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Subgroups of the Chevalley groups of type Fy
arising from a polar space

Anja Steinbach
(Communicated by A. Cohen)

Abstract. For any field K, we determine the quasi-simple subgroups G of the Chevalley
group Fy(K) which are generated by a class X of so-called abstract transvection subgroups of
G such that any member of X is contained in a long root subgroup of F4(K). First, we con-
struct a polar space with point set £, which is embedded in the Fy-geometry. This yields that
a conjugate of G is contained in a classical standard subsystem subgroup of F4(K) or G arises
from a Moufang quadrangle in characteristic 2. For the second possibility, the so-called Fy-
quadrangles are worth mentioning.

Introduction

For an arbitrary commutative field K, we denote by F4(K) the universal Chevalley
group of type F, over K. This is the group generated by symbols x,(¢), € K, r € ®,
with respect to the Steinberg relations; we refer to Carter [3, 12.1.1]. Here @ is the
root system of type Fj, a subset of the Euclidean space IR* with orthonormal basis
{e1,e2,€3,e4}. In the notation of Bourbaki [1], the extended Dynkin diagram of type
F4 is

o [e) O—=—0 [¢]
— 0y o oo o3 0lg

where o, =ej+ e, o] =ey—e3, oy =e3— ey,

o3 = é4, 0lg :%(81 — € — €3 —84).

A long root subgroup of Fy(K) is a conjugate of X, = {x,,(¢)|t€ K} ~ (K,+). The
group F4(K) is generated by its class of long root subgroups and is simple.

In the following, we study which groups arising from a polar space occur as sub-
groups of F4(K). The groups arising from a polar space are closely related to the
groups generated by a class of so-called abstract transvection subgroups, see Timmes-
feld [20], [21].

Here a conjugacy class £ of abelian subgroups of a group G is called a class of
abstract transvection subgroups of G, if G = (X} and for 4, B € X, either [4,B] = 1
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or {A4,B) is a rank 1 group. (The latter means that for a € A#, there exists b € B*
such that 4” = B* and vice versa.)
This paper is devoted to the study of the following problem:

P) Let X be a class of abstract transvection subgroups of G such that
a) there are distinct commuting elements in X,

b) Cs(A4) = Cy(C) implies 4 = C,

c) |A] =3, for 4 eX.

—_~ o ~

We assume that G is a subgroup of Y = F4(K) such that any element 4 € X is
contained in a long root subgroup A4 of Y. The problem is to determine the possible
G and the embedding of G in Y. It turns out that any such G is quasi-simple.

Problem (P) contributes to the determination of subgroups of groups of Lie type
generated by long root elements. For a root system W which is contained in ® and
has fundamental root system {py,..., p,}, we set M(pi,..., p;):=<X;|re¥). These
subgroups of F4(K) are called standard subsystem subgroups. In F4(K) there are the
classical standard subsystem subgroups

M (=0, 00, 00,03) ~ By(K),
M(C{z,OC3,0C4) =~ CS(K)v
M (op, 03,04, —e1) =~ C4(K) for char(K) =2

and the standard subsystem subgroups of these.

When G as in (P) already embeds in a (proper) standard subsystem subgroup
of F4(K), the problem to determine the possible G is reduced to the study of sub-
groups of classical groups. In this case, we may apply Steinbach [16] and Cuypers and
Steinbach [7].

We prove the following:

Theorem 1. For any subgroup G of F4(K) as in (P) above, passing to a conjugate, one of
the following holds:

(1) G is contained in one of the classical standard subsystem subgroups
M (o, 01,00,03) = By(K), M(oz,03,04) = C3(K) or Mo, 03,04, =€) =
C4(K) for char(K) = 2.

(2) char(K) =2 and G arises from a Moufang quadrangle.

We remark that there is overlap between Cases (1) and (2). Below in Theorem 2
and Theorem 3 (which yield Theorem 1) we give more detailed information on the
possible subgroups G and their embeddings in F4(K). For unexplained terminology,
we refer to Section 1.

In addition to the Steinberg generators and relations for F4(K) mentioned above,
we use the associated building. In this building, there are four types of objects, called
points, lines, planes and symplecta, and the long root subgroups of F4(K) may be
identified with the points.
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For G as in (P) we prove first that X is the point set of a polar space p(X), where
lines embed in symplecta of the building associated to F4(K). We say that G arises
from a polar space. Throughout we use the result of Buekenhout and Shult [2], which
characterizes polar spaces as point-line-spaces satisfying the one-or-all axiom.

When the rank of p(X) is at least 3, we apply the classification of polar spaces due
to Tits [22]. In the rank 2 case, p(X) is a Moufang quadrangle. We use the classifi-
cation of Moufang quadrangles by Tits and Weiss [24] (as stated in Van Maldeghem
[25]). Another important tool is the determination of weakly embedded polar spaces
(including generalized quadrangles) in Steinbach and Van Maldeghem [14], [15]. For
the definition of weak embeddings of polar spaces, we refer to (1.11).

For subgroups of F4(K) as in (P) of rank > 3 and rank 2, respectively, we prove:

Theorem 2. Let G be a subgroup of Fo(K) as in (P), such that there exist three distinct
pairwise commuting elements A, B, C € X with C ¢ Cx(Cs(A4, B)).

Then a conjugate of G is contained in M (o3, 03,04) = C3(K), when char(K) # 2,
and in M(ay, 03,04, —e1) = C4(K), when char(K) =2 (with underlying symplectic
space denoted by V in both cases). Moreover, ¥ is the point set of a symplectic polar
space of rank 3 and of some orthogonal polar space (with degenerate associated sym-
plectic form) of rank 3 or 4, respectively, which is weakly embedded in P([V, G)).

Theorem 3. Let G be a subgroup of Fs(K) as in (P), such that C € Cx(Cx(4, B)),
whenever A, B, C € T are distinct and pairwise commuting.

Then X is the point set of a Moufang quadrangle p(X). When char(K) =2, we
assume furthermore that X is the class of full central elation subgroups of o(X). Then
one of the following holds:

(@) A conjugate of G is contained in M(—a.,o,00,03) = Bs(K) (with underlying
orthogonal space V). Moreover, the dual quadrangle p(Z)D is an orthogonal quad-
rangle or a mixed quadrangle weakly embedded in P([V, G]).

(b) char(K) =2 and a conjugate of G is contained in M (o, 03,04, —e1) = C4(K)
(with underlying symplectic space V). Moreover, o(X) is some orthogonal quad-
rangle weakly embedded in P([V, G]).

(¢) char(K) =2 and p(X) is a so-called Fy-quadrangle.

We refer to Section 5 for a description of the Fy-quadrangles and to Theorem 6.2
for their embeddings in F4(K).

In this paper we work with arbitrary fields, including non-perfect fields of char-
acteristic 2 (as for example the field of rational functions over GF(2)). The latter are
involved in many interesting phenomena, in particular in the F4-quadrangles.

For finite groups and also for algebraic groups over an algebraically closed field,
results on groups of Lie type embedded in F4(K) are in the literature. Stensholt [19]
constructs embeddings among finite groups of Lie type such that long root subgroups
are long root subgroups. For the exceptional types in the finite case, the embedded
groups of Lie type have been determined by Cooperstein [5], [6].
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Subgroups of simple algebraic groups over an algebraically closed field, which
are generated by full long root subgroups have been determined by Liebeck and Seitz
[10] for all classical and exceptional types. In their setting the subgroups in question
arise from one of the spherical root systems.

Groups generated by abstract transvection subgroups have been classified by
Timmesfeld; we refer to [20, Thm. 3] or [21, III §1]. The quasi-simple ones arise from
a polar space, provided that 4 € ¥ is not too small. This result applies for G as in
(P) with |A4| = 4. In this paper I preferred to exploit the fact that G is a subgroup of
Fi(K).

For |4| = 3, we obtain a polar space associated to G, which is embedded in the Fjy-
geometry by construction. But for |4| = 2, G is a 3-transposition group and does not
necessarily arise from a polar space; we refer to Cooperstein [5, Part II]. We remark
that when | 4| = 2, we can also handle the (classical) groups which arise from a polar
space with the methods of this paper.

The paper is organized as follows: In the preliminary Section 1, we collect prop-
erties of F4(K), classical groups and polar spaces for later use. In Section 2 we con-
struct the polar space with point set £ which is embedded in the Fj-geometry. In
Section 3 we deal with the subgroups of rank > 3 and we prove Theorem 2. Next,
Theorem 3 on subgroups arising from a Moufang quadrangle is proved in Section 4.
Finally, Sections 5 and 6 are devoted to the F4-quadrangles and their embeddings.

The remaining subgroups of Lie type in F4(K) are dealt with in Steinbach [13].
There the subgroups in question are generated by a non-degenerate class X of abstract
root subgroups in the sense of Timmesfeld [20], [21]. In particular, there are 4, Be £
with [4, B] € Z.

Acknowledgements. This paper was taken from my Habilitationsschrift [12]. I wish to
express my gratitude to Professor F. G. Timmesfeld for his permanent support. I also
thank Professor Th. Meixner for useful discussions.

1 Preliminaries

For the definition and properties of Chevalley groups and the associated root sys-
tems, we refer to Carter [3], Steinberg [18] and Bourbaki [1].

1.1 Chevalley commutator relations in F4(K). Let 1, u e K and r,s € ®. When 0 #
r+ s ¢ O, then [x,(7), x;(u)] = 1. When r + s € @, then the following holds (with signs
depending on r, s, but not on ¢, u):

(a) If r,s are long or if r,s,r + s are short, then [x, (), x,(u)] = x4 (F1tu).
(b) If r, s are short and r + s is long, then [x,(7), x,(1)] = Xpp5(£21u).
(c) If ris long and s is short, then [x,(7), x;(u)] = X,ys(F10) X, 25(F1u?).

