3, = 0}

and a function f: U — IR"™ such that X™ is the graph of f and f has deriva-
tives that converge to 0 if we approach P. In coordinates, f can be written as f =
(fiy---, fu—m). Since P is contained in 7', we get f(0,...,0) = 0.

Lemma 3.4. There are a neighborhood Vp of P and a constant C > 0 such that the
function [ satisfies for each j =1,...,n —m the following estimate:

i
ax,-

(Q)’ < Cd,(Q,P) fori=1,....m—1and Q€ Vp.

Furthermore,

R/

0x,

(Q)‘ — 0 for Q— P.

Proof of the lemma. The second assertion follows from the fact that the tangent map
can be extended continuously from X" to P (see Proposition 2.2).

Let us sketch the proof of the first assertion. It will be a consequence of Verdier’s
condition. Remark that the tangent space of X at Q is generated as a vector space
by the vectors

(1’0""’07% af—_>(001 o ...,—aﬁ_m>.

) ) ) )
Ox 1 X1 axrn Xm

Since the tangent spaces ToX"™ converge to T for Q — P, we see that all deriva-
tives converge to 0. We can suppose without loss of generality that among the vectors
% (Q), i=1,...,m—1, the first one is the longest. We denote its length by
L = L(Q). We have to show that L(Q) < Cd,(P, Q) for some constant C > 0.

Let ITp denote the orthogonal projection to TpX”~! and Hé the orthogonal pro-
jection to the orthogonal complement of TpX"™. From Verdier’s condition we know
that HHéHpH < Cd,(P, Q) for some constant C > 0.

Consider the unit vector (1,0,...,0) e TpX™ !, Its projection Iy(1,0,...,0) to
ToX™ is given by

of 0 Ofn— fn-n
alaa27--~;am7ali+"""‘amiw--aalﬁ’m+"'+an1 fn .
0x1 0X,n, 0x1 OXpm

for some real numbers (ay, ..., a,). The condition of orthogonality yields a system of

linear equations for the unknowns a1, . .., a,,. It has the form
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(Id + o(L))(ay, . ..,am)" = (1,0,...,0)"

where 1d,, denotes the identity matrix of type (m,m) and o(L) is a matrix that tends
faster to O than L.

Resolution gives us a; = 1 + o(L), a2 = o(L), ..., a, = o(L) where o(L) stands for
real numbers that tend faster to 0 than L. Hence

a a n—m
T Mp(1,0,...,0) = <0(L),0(L),...,0(L),6§11+0(L),..., -gxl +0(L)>
and therefore
ITMA(1,0,...,0)]| = H( Ofl af;;)” +o(L) =L+ o(L).

We know from Verdier’s condition that this must be bounded by Cd,(P, Q) for
some constant C > 0. Since we already know that L tends to 0 for Q — P, we see that
L is bounded by 2Cd, (P, Q) for Q sufficiently near P. This proves the lemma. O

Next, choose some real function &3 : (0, 00) — (0, c0) such that:
a) & is monotonically increasing,
b) lim,_ge&3(s) =0,
c) foralls >0, Qe B,(P,s) and j=1,...,n —m we have ‘%(Q)‘ < &3(s).

Remember that there are two m-strata neighboring X”~!. We define &4 in the same
way as we did for &3, but this time for the other m-strata. The existence of such
functions follows from the second assertion of the lemma.

We denote by I17 the orthogonal projection from S to 7.

Let s be a positive real number which we will let tend to 0. Set

e(s) == max{s, & (), &2(s), &3(s), &a(s)}'/2,
a(s) = 57 /e(s),
A=A(s) :=x(s)e X", A:=TrAdegraphgc Uc T,
B=B(«):=y(x), B:=Tly(B)eUcT.

Note that ¢ is monotonically increasing and lim,_,&(s) = 0. We easily see that
o <sfors<l.

Remember that y(«) = P+ oaw + r(a) where the vector we T is given in our
coordinate system by (0,...,0,1) and where r(x) = o(a). Then B is given by
(0,...,0,0) 4 7(r). Hence, L;)“ tends to 0 for o« — 0.

Since x;(s) is a geodesic on X!, x/'(0) is orthogonal to TpX ™. From x;(s) =
P+ 5x](0) + 5 x7(0) + O(s*) we get

A(s) = <s,0,...,0,S22<xi'(0),w>) + 0(s%).
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Lemma 3.5. For sufficiently small s, the line between A and B lies entirely in U.