Furthermore, {(X,, X_,» ~ SL,(K).
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1.2 Standard subsystem subgroups. In the root system @ of type F4 we consider the
following root systems with a fundamental system of the indicated type:

O(C3) : {on, 03,04}, D(By): {—o, 00,000,053}, D(Cq): {02, 03,04, —€1}

The roots of ®(C3) are £(e; — e2), te3 & es, tes, Tes, £1(e —er £ e3 £ e4); the
ones of ®(By) are +e; + ¢;, +e; (all long roots); and in ®(Cy) there are +e; + ey,
te3 + e4, te;, L (te) £ e £ €3 £ e4) (all short roots).

We use the definition of a standard subsystem subgroup M (pi,..., p,) as given
in the introduction. The centralizer in F4(K) of (X (¢4, 18 My := M (02,03, 04),
the one of {Xi(,_c,)> is My := M(u2,03,% (€1 + €2 — e3 — e4)) (both 6-dimensional
symplectic groups). Furthermore, (M|, M>) is M (a2, 03,04, —e1 ), which is F4(K) for
char(K) # 2 and Cy4(K) for char(K) = 2.

1.3 The F4-geometry. We consider the building associated to F4(K) (in the sense of
Tits [22]) as a point-line geometry, the Fy-geometry. (In Tits [22] and in subsequent
papers this point-line geometry is called a metasymplectic space.) There are four types
of objects: points, lines, planes and symplecta. For properties of symplecta, we refer
to Timmesfeld [21, IIT Sec. 7], Van Maldeghem [25, p. 80] and Cooperstein [5, p. 333].

A point is a long root subgroup, the standard point being X, ;.,. Two long root
subgroups 4, C define a line, a so-called Fy-line, precisely when any element in AC is
a long root element. The standard line is X, .., X, 4., (identified with the set of long
root subgroups contained in it). Similarly, three long root subgroups (not on a line)
define a plane, when any two define a line.

As follows from the Dynkin diagram of type Fy, all points, lines and planes of
the Fy-geometry contained in a symplecton (seen as point-line geometry) yield a
polar space of type Bs;. Any two commuting long root subgroups A4, B of Fy(K),
which do not define an Fjy-line, are contained in a unique symplecton S(A4, B) of the
F4-geometry. The standard symplecton on X, .., and X, _,., is (the set of long root
subgroups contained in)

S = S(X€1+(’27A/€1—(’2) = <X€1iezaX€] i(’37X81i€4) Xz>1>~

All other symplecta are conjugate. Note that S < M (—o, o, 02, 03) = B4(K) and
that S = Z(U;) in the parabolic subgroup P; = U;L; with Levi complement asso-
ciated to the diagram (o, o, o3) of type B;. We may consider S as a 7-dimensional
natural module for B3(K).

Let S be the symplecton on X, +., and X, _., as above. When A, B are non-
collinear points in S (i.e., 4, B are not on an Fy-line), then S = S(A4, B). Furthermore,
S is (the set of points contained in) the subgroup generated by 4, B and all T which
are collinear with both 4 and B. For a long root subgroup E generating SL,(K)
with X, i.,, there is a unique long root subgroup 7 contained in S which com-
mutes with E. Any point in S, which is not on an Fy-line with 7', generates SL,(K)
with E.
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1.4 Properties of F4(K). The permutation rank of F4(K) on the class of long root
subgroups is five. The class of long root subgroups is a class of abstract root sub-
groups of F4(K) in the sense of Timmesfeld [20], [21].

The center of Fy4(K) is trivial. Any diagonal automorphism of F4(K) is an inner
automorphism. For any long root subgroup 7' in ¥ = F4(K) and 1 # ¢t € T, we have
Cy(t) = Cy(T). Let 4;,B; (i =1,...,4) be long root subgroups of ¥ = F4(K) such
that X; := {(4;, B;) ~SL,(K) and [X;, X;] =1 fori,j=1,...,4, i+ . Passing to a
conjugate, we may assume that Ay, By, ..., A4, By are X, ey, X ey Xej—ers X—e1+e2s
ng}_&“ X—€3+B4: Xe3+e4> X—e3—e4-

For any long root subgroup FE in F4(K), we denote by Mg the unipotent radical in
the parabolic subgroup N(E) (see Carter 3, 8.5]). For E = X, 4.,, we have Mg =
(X, |reW)y, where W :={e;+es,e1,e2,5(e1+extestes), e Les e ey, 00 e,
ey + es}. Furthermore, A™ is contained in S(E, A) for m € Mg whenever E and 4
define a symplecton.

1.5 Classical groups. First, we fix notation for a vector space endowed with a form.
For pseudo-quadratic forms, which are a generalization of quadratic forms and of
(anti-)hermitian forms, we refer to Tits [22, 8.2].

Let L be a skew field and W a (left-)vector space over L endowed with one of the
following non-degenerate forms of Witt index >1:

(a) a symplectic form [ : W x W — L, char(L) # 2,

(b) an ordinary quadratic form ¢ : W — L (with associated symmetric bilinear form
fWxW—=L),

(c) a (g,—1)-quadratic form ¢ : W — L/A (with associated anti-hermitian form f :
W x W — L)suchthat 1 e A :={c+c¢?|ceL}.

By the form on W we always mean f in (a) and ¢ in (b) and (c). A vector we W
where the form vanishes is called isotropic (or also singular; in particular when ¢ is
an ordinary quadratic form). The form is non-degenerate if there are no non-zero
isotropic vectors in Rad(W, f) := {we W | f(w,v) = 0 for all v e W}. For isotropic
x,y € W with f(x,y) =1, we call (x, y) a hyperbolic pair, spanning the hyperbolic
line H. Throughout (x;, y;) is a hyperbolic pair spanning H;. We say that the form
has Witt index n, when the maximal (totally) isotropic subspaces are n-dimensional.

We consider the classical groups which are isometry groups Aut(W,q) with ¢ as
in (b) or (c). From Cuypers and Steinbach [7, §2] we use the following on isotropic
transvection subgroups. An isotropic transvection associated to the isotropic point p
is a (non-trivial) element 7 in Aut(W,¢) with 7| . = id. Note that [W,1] < p™ =p ®
Rad(W, f). By T, we denote the isotropic transvection subgroup associated to p.
Then 7, # 1 provided that ¢ is not an ordinary quadratic form with Rad(W, f) = 0.

For orthogonal groups Q(W, ¢) with Siegel transvection subgroups 7, (which cor-
respond to singular lines Z; i.e. they are long root subgroups), we refer to Timmesfeld
[21, 1T (1.5)].

Next, we investigate whether a classical group is generated by two subgroups with
Witt index of the associated form decreased by 1. In the notation of (1.5), we have:
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1.6. Let L be a skew field and W a vector space over L endowed with a non-degenerate
( pseudo-)quadratic form (or a symplectic form in characteristic # 2) of Witt index >3.
We denote by G the subgroup of GL(W) generated by the isotropic transvection sub-
groups.

Let W=H, L H, L Hy 1 U and set Gy :=<{T,|p = Hi") and similarly for Gs.
Then G = {Gy,G3).

Proof. For A:=T,, B:=T,, we have 4,B< G3 and G = {(Cx(A4),B), where
is the class of isotropic transvection subgroups. Any A4 # T € Cx(A) is of the form
T = Ty +s With 0 # s € Hi", q(s) = 0. Since G is transitive on its isotropic points,
there is g € G| with {s>g = {x»>. Thus TY < G5 and G < {Gy, G3). O

1.7. Let L be a field of characteristic 2 and W =H, L H, L U L Rad(W, f) a
vector space over L endowed with a non-degenerate quadratic form q of Witt index 2.
We suppose that both U and Rad(W, f) are non-zero.

Then the group G generated by the isotropic transvection subgroups with respect to ¢
is generated by G, G2, where G; is the subgroup of G which leaves H;- invariant and
centralizes H; (i = 1,2).

Proof. With respect to the basis {x, ..., y1}, the unipotent radical M of the stabilizer
in G of {x;) consists of the elements

1
p.=| 2T | I )
q(z) | z 11

where J is the fundamental matrix of f| HE Since G = (M, T,, T,, | p isotropic point
in Hit), it suffices to show that M < (G, G»). Since U # 0, any p. is as a product of
conjugates under G of elements p,,, we U L Rad(W, f) (with p,, € G2). ]

There exist quadratic forms as in (1.7), we refer to Dieudonné [8, n° 26].

1.8 Polar spaces, central and axial elations. For polar spaces, we refer to Tits [22]
and Cohen [4]. A point-line geometry I' is called a polar space, if the one-or-all axiom
(due to Buekenhout and Shult [2]) is satisfied: For each point p and line / of T, the
point p is collinear with either one or all points of /.

When a point p is collinear with a point x of Z, then x is called a neighbour of p on
¢. We only consider non-degenerate polar spaces, where there is no point collinear
with all points. A polar space in which a point p is either on a line / or collinear with
a unique point of / is also called a generalized quadrangle. In this case the rank of I’
is 2. A Moufang quadrangle is a generalized quadrangle where the automorphism
group satisfies a certain transitivity condition, the so-called Moufang condition. The
Moufang quadrangles have been classified by Tits and Weiss [24], we refer to Van
Maldeghem [25].
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A central elation of a polar space I with center p is an automorphism of I" which
fixes all points of I" collinear with the point p. The central elation subgroup of I" with
center p is the subgroup of Aut(T") consisting of all central elations with center p.
Similarly, the axial elation subgroup associated to a line ¢ fixes all lines concurrent
with /.

The geometry of 1- and 2-dimensional subspaces of a vector space where a
form as in (1.5) vanishes yields a so-called classical polar space. Here every cen-
tral elation with center p is induced by an isotropic transvection associated to p,
we refer to Cuypers and Steinbach [7, (2.5), (3.4)]. Similarly, in an orthogonal polar
space (arising from an ordinary quadratic form) any axial elation is induced by a
Siegel transvection. We remark that any symplectic polar space with underlying 2n-
dimensional vector space over L, char(L) = 2, is isomorphic to an orthogonal polar
space in dimension 2n 4 dim;. L; compare Cohen [5, (3.27)].

1.9 Classical Moufang quadrangles. These are the classical polar spaces of rank 2
(up to duality). We use the notation of (1.5). In Case (a), we say I is a symplectic
quadrangle in characteristic #2. In Case (b), I is called an orthogonal quadrangle.
We write W = H, L Hy, 1L W, where (x;, y;) is a hyperbolic pair spanning H; and
Wy is anisotropic. For f := f1y, and %, a basis of Wy, we denote by J the asso-
ciated fundamental matrix of fy. We may consider (x;, x2, y1, y2) as an apartment of
I" and (x,x1, y2) as a half apartment with associated root group U,. Note that the
matrices of the elements in U, are (with respect to the basis {x;, X2, %o, 2, y1})

1

011

N 1 ,
0 1

cl0 z 011

where s = —J(z%) " and ¢(z) + (¢ + A) = 0 in (b), (c) (with obvious block decompo-
sition, empty entries are 0). Whence U, is abelian exactly in Cases (a) and (b) and in
Case (c) with f; = 0. Clearly, Siegel transvections are axial elations for orthogonal
quadrangles. Hence dual orthogonal quadrangles admit central elations.

1.10. When a classical polar space T as in (1.8) admits (non-trivial) axial elations,
then necessarily T is orthogonal.

Proof. Let t be a non-trivial axial elation of I" with respect to the line / = {xy, x2).
When p is a point on Z and s is a line of I through p, then st = s.

We assume that I' is not orthogonal. Then ¢ = —1. We have {(x;>t= {x;>
(i=1,2). Since {y;» is on <{x3, y1», but not perpendicular to {x;», we get that
{y1>t =<axy + y1y with a € L. Similarly, {y,>t = {Ax| + y»» with 1 € K. The points
{y1yt and {y, )t are perpendicular, hence ¢ = A°. Necessarily, 4 # 0. (Otherwise ¢ is
an axial elation for {xj, x,) fixing {(y;) and <{y,) and thus is the identity.)
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For any u € L, the line s := {(x; — u°x2, 4y1 + 2y of I' meets / and is hence fixed
by t. Therefore we may calculate {uy; + y,>¢ as the intersection of {y, yo>t and s.
By comparing coefficients we get uA® = —Au? for ue L. With x := Au° this means
x° = —x for x € L. Thus char L =2 (and T is not symplectic in char L # 2), ¢ = id
and A = {c¢+ ¢?|ce L} = 0. This means that I" cannot be of type (c) (where 1 € A),
a contradiction. O

1.11 Weak embeddings of polar spaces. Let V7 be a vector space over some skew field
K and I a polar space. We say that I is weakly embedded in the projective space
P(V), if there exists an injective map z from the set of points of I" to the set of points
of P(V') such that

(a) the set {n(x)|x point of I'} generates P(V),
(b) for each line / of T, the subspace of P(V) spanned by {z(x) | x € [} is a line,
(

c) if x, y are points of I" such that n(y) is contained in the subspace of P(V") gen-
erated by the set {n(z) | z collinear with x}, then y is collinear with x.

The map = is called the weak embedding and (c) is the weak embedding axiom. We
say that I' is weakly embedded of degree > 2 in P(V), if each line of P(}") which is
spanned by the images of two non-collinear points of I contains the image of a third
point of T'. Similarly, we define when the weak embedding has degree 2.

Weak embeddings of classical polar spaces and of generalized quadrangles have
been classified by Steinbach and Van Maldeghem [14, 15]. The main result is that
with known exceptions they are induced by semi-linear mappings.

We close this section with a construction of a weak embedding to be used later.
For a group G generated by the class X of transvection groups, we consider the point-
line geometry p(X) with point set ¥ and lines Cx(Cx(A4, C)) for [4, C] = 1; compare
(2.4).

1.12. Let K be a field and V a vector space over K endowed with a non-degenerate
quadratic form Q of Witt index = 2. Let G be a quasi-simple subgroup of Q(V, Q)
generated by the class ¥ of abstract transvection groups such that any A € X is con-
tained in a Siegel transvection group A of QV, Q).

We assume that p(X) is a Moufang generalized quadrangle and that there exists an
apartment (E, B, F, D) of o(X) such that [V,E]+ [V ,F] = [V, B] + [V, D].

Then the dual generalized quadrangle p(Z)D is weakly embedded of degree 2 in
P(V,G)).

Proof. We use that G acts transitively on the set of ordered ordinary 4-gons by the
Moufang condition. The 4-dimensional subspace [V, E] + [V, F] is the orthogonal
sum of two hyperbolic lines. We consider the map 7 : p(£)” — P(¥) which maps
each line 4 € T of p(2)” to the singular line [V, A] of ¥ and each point p = (T |T
a line of p(X)” on p} to (\{[V,T]| T aline of o(2)” on p}.

We prove that 7 is a weak embedding. Clearly, 7 maps lines to lines and is injective
on lines. Furthermore, 7 maps points to points. (Indeed, for any two lines 4 and C of
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©(2)” on the point p, necessarily [V, 4] + [V, C] is 3-dimensional and non-singular,
whence 7(p) = [V, 4] N[V, C].) We deduce that for non-collinear points x, y of p(Z)”
and different points z, 7 of p(Z)” collinear with both x and y, the same relations hold
for the images of these four points under z in the polar space associated to (V, Q). In
particular, 7 is injective on points. Thus the weak embedding axiom holds and 7 is a
weak embedding (of degree 2). O

2 The construction of a polar space

Let G be a subgroup of F4(K) as in Problem (P) of the introduction. We show that
¥ is the point set of a polar space p(X), where 4, C € X are on a line if and only if
they commute, and lines in (%) embed in symplecta of the Fy-geometry. For sym-
plecta in the Fy-geometry, we refer to (1.3). Proposition 2.3 below, compare Cuypers
and Steinbach [7, (5.4)], is crucial for the construction of (X). The proof needs that
|A4| = 3, for 4 € Z. First, we deduce from (P):

2.1. For 4 eZX, we denote by A the unique long root subgroup of F4(K) which
contains A. An arbitrary long root subgroup of F4(K) is denoted by a letter, like 7',
without a ‘hat’.

Let A,BeX. If [4,B] =1, then [/LE] = 1. If {4,B) is a rank 1 group, then
(A,B> ~ SL,(K). Furthermore, A4 is the unique element in ¥ contained in A, since
we assume that Cx(A4) = Cx(B) implies 4 = B.

When [4,B] =1 and 4 # B, then 4 and B are not collinear in the Fj-geometry.
Otherwise (1.3) implies that for a € A%, b € B* there is a long root subgroup 7 of
F4(K) which contains ¢ := ab. The role of 4 and B is symmetric and by (P) we may
choose C € X with [4, C] =1 and (B, C) a rank 1 group. We obtain SL»(K) ~ X :=
(B,Cy={(C,C" =<C,C"> <(C,T). Thus (C,T) is a rank 1 group and there
is ¢ € C such that 7¢ = C' = C®. We obtain 7= ab € X. This yields a € Z(X) for
a e A*, a contradiction. (Compare also Timmesfeld [20, (3.6)] or [21, II (2.3)].)

We have shown that two different commuting elements in £ define a symplecton.
Next, we investigate a certain subgroup of F4(K) generated by three long root sub-
groups of Fy(K).

2.2. Let A,B,C be different long root subgroups in Fy(K), |K|=3, such that
{A,B) ~SL,(K), {B,C» ~SL,(K) and A, C define a symplecton. Then the unique
long root subgroup E contained in the symplecton S(A, C) which commutes with B is
the center of (A, B, C). Furthermore, E and C are conjugate in the unipotent radical of
N(A).

Proof. We set Y :=<A4,B,C). Without loss 4 = X, 4e,, B=X_¢,—¢yy E = Xo\—e,-
Since C is contained in S(4, E), we obtain that A4, B,E, C < M(—o.,01,02,03) =
B4(K) with associated orthogonal space (¥, Q). We choose notation such that
A, B, E are the Siegel transvection subgroups (see at the end of (1.5)) associated to
the singular lines <{xi,x3), {y1,y2> and {xy, y2), respectively, where (x;,x,) and
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(x2, y2) are orthogonal hyperbolic pairs. Then the singular line associated to C is
(X1, y2 — O(s)x2 + 5), where s € {x1, y1, X2, y2>+ with Q(s) # 0

Thus Vs :=[V,{Y,E)] = {x1,y1> L {x2,y2> L {s) is a 5-dimensional non-
degenerate subspace of V. In Q(Vs, Q), the structure of Y is K'*2SL,(K), |K| = 3,
and the center of Y is a Siegel transvection group, T say. Necessarily, [V, T] =
{x1,y2) =[V,E]and T = E. This proves the first claim. The second one holds in the
orthogonal group. O

2.3 Proposition. Let A,B,C e X with [A,B] # 1, [B,C]# 1 and [A4,C] =1, A # C.
Then there exists F € = with [B,F] =1 and F € S(/f 0).

Proof. Let ae A*, be B* with 4® = B, Smce |C| = 3, there exists ¢ € C* such
that C* # B. Let b’ € B such that (C*)"" = C and set D := 4*®" = B*®'_ Then
[4%¢, B] # 1, whence [D, B] # 1, and D # 4, C.

For the unique point T' of S(4, C) with [T, B] = 1, necessarily S(4, C) = S(T, C).
Conjugation with beb’ yields that S(D, C) = S(T, C)

Since ¢B, D) is a rank 1 group, there exists d € D# such that (B)¢ = B. Hence
z:= acd centralizes A, C and normalizes B. Thus z € Z({4,B,C)) < Z((A, B, C‘)).
The latter is T by (2.2).