Remark. Here is where we need that o is strictly bigger than s%. On the other hand,
we will need later that the quotient % should very slowly tend to 0 in order to erase
some superfluous terms. This is why we defined « in such a complicated way. Com-
pare also with the situation for Alexandrov spaces with curvature bounded from
below ([2]), where a similar definition for « was necessary.

Proof. Suppose there are arbitrarily small positive s such that the line does not lie
entirely in U. The slope of this line in direction x,, is of order a/s = s/&(s). If the line
does not lie in U, it must cut the graph of g at some point between 4 and B. Then, at
some other point, the slope of the graph of g would equal the slope of the line.
Remember that g is smooth with vanishing derivatives at 0. Therefore the deriva-
tives of g behave like O(s). This is a contradiction, since &(s) tends to 0 for s — 0.
This shows the lemma. ]

Let L denote the line between A and B. It is given by

Lit)=(1—-t)A+1tB= ((l —1)s5,0,...,0,fx+ (1 — Z);<x{’(0), w>>

+t7(0) + 0(s*) 0<t<1.

N

Let L denote the pre-image of L under II. Since L lies in U, L is well defined and
yields a curve in S between A and B. In our coordinate system, L is given by

L(t) = (L(1), A(L), Ao(L), -, fu-m(L)).

We will compute its length in order to get an upper bound for d;(A4, B). First, note the
following estimates:
|Bi — Ai] = | =5+ F1(2)] < O(s),
|By — Ai| = |Fx(2)| < O(2) < O(s), k=2,....m—1,

2
|Bn — A = ’—%(x{'(O), wy 4+ o+ F(0) + 0(s3) < O(a) < O(s).

On the other hand, since the first component of B— A4 is —s+ 7 (x), we have
||B — A|| = Cys for some constant C;.

L0 = (EO G D)5 AT (D) ).

Obviously, L'(t) = B — A. We calculate the other derivatives. It suffices to do the
calculation for £ f1(L):
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L of oL
fL: =k
D=3 o

We claim that this is an O(s?)-term. For k = 1,2,...,m — 1, we have ‘i < 0(s)
< O(s). For k =m and small s we have ‘f—fk

EL" 7| < e&3(s) <es) and eL"

O(2). The product is <O(e(s)a) = O(s?). This shows the claim.
It follows that

<

IO < IZ' @I + O(s*) = 1B = 4]* + O(s*) < (1 + O(s))| B~ 4]

From this we can deduce

—

di(4,B) < I(L) = j L) di < (14 O(s>) | B— 4.

The inequality d;(4, B) > d,(A4, B) > d.(A, B) = | B — A|| implies that in fact
d,-(A B) = (1+ O(s%))||B— 4]|.
In our coordinate system, B — A is represented as

B—A= (—s + 71 (), Fa (), ooy Pt (1), 00 4 Fo () —§<x{'(0), w>> + 0(s%).
It follows that
|B—A||* = 5> — 2571 () + O(F1 (2)*) + - - - + O(F(2)?)
+ o 4 O(aF (@) — as>{x] (0), WD + O(F(2)s?) + O(s*)
=57 = 2s71 () + &% — as?(x]'(0), w)
O((we1(2))%) + O(o%e1(2)) + O(ote (2)s7) + O(s*).

Next we have for s — 0:

2 2 2 4

a’e) (206) < (zs) < oe(s)” e(s)’ — 0.
as s
2

oer (o) < (s) < ae(s)”
os? 52 52

2
) o
4
N
W = 8(5) — 0

It follows that

|IB— A||* = s = 257 () + o — s2{x(0), w) + o(as?).
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From simple calculations and the fact that y is a geodesic between P and B we see
that

s> di(P,A) = d,(P,A) = s+ O(s*)
and
di(P,B) = o.
This enables us to compute the angle / (4, P, B) in the case k = 0:
cos /. (A, P,B)

_d(P,A)’ +d(P,B)’ —d(4,B)’

2d(P,A)d(P, B)
5?7+ o — (14 O(s%)) (s> — 2871 () 4 o — as*x] (0),w) + o(as?)) + O(s*)
B 20(s + O(s?))

_ fli“) + % x(0), W + o).

(Remark. In the case x # 0, we have to apply the corresponding law of cosines, but
the resulting asymptotic behavior is the same. This is not surprising, as we consider
very small triangles and locally, differences between hyperbolic, spherical and Eucli-

dean space vanish.)
Doing the same calculations with 4 = x;(s) replaced by C = x| (—s) yields

—fl(oc)
o

cos £ (C,P,B) = + % x(0), W + o).