By (P) there is E € £ with [E, 4] =1, [E, C] # 1. Then 4 is the unique point in
S(/L C’) which commutes with E, whence <E, D) and {E, T are rank 1 groups.

Let ee E* with E¢= C¢. With C,E,D in the roles of 4, B,C we see that
there exists ¢’ € E# such that S(C, D) = S(F, D), for F := E“*'. We have F = E*
and F < S(C,D) = S(A4, C). Hence F and T are commuting long root subgroups in
the rank 1 group (E, T'>. This yields that ¥ = T, whence F € Cx(B) and F € S(4, C),
as desired. O

2.4 Theorem. We define the line on two different commuting elements A,C of X
as ly.c = {T €X|T eS(4,C)}. Then the point-line space p(X), with point set T
together with the set of all these lines, is a non-degenerate polar space. Any line has
at least three points and through any point there are at least three lines.

Proof. There is a unique line on two distinct collinear points by (1.3). The 2-then-all
axiom holds in p(X). Otherwise there exist T € X and distinct points A, B, D on a line
¢ with [T, A] =1 = [T, B] and (T, D) a rank 1 group. But then for suitable d € D#,
te T# weobtain T = D' ¢ /" = / a contradiction.

Hence p(X) is a (non-degenerate) polar space by (2.3). For different commuting
A, C € X, the conjugacy class X is not contained in Cx(A4) U Cx(C). Hence there is B
not collinear with 4 or C. Now (2.3) implies that B is collinear with a third point F
on the line on 4 and C. Furthermore F is collinear with B and C? for b € B. This
proves the theorem. O

4).

2.5. We give another description of the lines of the polar space p(X) of (2.
]. Thus

In a non-degenerate polar space, /** = 7 for any line / see Cohen [4, (3.1)
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for distinct commuting elements A, C of X, the line on 4 and C in p(X) is 44, ¢ =
Cx(Cs(4, C)).

The group G acts on the polar space (X) with kernel Z(G). For 4 € £, any a € A*
fixes all points collinear with 4, whence is a central elation with center A.

Next, we deduce some properties of G and p(X) for later use. For My, see (1.4).

2.6. For three distinct collinear points E,T,C of p(X), there exists ne N :=
(Cx(E)) N Mg such that C = T". Furthermore, for non-collinear points E,F of p(X),
we have {Cs(E))» = (Cs(E)N Cx(F))N.

Proof. By (2.2) there exists m € My such that C = T". We may choose S € Cx(E),
S¢Cs(T). Letl #seSandte T, ce C such that C* =S¢ and T* = S*. For n :=
st les™! = ser's™!, we obtain T" = C. Since S(E,C) = S(E, T), also S(E,S)" =
S(E, ). Furthermore, ne (CT)* < (T"T)" ' < T5' Mg Let ieT and mye My
with n = 7#*"'my. Then S = g’ ¢ S(E, S‘)”mal = S(E,S) (with (1.4)). Thus S and
§*" commute and necessarily 7 = 1. This proves the first claim. For E # C € Cx(E),
E ¢ Cx(F), we denote by T the unique neighbour of F on /g ¢. Then C = T" with

ne{Cs(E))NMzand C < TN, as desired. O

27. Let E,F be non-collinear points of o(X). Any point not collinear to E is conju-
gate to Fin {(Cx(E)). In particular G = {Cx(E), F). Furthermore, G is quasi-simple.
When o(X) has rank 2, then p(X) is a Moufang quadrangle.

Proof. The first claim follows from (2.4) and the proof of Steinbach [17, (3.1)]. For the
quasi-simplicity of G, one can proceed as in Cuypers and Steinbach [7, (7.3)]. With
(2.6) the proof of the Moufang condition is as in Steinbach [17, (3.2), (3.3)]. ]

3 Subgroups of F4(K) arising from a polar space of rank > 3

Let G be a subgroup of F4(K) as in Problem (P) of the introduction. In this section,
we suppose that the polar space ©(X) of (2.4) has rank at least 3.

Our aim is to show that a conjugate of G is contained in the standard subsystem
subgroup M (C3) := M(ay,a3,04) = C3(K), when char(K) # 2, and in M(Cy4) :=
M (o, 03,04, —e1) = C4(K), when char(K) = 2.

3.1. We fix E, F € £ with (E, F) a rank 1 group. Passing to a conjugate of G we
may assume that E= Xeiters F=X _ei—e,- Let Vg be the underlying 6-dimensional
symplectic space of M (Cs). We consider the point set A := Cx(E) N Cx(F) as a polar
space of rank at least 2. Each A4 € A is contained in a symplectic transvection sub-
group of M(Cs). Therefore the rank of A is at most 3 and p(X) has rank 3 or 4. For
the definition of a weak embedding of a polar space, we refer to (1.11).

3.2. In the notation of (3.1), we assume that A and C are different commuting points
of A. Then [Vs, T < [Vs, A] + [ Vs, C] for all points T on 4 c. Furthermore, A is weakly
embedded of degree > 2 in P(Vy), Vo = [V, G].
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Proof. Passing to a conjugate of G under M(Cj), we may assume that A=
Xes—esy C = Xeyye,- Let T be a third point on 44 ¢. Then T is contained in the sym-
plecton S(A, C') = Xy 4e4s Xoyteys Xoy £y, Xey » and T commutes with both X e, and
X o, ¢, The Chevalley commutator formula, see (1.1), implies that 7' < (4, C, X,,>.

Whence [V, T| < [Vs, A] + [Vs, C]. From this the lemma follows. O

For the non-embeddable polar space EY of rank 3 whose planes are not
Desarguesian, we refer to Tits [22, (9.1)]. Here € is a Cayley division algebra (with
anisotropic norm form) over a commutative field, L say.

3.3.  The polar space p(X) is not isomorphic to the polar space E¥.

Proof. Otherwise the polar space A of (3.1) is isomorphic to the dual of the orthogo-
nal quadrangle associated to the orthogonal space % x L* of vector space dimen-
sion 12. This is a contradiction to Steinbach and Van Maldeghem [14, (7.2.4)] which
asserts that a weakly embedded dual orthogonal quadrangle which is not mixed has
a standard embedding in a vector space of dimension at most 8. O

We say a symplectic form f has rank n, if the underlying vector space is W =
H,1---1H, 1 Rad(W,f) with Hy,..., H, hyperbolic lines for f. When ¢ is a
non-degenerate quadratic form in characteristic 2 with associated symplectic form f
then the Witt index of ¢ and the rank of f may differ, see after (1.7).

Using the classification of non-degenerate polar spaces of (finite) rank at least 3
due to Tits (see Tits [22], Cohen [4, (3.34)]) we see that (%) is one of the following:

3.4 Proposition. We assume that o(X) is a polar space of rank = 3. Then there
exists a commutative field L and a vector space W over L such that p(Z) is isomorphic
to the polar space of 1- and 2-dimensional subspaces of W, where one of the following
non-degenerate forms vanishes:

(@) a symplectic form f: W x W — L of rank 3 or 4 in char(L) # 2,

(b) an ordinary quadratic form q: W — L of Witt index 3 or 4 (with degenerate
associated symplectic form f : W x W — L of rank 3 or 4) in char(L) = 2.

Furthermore, there is an embedding o. : L — K. In particular char(K) = char(L).

Proof. By (3.2) we know that (X) has rank 3 or 4. From Tits [22] and (3.3) we
deduce that p(X) arises from a vector space W endowed with a form as in (1.5).

Let H be a hyperbolic line in W such that the underlying vector space of A
is Wy := H*. By Steinbach and Van Maldeghem [14], the weak embedding of A in
P(Vp) of (3.2) is induced by a semi-linear mapping ¢ : Wy — V (with respect to
o : L — K). In particular, L is commutative.

By (2.5) the polar space p(X) admits central elations. These are induced by iso-
tropic transvections by (1.8). Thus when g(Z) arises from an ordinary quadratic form
¢, necessarily char(L) =2 and the associated symplectic form f is degenerate (see
(1.5)). The rank of f is 3 or 4 by Steinbach and Van Maldeghem [15, (5.4)].
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By Tits [22, (8.2.2)] we are left with the case where p(X) arises from a (o, —1)-
quadratic from ¢ with 1 € A= {c+¢?|ce L}. But this situation cannot occur.
Indeed, since o # id (by definition of ¢) and L is commutative, A = {c € L|¢” = c}.
Hence ©(X) and the unitary space arising from f* (the anti-hermitian form associated
to g) coincide, see Tits [22, (8.2.4)]. Let (x1, y1), (x2, y2) be orthogonal hyperbolic
pairs in Wy. For ¢ € L with ¢? # ¢, the vector a := x, + ¢y, is anisotropic, but p :=
X1 — ¢y1 + a is isotropic. In the symplectic space the vectors ap and pg are perpen-
dicular (since ag is isotropic). By Steinbach and Van Maldeghem [15, (5.3)] this yields
f(a,a) = f(a, p) =0, a contradiction. ]

The group G/Z(G) is isomorphic to the normal subgroup of Aut(p(X)) generated
by the central elation subgroups, see Cuypers and Steinbach [7, (8.2)].

In the following we identify p(X) with the classical polar space of (3.4), consider-
ing A € X as an isotropic point p of W. We say that 4 corresponds to the isotropic
transvection group 7, (see (1.5)). Throughout (x;, y;) is a hyperbolic pair spanning
H..

3.5. Ifchar(L) # 2, then the rank of the symplectic form f is 3. In particular, G is not
isomorphic to Spg(L).

Proof. We assume that the rank of f is 4. Then W is spanned by four orthogonal
hyperbolic pairs (v;, w;). Passing to a conjugate of G, we may choose notation such
that the following correspondence holds (see (1.4)):

Ty, Ty, T, T, | Ty Ty, T., T,

Xel+ez Xfelfez Xelfez Xfel+ez X(’3+L’4 Xfe3fe4 X33fe4 X783+(’4
T<x1,xz> T<Y1d’2> T<x17)’z> T<J’1-,x2> T<X3,x4> T<}’37}’4> T<~’~‘3~J’4> T<y3‘x4>

The first row lists symplectic transvection groups on I, the second row lists the
long root subgroups of F4(K), which contain the corresponding element of X. We
denote the first four of these elements in ¥ by E, F, A, B. An entry in the last row
writes the long root subgroup of Fi4(K) in the entry above as Siegel transvection
subgroup of M(By)/{—1), where M(Bys) := M(—o,, o1, 02,03) = B4(K). The under-
lying 9-dimensional orthogonal space (with quadratic form Q) is H; L Hy 1 H3y L
H4 1 <a>

We define Gy := (T € | T corresponds to 7, with p € {v3,w3) L {v4,ws)). Then
Gy centralizes X, (. te,) and X, _,) and hence Go < M (a2, %3) = B>(K) with under-
lying 5-dimensional orthogonal space Vs := Hy L Hy L {a).

Let T be a third point on /z 4. Then T e S(E, A), see (2.4), and there exists
0 # s € Vs such that 7" is the Siegel transvection group corresponding to the singular
line /7 := {x1,x2 — Q(s)y, + s intersecting Vs trivially.

There is Tp € N Gy such that [V5, Ty] € H3 L Hy (since Spy(L) does not embed
in Q) (K) = SL,(K) * SL»(K)). For an arbitrary element in £ N G, let / be the asso-

ciated line in V5. Since [Gy,T] =1 and /N/r =0, we see that /7 + ¢ is singular.
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This implies that x, — Q(s)y, + s is contained in V3", which is H; L H, in charac-
teristic # 2. Hence s € Vs N (H; L H,) = 0, a contradiction. O

3.6 Theorem. Let G be a subgroup of Fy(K) as in (P) with associated polar space
©(X) of rank at least 3. Then a conjugate of G is contained in the standard subsystem
subgroup M(C3) := M(ay,03,04) = C3(K), when char(K) #2, and in M(Cy) :=
Moy, 03,04, —€1) = Ca(K), when char(K) = 2.

Proof. First we assume that char(K) # 2. By (3.5) the symplectic form f associated
to G has rank 3 with underlying vector space W = Hy | H, | Hj. Passing to a con-
jugate of G, we may choose notation as follows (compare (3.5)):

TY] Tyl | sz 7}2 | T‘C3 ]__'}73

Xel —e XfelJrez X€37£‘4 X763+e4 X€3+e4 Xfe3fe4

For the second row, we denote the corresponding elements X by E, F, A, By, A; and
B, respectively.

We set Gy :=<A4€e€X|A corresponds to 7, with p < Hi") and similarly G3
for H3. Then G centralizes X, _,). For f := %(el + ey —e3 —e4), we obtain Gy <
M (a2, 03, ) ~ C3(K), with underlying symplectic space V5. As in (3.2) the polar
space A := Cx(E)NCx(F) is weakly embedded in P(V;), where Vp := ([Vs, A41],
[Vs, Bi], [ Vs, A2], [Vs, B2] ), the 4-dimensional subspace of ¥ underlying M (o, 03) ~
Cz(K) This yields that G| < M(O(z, 063) ~ Cz(K)

Similarly, G3 < M(ocz,%(el —e—e3 +€4)) ~ C,(K). Since G = {G1, G3) by (1.6),
the claim follows.

Next, we deal with the case where char(K) =2. The orthogonal space asso-
ciated to G contains H; 1 H, 1 Hj. Passing to a conjugate of G we may assume that
the rank 1 groups corresponding to H, Hj are contained in {X4 (¢, 4¢,) s {Xi(e,—er))>
respectively. As above we define the subgroups Gy, G3 of G associated to Hi- and
H3L, respectively. Then G; < M(OCQ, o3, 064) ~ C3(K) and G3 < M(OCQ, OC3,ﬂ) ~ C3(K),
where f := % (e1 + e2 — e3 — e4). Since G = (G}, G3) by (1.6), the claim follows with
(1.2). O

Theorem 3.6 reduces the determination of the groups G in question to the study of
subgroups of symplectic groups generated by parts of symplectic transvection groups.
We refer to Cuypers and Steinbach [7, (1.5)] for the latter problem. The results
obtained in this section, together with a construction of a weak embedding as in the
proof of (3.2), yield Theorem 2.

4 Embedding classical and mixed Moufang quadrangles in F4(K)

Because of the results in Section 3 we are left with the case where the polar space
p(Z) of (2.4) has rank 2. By (2.7) p(X) is a Moufang quadrangle, which admits cen-
tral elations.
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4.1. Wefix E,F, A, B € X such that (E, 4, F, B) is an apartment in p(X). Passing to
a conjugate of G, we may assume (see (1.4))

E:X€1+€27 F:X—Bl—(’27 A:Xel—ezv B:X—€1+Bz'

We call (E, A4, F, B) the standard apartment in G. By U, we denote the root group of
G associated with the half apartment (B, E, A) which has E in the middle.

4.2 Theorem. Let (E, A, B, F) be the standard apartment in G. If T < <A, B>, for
any T € Cx(E)N Cx(F), then G < M := M(—o, 01,02, 03) = B4(K) (with associated
9-dimensional orthogonal space (V,q)). Furthermore, the dual generalized quadrangle
0(2)? is weakly embedded of degree 2 in P(Vy), where Vi := [V, G].

Proof. By (2.7) G =<Cx(E),F). Fix E # C e Cy(E) and denote by T the neigh-
bour of F on the line 7z ¢. Then T € Cx(E)N Cx(F) and by assumption 7" is a long
root subgroup of F4(K) contained in X := (A,B>. We obtain T = A4~ with xe X
and S(E,T) = S(E, A)* < M* = M. But C € /¢ 1, hence C is in S(E, T) by (2.4). In
particular C < M, whence G < M

We identify M with Q(V,¢q) (neglecting that B4(K)/{—1)> = Qy(K)) and obtain
the claim with (1.12). O

4.3. In the situation of (4.2) p(Z)” is an orthogonal quadrangle (arising from an
ordinary quadratic form) or a so-called mixed quadrangle (in characteristic 2 only,
see (4.7)) by Steinbach and Van Maldeghem [15]. In particular, p(Z) has abelian root
groups, see (1.9). Furthermore, the weak embedding is induced by a semi-linear
mapping.

Next we show that (4.2) applies when char K # 2.

4.4 Theorem. Let (E, A, B, F) be the standard apartment in G. If char(K) # 2, then
T <<{A,B), forany T € Cs(E) N Cxg(F).

Proof. We assume that there exists C € Cs(E) N Cg(F) with C £ (A4, B). Let Y¢ :=
(A,B,Cyand Y¢ := (4, B, C). Note that Yc < M (0, 03,04) = C3(K) =~ Spg(K) with
A,Band C pairwise non-commuting symplectic transvection groups. Hence we may
write A =T\, B= T, C=T i+ +s> Where (X1, y1) is a hyperbohc pair in the under-
lying symplectic space, 0 # € K and 0 # s € (x;, y1>*. Now Y¢ = <T¥1+M,B o))
has the following structure: Yo = NX ~ K'*2SL,(K) (semidirect product), where

= {A4,B, N/Z(YC) is a natural module for X and Z(Yc) T,. Moreover, (A" >
is abelian.

Let ne YceNN. Then C and C" commute, but Cy(E)NCs(F) does not
contain different commuting elements. Hence C" = C and [C,n] < CN N = 1. Simi-
larly, [4,n] =1 and [B,n] =1, thus n e Z(Y¢). Since char(K) # 2, there exists a
central involution z in {4, B). For y=xne Yc withne N, x € X, we have [y,z] =
[n,z] € Ye NN < Z(Yc¢). Hence [Ye,[Yc,z]] = 1. The three-subgroup lemma yields
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[Y¢, 2] =1, whence [Y¢, z] =1 (also when |A] = 3). We obtain Yc < Cy, (z) < XZ(Yc)
and Y¢ = Y/ < X. But this is a contradiction to the choice of C. O

For char K = 2, we need a different approach. In any Moufang quadrangle one
kind of root groups is abelian, but not necessarily both. Our next aim is to show that
in characteristic 2 all root groups of p(X) are abelian. From Tits [23] we deduce that
for any Moufang quadrangle admitting central elations, the root groups associated to
half-apartments with a line in the middle are abelian. Next, we construct ‘root sub-
groups’ (associated to points) in G.

4.5. Let the group G act on the polar space p(X) via p : G — Aut(p(X)). The map
p: ((Cs(E))NMg)NNg(A) N Ng(B) — U, is an isomorphism.

Proof. We set N := ((Cs(E)yNM;)NNg(A)NNg(B). Since Z(G)N My =1, the
restriction of p to N is injective. For any n e N, the image np is in U,. (Indeed,
G N My fixes any line on E by (1.4). For any point C on /¢ 4, we have C: = A" with
m € My by (2.2). Since the commutator subgroup of M} is contained in £, we obtain
that C" = C for n e Ng(A4) N Mg.)

Next, let u € U,. Then F and F* are conjugate in {Cx(E)) by (2.7). Thus there
exists n € (Cx(E)> N My with F* = F" by (2.6). Let x := (np)u~'. As before x fixes
all lines on E, whence also E, F, A, B. Therefore x fixes all points on /g 4 and all
points on /z . We obtain x € U, with F* = F; i.e., x is the identity in Aut(p(X)) and
u=np. J

4.6. Let (E, A, B, F) be the standard apartment in G. Then the root group U; (in G) is
contained in U* := {Xe, e, X(1/2)(e1+er + 5 + e0) - I particular, all root groups of p(X)
are abelian.