Furthermore, replacing B = y,(o;) by D = p,(02) gives us:

cos £ (4. D) = 222 5 x{(0), 2> + (),
2

—}72(062)

cos L (C,P,D) = ;
2

+5 <1 (0), 2> + o).
Taking the sum of the cosines of these four angles yields:
cos /. (A,P,B)+cos . (C,P,B) +cos /[ (A,P,D)+cos . (C,P,D)
= 5{x7(0), w; +w2> + o(s) (1)

Let y4,75 = 71, 7c, ¥p = 7> denote the geodesics between P and A, B, C, D. By the
CAT-inequality, we have

LP(yAvyB) < L(A7PaB)



Scalar curvature of definable CAT-spaces 39

and analogous inequalities for the other points. From the triangle inequality for
angles (see [4], Proposition 1.14) and the fact that B, P, D lie on a geodesic y, we get

n= L p(yp:7p) < L P(7ps74) + L P(24,7p) < L(A4,P,B) + L(A4,P,D)

Using monotony of the cosine function, we get

cos /. (A,P,B) +cos L (A,P,D) <0
and analogously

cos /. (C,P,B) +cos . (C,P,D) <0.

It follows that
s<x{(0), w1 +wa> +o(s) <0
and hence
x((0), wy +wy) <0.

In the same way, such an inequality holds true with x; replaced by x; for i =
1...,m— 1. This shows

m—1
h(P) = 2(tr I, + trI1,) = 2 {x/'(0), wy +w2) <0
j=1

which was to be shown. O

3.2 Strata of codimension 2.

Proposition 3.6. Let S be a compact connected definable set of dimension m with a
fixed tame stratification. Suppose that S is a space of curvature <i for some x € R
and that each m — l-stratum lies on the boundary of exactly two m-strata. Then
scal(S, —)| ym2 < 0 for each stratum X™=2 of dimension m — 2.

Proof. From Thom’s Isotopy Lemma ([20], [14]) it follows that y;,.(S, P) = (—1)"
for each point P € X™~2. In view of Definition 1.12 we shall show that 0(S, P) > 1 at
almost each such point P. By the Normal Section Formula of [2], the density of S at
P equals almost everywhere the density of the normal section Sp := (TpX ’”’Z)L ns
at P. Tt thus suffices to show that 6(Sp, P) > 1 almost everywhere.

Fix a point P € X2, A neighborhood Up of P in Sp lies in a tubular neighbor-
hood around X”"~2 which implies that for each point 4 in Sp that is sufficiently close
to P, the Euclidean distance of 4 to X2 equals the Euclidean distance between A4
and P.

We denote by S,(P,r) the Euclidean sphere of radius r around P. By hypothesis
and Thom’s Isotopy Lemma, the sets S.(P,r)NSp are disjoint unions of sets
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Ki(r),...,K(r) which are homeomorphic images of circles. Their lengths will be
denoted by /;(r), ...,k (r). The density of Sp at P is given by

S ()
0(Sp, P) = }li% 2nr

This is proven in [2], it follows from easy arguments using Whitney-stratifications.
We will show that each term in this sum is at least 1. It suffices to show this for the
first one, so we claim that

hir) o 1

- =

r—0 27r

If this is not the case, choose a real number 0’ with lim,_,o% <0 <1lande>0.
For sufficiently small r > 0, the following conditions will be satisfied:

a) Ki(r) lies in a tubular neighborhood of X2,
b) 0 < i(r) <20’

Claim. There exist arbitrarily small » > 0 and points A4, B € K;(r) with the following
property: the geodesic between 4 and B contains a point P’ of X2,

To prove the claim, we need some topological arguments. Choose a homeomor-
phism ¢:S!'={ze C:|z| =1} — K;(r). We will extend ¢ to a continuous map
@: B> — S. To this end, fix some point 4 € K|(r). Then 4" := ¢p~!(4) € S! and each
point C’ of B? can be represented as

C'=A"+tB -4

with 0 <7< 1and B’ e S'. If C' # A’, this representation is unique.
Set B := ¢(B’). Denote the unique geodesic between 4 and B by 7, 5. We define

@(C") := 7, p(td;(A, B)).

Since in CAT(x)-spaces geodesics of length strictly smaller than D; depend con-
tinuously on their endpoints (see [4]), @ is a continuous map from B> to S.

Suppose that the claim were not fulfilled. Then ¢ is a continuous map from B to
S\ X™=2. 1t follows that the loop Kj(r) is contractible in S\ X"~2. The image of B>
under this map lies for r sufficiently small in the neighborhood Up. Hence K| (r) is
contractible in (S\X"2) N Up.