Proof. Since U, stabilizes the point p:= X, ., and the symplecton S :=
S(Xe,1eys Xey—e, ) Of the Fy-geometry, U, is contained in Py, the intersection of the two
parabolic subgroups N(p) and N(S) of Y (where the Levi complement has the dia-
gram (o, 03, 04) and (o, o2, 03), respectively).

Now U, commutes with the central elation group with center A or B (see Steinbach
[17, (3.5)]), whence centralizes X, +.,. Thus U, is contained in the standard subsystem
subgroup M := M (x2, 23,3 (€1 + €2 — e3 — e4)) ~ C3(K). But Py M is a parabolic
subgroup of M with unipotent radical U* and Levi complement L* associated to the
diagram (2, 23). By (4.5) we have U, < My, whence U, < My NU*L* = U*.

If char(K) = 2, U* is abelian. If char(K) # 2, (4.2) and (4.3) apply by (4.4). O

We use the classification of Moufang quadrangles due to Tits and Weiss [24], as
stated in Van Maldeghem [25, 5.5].

4.7. From the classification of Moufang quadrangles we use that (up to duality) any
Moufang quadrangle arises from a vector space with a form, is a mixed quadrangle
or is an exceptional quadrangle of type F4 or E,, n = 6,7,8.
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We do not need an explicit description of the exceptional Moufang quadrangles
of type E,, only that they have non-abelian root groups. The so-called mixed quad-
rangles, which are by definition subquadrangles of a symplectic quadrangle in char-
acteristic 2, were introduced by Tits; see Van Maldeghem [25, (3.4.2)], Steinbach and
Van Maldeghem [14, (6.1.1)], Cuypers and Steinbach [7, (4.2)]. For mixed quadran-
gles, the standard root subgroups U; satisfy [U;, Us] = 1 = [U,, Us]. The dual of a
mixed quadrangle is also a mixed quadrangle, see Van Maldeghem [25, (3.2.9)]. For
the exceptional Moufang quadrangles of type Fs, we refer to (5.2). Their duals are
also of type Fy, see Van Maldeghem [25, (7.4.2)].

4.8 Proposition. The Moufang quadrangle p(X) is in the following list. Furthermore,
Y is as stated, provided that X is the class of full central elation subgroups.

(i) p(X) is a dual orthogonal quadrangle and X is the class of Siegel transvection
subgroups on the orthogonal space associated to p(Z)D.

(i) p(X) arises from the vector space W = H, L H, 1 Rad(W, f) over L endowed
with the non-degenerate (o,—1)-quadratic form q: W — L/A of Witt index 2
(with associated anti-hermitian form f : W x W — L) such that 1 € A. Here X is
the class of isotropic transvection subgroups.

(iii) p(X) is an orthogonal quadrangle in characteristic 2, arising from a non-degenerate
quadratic form of Witt index 2, with degenerate associated symplectic form. Here
Y is the class of isotropic transvection subgroups.

(iv) ©(X) is a mixed quadrangle and X is the class of central elation subgroups.

(v) ©(X) is an exceptional Moufang quadrangle of type Fy and X is the class of central
elation subgroups.

Proof. We use (4.7). By (4.6) p(X) cannot be an exceptional Moufang quadrangle of
type E, or a dual of it. We may assume that o(X) arises (up to duality) from a vector
space with a form.

We know that p(X) admits central elations and has abelian root groups. Hence
by (1.9) and (1.10) the list of candidates for ©(X) is as stated in (4.8). (Note that
the symplectic quadrangle in characteristic # 2 is included in the first case.) For a
dual orthogonal quadrangle, any central elation of p(X) is an axial elation of the
orthogonal quadrangle p(Z)D and hence induced by a Siegel transvection, see (1.8).
In Cases (ii) and (iii) any central elation of (%) is induced by an isotropic trans-
vection, see (1.8). ]

4.9 Theorem. Let (E, A, B, F) be the standard apartment in G. We assume that p(X)
is a dual orthogonal quadrangle or a mixed quadrangle or that p(X) arises from a
pseudo-quadratic form as in (4.8)(il) with X the class of full central elation subgroups.

Then T < {A,B), for T € Cx(E) N Cx(F). Hence (4.2) applies. Moreover, any p(X)
as in (4.8)(i1) is necessarily a dual orthogonal quadrangle.
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Proof. Let A # T e Cs(E)NCx(F). We deal with the three cases separately.
First assume that p(X) is dual orthogonal, see (1.5) for Siegel transvections. In

the orthogonal space (W,q) associated to o(X)” we choose notation such that
E =T 00 F =Ty A= T35 B= Ty 5 where (xlv y1) and (x2, y2) are
orthogonal hyperbolic pairs. Then both [W, T] + {xj,x2) and [W, T| + {y1, ya) are
3-dimensional non-singular (note that ¢ has Witt index 2) and [, T] is singular.
Hence [W,T] € {{x2 — cx1,¢cy2 +y1),{x1, y2>|c € L}. Since A4 is the full (projec-
tive) Siegel transvection subgroup associated to {xi, y,>, we obtain 7 € B4.

The case of a mixed quadrangle is similar, using the information of Cuypers and
Steinbach [7, (4.3)]. Finally, when @(X) arises from a pseudo-quadratic form as in
(4.8)(ii), again T € B%. Thus p(2)” is weakly embedded of degree 2 by (4.2). Whence
Steinbach and Van Maldeghem [15, (6.4)] yields that () is orthogonal. O

Under the assumptions of (4.9), unitary groups of Witt index 2 arise only when
the underlying vector space is 4-dimensional over a commutative field or over a qua-
ternion division ring (as follows from Steinbach and Van Maldeghem [15, (6.4)]).

An orthogonal quadrangle, with f trivial on (H; L H,)", is mixed, see Van Mal-
deghem [25, p. 220]. Thus in (4.8)(iii), we are left with the case where f has rank > 3;
i.e., W contains three orthogonal hyperbolic lines with respect to f.

4.10. Let (E, A, B,F) be the standard apartment in G. We assume that char(K) = 2
and that p(X) arises from an orthogonal space (W,q) with ¥ the class of isotropic
transvection subgroups. Here q is a non-degenerate quadratic form of Witt index 2,
with degenerate associated symplectic form of rank = 3.

Then G < M(Cy4) := M(az,a3,04, —€1) = C4(K) ~ Spg(K), with underlying sym-
plectic space Vy. Moreover, p(X) is weakly embedded in P(Vy), Vo := [Vs, G|.

Proof. We write W=H, L H, 1 U 1L Rad(W, () with U and Rad(W, f) non-
zero. In W we choose notation such that E =T, F = T,,, 4 = Tx,, B=T,,, where
(x;, y;) is a hyperbolic pair. By (1.7) G = (G, G») with G; the group associated to
H (i=1,2). Now G; < M(o2,03,04) ~ C3(K) and Gy < M(a2,03,f) ~ C3(K),
where 8 :=1(e; + €2 — 3 — e4). With (1.2) we obtain that G < M(Cy). )
Next, we prove that [V, C| < [V, E] + [V, 4], for C on /g 4. By (2.4), C is
contained in the symplecton on E and A, whence C < (X, 4oy, Xey 55 Xoy 405 Xey D
Thus C centralizes the long root subgroups E, A and the short root subgroups
X(1/2)(e e teste) Of M(Cq). A calculation in the 8-dimensional symplectic group
shows that [V, C] < [V, E] + [Vs, 4], as desired. This yields a weak embedding of
o(=) in P(Vh). O

We remark that in (4.10) the rank of f is at most 4 by Steinbach and Van Mal-
deghem [15, (5.4)]. The results obtained in Section 4 yield Theorem 3.

We close this section with an example that in characteristic 2 we cannot expect
that for G as in (P) the central elation subgroup associated to the point 4 in the polar
space (%) of (2.4) is contained in A. (This phenomenon already occurs for subgroups
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of C3(K), char(K) = 2.) This is why we added in Theorem 3 the assumption that X is
the class of full central elation subgroups.

4.11 Example. Let K be the field of rational functions over GF(2). Then K =
uK? @ K? for a suitable u € K. We consider the Chevalley group of type C; over K
with associated fundamental root system { f; — f>, f> — f3,2f3}. For x = uv® + a* and
b in K, we define

ur(b) := x5 5(b),  u2(x) = x5 5 (0) - X545 (1) - x25 (),

us(b) = x545(b),  ua(x) := x5 5 (0) - X455 () - x2p5(a”).

By U; we denote the group consisting of the ; (i = 1,...,4). Then U, U; ~ (K, +)
and the same holds for U,, Us. Furthermore the only non-trivial commutator rela-
tion among the U; is [u1(b),us(x)] = uz(b>x)us(bx). Thus the group G generated by
Ui,..., Uy and the corresponding ‘negative root groups’ Us,...Us is a Chevalley
group of type C, over K.

Let V := {uz(a*)|a € K}. Then T := 1,9 is a class of abstract transvection groups
of G. Any 4 € ¥ is contained in a long root subgroup A of C3(K). But this does not
hold for the full symplectic transvection group U, in G.

5 The exceptional Moufang quadrangles of type Fy4

The exceptional Moufang quadrangles of type Fy were discovered by Richard Weiss
in February 1997, defined in terms of commutator relations. Their central elation
subgroups are contained in long root subgroups of F4(L), where L is a suitable non-
perfect field of characteristic 2.

We describe the Moufang quadrangles of type Fy in (5.2), following Miihlherr and
Van Maldeghem [11]. Then we show that the group generated by the associated cen-
tral elation subgroups is generated by two classical subgroups S, S> of Witt index 2.
In Section 6 these two subgroups are crucial for the determination of the embeddings
of the Fy-quadrangles in Chevalley groups of type Fy4. In particular, we will apply the
results on the embeddings of S| and S, obtained in Section 4.

5.1 Commutator relations. In Chevalley groups F4(L), char(L) = 2, we define

Uy 1= (1, P2, P3y P4y €) 7= X(1/2)(er-+er—es—eq) (P1)X(1/2)(er+ertes+es) (P2)
“X(1/2)(e1+er—estes) (P3)X(1/2) (01 +ertes—es) (P4) * Xey 1y (€),
ug := G411, 12, 13, 14, @) 2= X(1/2)(e1—er—es—eq) (1) X(1/2) (1 —es +eres) (12)
“X(1/2)(e1—er—es+es) (13)X(1/2) (01 —ertes—eq) (14) * Xei—ey (@),
Uy = U1 (81,52, 53,54, b) 1= Xey—ey (1) Xey ey (52) * Xey—ey (83)Xey ey (52) - Xey (D),

us 1= 173(6]17%7 q3,44, d) = Xej—e3 (6]1)Xe1+e3 (q2> : Xere4(Q3)Xel+e4(Q4) * Xey (d)
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Then the following commutator relations hold:

[u1,us] = Xey 1o, (5192 + 5241 + 5394 + 5443),
[z, us] = X, (1p2 + 2p1 + 13pa + 1ap3),
[ur, us] = ur(bty + s1t4 + 5313, bty + $213 + Sats, bts + s1t2 + sat1, bty + s2t1 + 8312,
ab2 + as15> + aszsy + 5153 t% + S1S4IZ —+ 5253 tg + szs4t12)
2 2 2 2 2 2 2 2
c U3 (as1 + 8315 + Saty, asy + $315 + Saty, asy + s1ty + Sa2ty,as4 + 8145 + 5213,
ab + btity + btsty + s1tats + sati1ts + s3t213 + Satila).
These relations follow from Chevalley’s commutator formula for F4(L), see (1.1).
Since the characteristic is 2, we do not have to take care of signs. Furthermore, some
commutators vanish; e.g., [X;, X;] = 1, when r,s are short roots such that r + s is a
long root. (The check of the above relations, with an implementation of the Cheval-

ley commutator relations in the unipotent subgroup of a Chevalley group, is part of
the diploma thesis of Haller [9].)

5.2 Description. For the Moufang quadrangles 2 := Q(K, L, K’; o, ) of type F, see
Miihlherr and Van Maldeghem [11, 2.2] or Van Maldeghem [25, p. 218]. We say 2 is
an Fy-quadrangle. Here L is a field of characteristic 2 with an automorphism ¢ of
order 2 and L’ is a subfield of L containing L>. For ¢ € L, we write 7 := °. The fixed
field of 0 is K:={te L|f=1t} and K’ := L’NK. Furthermore, o € K’ and fe K
satisfy the following:

when u,ve L, ae K' and uit + owto + fa=0,thenu =v=a =0,

when x, ye L', b e K and x% + f2y7 + ab®> = 0, then x =y = b = 0.
(Because of the above assertions, there exist certain anisotropic quadratic forms.)
In the universal Chevalley group F4(L) we consider the subgroup Fy4(L', L) of mixed
type Fu; ie., Fu(L',L) = {x,(¢'), xs(t) |r long, t' € L', s short, t € L) < F4(L) (with
long and short root subgroups isomorphic to (L', +) and (L,+)), respectively, see
Tits [22]. The root groups Uy, ..., Us of 2 are the following subgroups of F4(L’, L):

U, = {us(u,v,a)|u,ve L,ae K'}, Uy ={ui(x,y,b)|x,ye L ,be K},
Uy = {ug(u,v,a) |lu,ve Lae K'}, Us = {uz(x,y,b)|x,yeL',be K},

where (with the notation of (5.1))

uz(u’ U7a) = az(ﬁ717a1)7ﬁ71u’ aa? a)7 ul(x7 y7 b) = al(y5aﬁ2.)77x7 ax? b)7

i3y, af*7, x, o, b).

u4(uavva) = [l4(ﬂ7170613,ﬁ7114, OC?:I,CI), “3(x7y7b) :

We get Us, Ug, U7, Ug by replacing all roots r in the root system of type Fy,
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which occur in Uy, U,, Us, Uy, by the negative root —r. The commutator relations
between the U; are the ones obtained from Fy(L) in (5.1). Among Uj, U, Us, Uy
there are non-trivial commutator relations only for [U;, Us] < X, 4e,, (U2, Us] < X,
and [U;, Uy] < U,Us. Note that U, < U* in the notation of (4.6).

We consider the root groups Us; as root groups belonging to a half apartment with
a point in the middle. All root groups U;_; and U,; are abelian; the latter ones are
abelian, since L has characteristic 2.

5.3. By Mihlherr and Van Maldeghem [11] there is an automorphism 7 of the
building associated to F4(L, L’) such that the F4-quadrangle 2 arises as a set of fixed
points of 7. This automorphism fixes points and symplecta of the building, but no line
or plane. For the convenience of the reader we extract the action of a suitable ¢ on
Fy(L', L) from [11].

The map e) — ey, e; — €3, e3 — —e3 and eg — —ey extends to an isometry w of the
4-dimensional Euclidean space spanned by the root system @ of type F, (with
fundamental system {o, o2, 03,04}) which permutes ®. We define ¢ := af?, ¢y =
B2 c3:i=0"", cs:=0p. For r= Ao+ --- + Aqa4 € D, the image of x,() under 7 is
Xpo(ef'efefrei*T). All elements in the U; defined in (5.2) are fixed under the map
. This gives an impression why in U, say, the scalars in X(j/2)(¢;4¢,—e;—e,) @and in
X(1/2)(e1+er+e1+¢,) are NOt independent.

5.4. For any Fy-quadrangle as in (5.2), the group of central elations in the root group
U, is {Xe,1e,(@) |a € K'}.

Proof. An element u; € U, is a central elation if and only if [uy, Us] = 1, see Stein-
bach [17, (3.5)] for example. With the commutator relations in the Fy-quadrangle 2
the lemma follows. [

5.5 Proposition. For the Fy-quadrangle 2 described in (5.2), we denote by X the class
of central elation subgroups and we set S := (Uy,...,Usy < Fy(L). Then X is a class
of abstract transvection groups of S and any A € X is contained in a long root subgroup

0fF4(L).

Proof. By Steinbach [17, (3.6)], the class X of central elation subgroups is a class of
abstract transvection subgroups of (X» < Aut(2). Both (X} and S are simple sub-
groups of Aut(2), see Van Maldeghem [25, 5.8]. Hence they coincide. The claim
follows with (5.4). O

5.6. We recall the root systems ®(C4) and ®(By4) of (1.2). Let

V1 :={u1(0,0,b) |be K} < X,,, V2:={u2(0,0,a)]aeK'} < Xo e,
and similarly for V3,...,Vs. Then S| :=<V,U,, ..., V7, Us) < Cq(L), Sp:=
KU, Vo, ..., Uz, Vg> < Bs(L) and S} and S, generate S = (U, ..., Us).

Next we show that S| and S, are isomorphic to classical groups of Witt index 2
over K and K', respectively. We refer to (1.5) for the notation for classical groups.
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The quadrangles associated with S; and S, respectively, have been identified as
classical quadrangles also in Miihlherr and Van Maldeghem [11]. But for later use
(and since there seems to be a notational error in [11, Sec. 8]) we give some details.

We fix E; € L' with E; = E; + 1. Then L = K(E;) and L' = K'(E;). We use the
notation for vector spaces and forms from (1.5). By (x;, y;) we denote a hyperbolic
pair spanning H;.

5.7. The group S) =<V, Us,..., V7, Us) defined in (5.6) is isomorphic to the classi-
cal group of Witt index 2 generated by the isotropic transvection subgroups in the iso-
metry group of the orthogonal space Wy = H, L H, L H L (K’)l/2 over K, where H
is endowed with the quadratic from B~'n. Here n is the norm on the quaternion division
ring H := L ® LE, over K such that E;E| = E\Ey + E», E2-E; = o.and E, = E».

Proof. Recall from (5.6) that S; < C4(L). Using the standard matrices for root ele-
ments in C4(L) as given in Carter [3, p. 186], we write the root elements u;(u, v, a) as
symplectic 8 x 8-matrices over L. The underlying symplectic space is H; 1 H, 1
H; 1 Hy. Let %, be a basis of {x3, y3, x4, y4y and denote by Jy the corresponding
fundamental matrix. For any 4-tuple z with entries in L and any ¢ € L, we define

110 z O c 1 c
1 0 1 C
M(z,c) = 1 JozT |, N(e):= 1
1 0 1
1 1

compare (1.9). Set %, := {x3, x4, ya, y3}.

The matrices of wuy(u,v,a) and of u;(0,0,h) with respect to the basis
{x1, %2, B1, y2, 1} are M((ob, i, B u, p~"v), B~ (uit + owd) + a) and N(b), respec-
tively. The matrices of elements in V3 and Uy are of a similar form. We define a new
basis % := {v1, v2, 03,04} of {x3, y3,X4, 4 by

Wi = X4 +ﬂ71J’4, wy == E1x4 +:871E1y4’

wy = axs + By, wa = aE1xs 4 Enys.

We write u,ve L as u=ug+wmE; and v= vy + viE; with ug,u;,v9,v; € K. The
matrix of us(u, v,a) with respect to the basis {xi, x2, w1, wa, w3, wa, y2, 1} is

M ((uo,ur, v0,v1), B~ (uit + owd) + a)
and has only entries from K. We define an ordinary quadratic form Q

on {wy, wy, w3, wayg by Quow; + uywy + vows + vywy) := ﬁfl(m't + owd) € K, where
u:=up+wu E, and v := vy + v E). Because of the properties of o and f in (5.2) Q
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is anisotropic. The mapping w; — 1, wy — Ej, w3 — E», wq — E|E; extends to an
isometry from ({vy, 2,03, V40, Q) to (H,ﬁ_ln), where H is as in the statement of
(5.7). We denote also the 4-dimensional vector space {vi, v2, 03, 04y g by H.