On the other hand, K| (r) cannot be contractible in Sp\{P}, since this set is homo-
topically equivalent to the union of the sets K;(r), i = 1,...,k. By Thom’s Isotopy
Lemma, (S\X"2, P) is locally homeomorphic to ((Sp\{P}) x R"~2, P). Therefore
K, (r) cannot be contractible in S\ X"~ which is a contradiction. The claim is proved.

Next, choose a sufficiently small » and points A4, B as in the claim. The geodesic y
between A and B contains some (not necessarily unique) point P’ € X2,
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The length of the curve K (r) is bounded by 27r0’. Since this curve is homeomor-
phic to a circle, we can join 4 with B by a curve S of length bounded by nr0’ which
stays at a Euclidean distance r away from P. By our assumptions, this curve lies in a
tubular neighborhood of X”~2 which implies that the Euclidean distance from each
point of the curve to P’ is at least r.

Take a series of points A = Py, Py,..., Py = B on f§ such that

di(P_/7P/+1)<85 ]:Oa1a7k_1

and

»
L

d;(Pj, Pjs1) < () < mr0)".

~
I
o

Let y; be the geodesic between P; and P'. We deduce from the CAT-inequality and
from the triangle inequality for dngles (see [4], Proposition 1.14)

k-1
n= L p (Y0 7) ZLP’ Vjs Vjs1) ZL(P P!, Pjsy).
j=0

Let /.(r) denote the length of the circle of radius r in M?2.

To estimate the angle / (P;, P', P, 1) note that d; (PJ,P ) = r. It follows that this
angle is not greater than the correspondmg angle of a comparlson triangle in M ? with
side lengths r,r, d;(P;, P;+1) which is bounded by v(¢)2n (P’ P’“ where (¢) tends to

1 for ¢ — 0 (just take a Taylor development of the - cosme)
It follows that

k-1 k—1
2r 2nr
n=Lp(or) < ) L(PLP Pia) < e) d;(Py, Pis1) < (&) 7m0’
2 () 25 L)
If we let ¢ tend to 0, we get
2nr
< X0 70
For r — 0, the right hand side tends to 70’ < &, which is a contradiction. Hence the
assumption 0 < 1 cannot be fulfilled and Proposition 3.6 is proved. OJ

The proof of the main theorem is complete.

4 Further remarks

A natural conjecture would be that the main theorem remains true under the weaker
condition that every stratum of codimension 1 lies on the boundary of at least two
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top dimensional strata. Surprisingly, this turns out to be false. The first part of the
proof of the main theorem can be generalized to this situation, the problem lies in the
codimension 2 case.

Take for instance 5 points on a 4-dimensional unit sphere and join each pair of
them by a semialgebraic arc of length %" in such a way that these arcs do not inter-
sect. With respect to the induced length metric, this graph is a CAT(1)-space, since
every non-contractible loop has length at least 2z = 2D, (see [4], Example II 1.15).
The Euclidean cone X over this graph with base point the center P of the sphere is
a (semialgebraic) CAT(0)-space by a theorem of Berestovskii (see [4], Theorem II
3.14).

On the other hand, y,(X,P)=1-54+10=6 and 60,(X,P)=10L2=1
which implies scal(X, {P}) =1+ 3 — L =1> 0. Hence the scalar curvature measure
is strictly positive at P.

Another remark concerns the invariance of the scalar curvature measure under
isometries. As Brocker—Kuppe and Fu have shown, each Lipschitz—Killing curvature
measure is preserved under any definable isometry. The scalar curvature measure
is one of these curvatures. However, there are simple examples of non-definable iso-
metries between definable sets (for instance between a circle and an ellipse). But it is
not clear if there is really a big difference between “isometric”” and ‘“‘definably iso-
metric”’. Anyway, the next corollary shows that scalar curvature measure is preserved
by any isometry:

Theorem 4.1. Let S, S be two compact, connected, definable sets and f : S — S an
isometry between them. Then [ induces an isomorphism of the scalar curvature mea-
sures, i.e. for each Borel measure U < S we have

scal(S, U) = scal(S, f~1(U)).

Proof. The idea is to use Formula (1). The scalar curvature measure on strata of
codimension 1 is there expressed only using inner geometric terms: certain geodesics
and angles. On m-strata, the scalar curvature is invariant under isometries (classical),
on strata of codimension 2 as well (local Euler-characteristic and density are invariant
under isometries). Furthermore, the scalar curvature measure is independent of the
stratification. These ideas can be easily put together to give a proof of Theorem 4.1.

O
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