We define a quadratic form ¢ (of Witt index 2) on W) := {x1, y1,X2, yayg L
H 1 (K’ )1/ % over K such that (x1, y1), (x2, y2) are orthogonal hyperbolic pairs with
respect to ¢, gy = B 'n, g(a)=a*forae (K/)l/z. Then S = (W1, U,, ..., V7, Ug) is
isomorphic to the group generated by the isotropic transvection groups on W;. []

5.8. The group Sy = Uy, Va,..., Uz, Vs) defined in (5.6) is isomorphic to the clas-
sical group of Witt index 2 generated by the Siegel transvection subgroups in the iso-
metry group of the orthogonal space W = H; 1. Hy, 1 H' 1 K over K', where H' is
endowed with the quadratic from an’. Here n' is the norm on the quaternion division
ring H' := L' ® L'E} over K' such that E5E) = E\E5 + E}, EjE} = B and E5 = E}.

Proof. The proof is similar to the proof of (5.7). The new basis of Hz L Hy is

vLi=oXg+ye, = aBixXe + Eiys,

v3 = af’xs + 3, va =B Eixs+ B Erys. O
5.9. For S=<U,...,Usy < F4(L), we have Z(S) = 1.

Proof. The center Z(S) commutes with long root elements in X, 1,) and in X, _,)
and is thus contained in the standard subsystem subgroup M (o, a3) = C2(L). Let
uy € Uy and z € Z(S). Using the notation of the proof of (5.7), we write both elements
with respect to the basis &' = {xi,x2,v1,v2,03,04, 2, y1} of the 8-dimensional
symplectic space underlying the standard subsystem subgroup M (a2, a3, 04, —e;) =
C4(L). The matrix of uy is M ((uo,u1,vo,v1), " (uit + owt) + a), as was shown in
(5.7). The matrix of z is of the form diag(1,1,z,1,1) with z considered as a 4 x 4-
matrix. Because of u3 = u», we obtain (uo, u1, v, v1)z = (ug, u1, vy, v1), for arbitrary
uy € U,. This shows z = 1. O

6 Embedding the Fs-quadrangles in Chevalley groups of type Fj

6.1. For the definition of the Fy-quadrangles and their parameters L, L', K, K', o, f8
and root groups U, see (5.2). We set

F4Q(K, L, K/,oc,[)’) =Uy,...,Us) < F4(LI,L).

(The abbreviation F4Q indicates F4-Quadrangle.) For any embedding y: L — O,
where O is a field, we define the embedding ¢, : F4(L) — F4(O), x,(t) — x,(t"), where
re®,te L. As K is a parameter of the Fy-quadrangle, we study subgroups of F4(0).
Let G be a subgroup of F4(O) as in Problem (P) of the introduction. For the polar
space (X), we refer to (2.4). With this notation the following holds:
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6.2 Theorem. We assume that p(X) is an Fy-quadrangle with X the class of full cen-
tral elation subgroups, whence G/Z(G) ~ S := Fy(K, L, K’ o, p). Then after extending
scalars from O to 0 for a suitable extension 0 of O of degree < 2, there is an embed-
ding y : L — O such that a conjugate of G in F4(0) is F4Q(K*,L/7 (K" a7, B7).

Proof. We consider the subset ¥ := {e| + e5,e; — e;} of ®*. Passing to a conjugate
of Gin Y = F4(0), we achieve the following: if r € ¥ U (—¥) and T € X corresponds
to X, (in S), then T = X, (in Y), see (1.4).

By assumption there is a central extension p : G — S. By (5.7), (5.8) the groups
S1: =N, Uy, ..., V7, Us> < Ca(L), So:=<U, Va,...,U;, Vs> < By(L) are isomor-
phic to classical groups of Witt index 2. Denote by M; the subgroup of G generated
by all elements in £ which correspond to an isotropic transvection subgroup or a
Siegel transvection subgroup, respectively, in S; (i = 1,2). Then G = {M;, M>). By
previous results, M| < C4(0), see (4.10), and M, < B4(O), see (4.9). Thus M| and
M, embed in classical subgroups of F4(0).

First, we consider the embedding M| < C4(0). Denote by & = {x1, x2, x3, X4, 1,
¥2,¥3, y4} a basis of 08, the underlying 8-dimensional symplectic space over O, such

1
that the fundamental matrix of the symplectic form is J = (1 > We write each

element of C4(0) = Spg(K) as an 8 x 8-matrix with respect to & as in Carter |3,
p. 186]. For C4(L) = Spg(L), we also introduce such a basis &. (It will be clear from
the context, whether & denotes the basis of L® or of 03.) For S;, we also use §' =
{x1,X2,01,02,03,04, ¥2, ¥1}, the basis of L® which was used in the proof of (5.7) to
identify S as a classical group (with underlying vector space W, over K). Recall
that Wy = (&'>x L Rad(W;). We consider the elements in S} as 8 x 8-matrices over
K. By J' we denote the fundamental matrix of the symplectic form on {&'>x with
respect to the basis &”.
By (4.10) the polar space associated to M, is weakly embedded in P(V;), where
= [0%, M|] = O%. (See Steinbach and Van Maldeghem [15, (5.4)], for the last
assertion.) By Cuypers and Steinbach [7] there exist an embedding y : K — O and a
semi-linear mapping ¢ : W; — O® (with ker ¢ = Rad(W)) such that

(wp)m = (w(mp))p, we W,me M,.

Denote (again) by E; a root of the quadratic polynomial x? + x + (E{E})” over O.
Then O := O(E;) is an extension of degree < 2 of 0. We extend scalars from O to 0]
and in the following we consider the embedding G < F4(0) =: Y. Via E| — E; we
obtain an embedding y : L — O. Let # denote the image of &’ under o: W — 03.
We define a basis ¢’ of O° such that M/, (id) = T7, where T is the matrix of
the base change from & to &’ over L. The fundamental matrix with respect to &’ over
O is hence (J')”. Above we have shown that M/ (m) = D' M/ (mp)’D with D :=
M (id), for m e M. We identify D with M;(,’ (D). The matrix D is of the form D =
diag(c,d, Dy, d’,c') with Dy a 4 x 4-matrix. Furthermore, D(J')"D" = u(J')’, for a
scalar u € O. The base change to & yields that m = mpe, 0 with an automorphism ¢ of
C4(0) which is a product of a diagonal automorphism and of an inner automorphism
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of Cz(é). Since in e; = oy + 205 + 303 + 2014 the root oy occurs with coefficient 1, the
diagonal automorphism of C4(0) may be extended to a diagonal (and hence inner)
automorphism of F4(0) — Y. Hence passing to a conjugate in ¥, we may assume that
m = mpe, for m e M;.

For the embedding M, < B4(0), we proceed similarly (with bases &, & and %)
and obtain that M, (m) = D~'M? (mp)’ D for m e M, with D = diag(c,d, Do, d’, ¢'),

Do a 5 x 5-matrix, and y : L — O as constructed above. This yields that

M€ {Xeytess Xeyteys Xey ), forme M, with mp e Uy,

m € {Xe, 40y, Xey ey, Xeyy, forme M, with mp € Us.
Similarly, as in (5.9), we see that Z(G) = 1. Hence p : G — S is an isomorphism. Fix
my € G such that mp = u;(x,0,0) =: uy, x € L'. Let my € G with map = ug(u,v,0) =:
uy, u,v € L arbitrary.

We use the commutator relations in (5.1). On one hand [m,m4] = mym;
with mp = uy(aXv, xu,-) € U, (we do not need the value of the third parameter)
and m3p e Us. On the other hand m € {Xe,+e, Xertey, Xey» and msz € (X, 4¢5,
Xe, ¢4, Xe, ) by the above. Hence there are scalars sy,52, 53,54, b € O such that m; =
Xey—e3 (Sl )x€2+€3 (Sz)x@,m (S3)xez+€4 (S4)x€z (b) Thus

[m1,m4] = X(1/2)(e) +er—es—ea) (P1)X(1/2)(e1 +ertestes) (P2)

: x(1/2)(e1+ezfe3+e4)(p3)x(1/2)(81+ez+63*84)(p4) " Xej+e; (C) "3
with y3 € (Xe, £e5, Xey 44, Xey » and

(1) plzbﬂflv+s1ﬁ+S3[)’71u, (2) pzzbaﬁJrsz/?*lqusm,
(3) p3:bﬂ71u+s1aD+S4,Bflv, 4) p4:bﬁ+52ﬂ710+5‘30ﬂ7.

(Here we omit the application of y on the right hand side to simplify notation.)
Each element in U := (X, |r e ®*) has a unique factorization as a product of root

elements in increasing order. Since all root elements involved above commute, com-
paring the coefficients of X(1/2)(¢, +e, + s +e,) Yi€lds

—1 — —1= _
p1r=Pp""xu, pr=oxu, p3=oaf Xv, ps=oxi,

forall u,ve L. Withu =0, v =1, we see b = 0. Next, (1) with u =1, (4) withv =1
and (2) with u = 1 yield

= ﬁ71S3 +ﬂ71x, sy = ofiss +ofix, s4= ﬁflsz + X = s300 + 00X + oX.
With (1) we obtain BV ssit+ s3p " u = p xu+ p~"xa, for all u e L. Setting u = Ej,

we get 53 =x and s; =52 =0, s4 = aX. We have shown that m = mpe,, for mp =
u1(x,0,0) with x e L'.
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A similar calculation yields m = mpe,, for mp = u;(0, y,0) with y e L. Thus
m = mpe, for mp € U;. Now Us is conjugate to U; in (U, Ug), see Van Maldeghem
[25, (5.2.6)] for example. Hence we get the same result for Us and also for Us, Us.
Together this proves g = gpe, for g € G, thus the theorem. O

Theorems 2 and 3 proved in Sections 3 and 4, respectively, imply Theorem 1. De-
tailed information on the embeddings of the Fj-quadrangles is given in Theorem 6.2.
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