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Real analytic projective planes with
large automorphism groups
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Abstract. We prove that there exist non-classical projective planes whose point space and line
space are real analytic (or Nash) manifolds such that the geometric operations of joining points
and intersecting lines are real analytic (even Nash) maps on their respective domains. Our
examples have the dimensions 2, 4, or 8. These planes are the first examples of non-classical
smooth projective planes with large automorphism groups. In dimension 2, they correspond to
a class of projective planes discovered by Segre.
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1 Introduction

In [11], B. Segre constructed examples of non-desarguesian smooth projective planes,
whose lines are real algebraic curves in the real projective plane with its usual
real algebraic structure. The construction of these planes was motivated by a prize-
question posed by Het Wiskundig Genootschap in 1955. However, as mentioned in
[10], 75.6, he did ‘not consider the question whether the planes are, for example, real
analytic or algebraic planes, that is, whether the geometric operations belong to one
of these categories’. In this paper we show that the geometric operations of joining
points and intersecting lines are in fact real analytic and even Nash maps. For the
definition of Nash functions and maps, see [1], 2.9.3 and 2.9.9, cf. also Section 8.1 in
that book. Furthermore, we present the first examples of non-desarguesian projective
planes with these properties in dimensions 4 and 8. Recall that by [10], 75.1, or by [7],
every holomorphic projective plane is isomorphic to P2C with its usual holomorphic
structure, and by [12] or [8], every algebraic projective plane over an algebraically
closed field is pappian. Our approach also yields a new proof for Segre’s result that
the incidence structures constructed by him are projective planes. Note in this context
that finite-dimensional, compact, connected projective planes always have dimension
2, 4, 8 or 16, cf. [10], 52.5. It should be possible to prove an analogous result in the
16-dimensional setting by using Veronese coordinates instead of homogeneous coor-



dinates (see [10], 16.1). Homogeneous coordinates cannot be used in this case because
of the non-associativity of the octonions.

The projective planes considered in this paper are constructed as follows: the point
space P and the line space L are copies of the point space and the line space of
P2K with their standard smooth, real analytic, and real algebraic structure (K ¼ R,
C or H). Hence, points and lines may be described by means of homogeneous coor-
dinates in the usual way. A point ðx; y; zÞ t A P (where t denotes transposition) and a
line ða; b; cÞ A L are called incident if

ðjaj2 þ jbj2 þ jcj2Þðaxþ byþ czÞðjxj2 þ jyj2 þ jzj2Þ þ ljcj2czjzj2 ¼ 0:

Here, l A R is a fixed parameter. For l ¼ 0 we get the incidence relation of the clas-
sical projective plane P2K. The flag space Fl is the set of incident point-line-pairs.
The incidence structures Pl ¼ ðP;L;FlÞ defined in this way are self-dual. A polar-
ity is given by the map P�L ! P�L : ððx; y; zÞ t; ða; b; cÞÞ 7! ðða; b; cÞ t; ðx; y; zÞÞ,
where denotes conjugation. Of course, the incidence structures Pl cannot be
expected to be projective planes in general. In this paper we prove that they are real
analytic and even Nash projective planes for jlj su‰ciently small. To be more pre-
cise, our proof yields that jlj < 1

9 is su‰cient. In [11], Segre proves in two di¤erent
ways that the planes Pl are non-desarguesian for l0 0 and K ¼ R. In Section 1 (pp.
36/37) he shows this by a theoretical argument, and in Section 4 (pp. 39/40) he veri-
fies directly that Desargues’ theorem fails in Pl for l0 0 su‰ciently small. A pro-
jective plane Pl with K ¼ C;H has a 2-dimensional subplane equal to the projective
plane constructed by Segre with the same parameter l and hence is not desarguesian
for l0 0.

Before we proceed, let us first recall some basic results on automorphisms of com-
pact or smooth projective planes. The automorphism group S of a compact (smooth)
projective plane P ¼ ðP;L;FÞ is the group of all automorphisms of P as an inci-
dence structure which induce homeomorphisms (di¤eomorphisms) on P andL. These
automorphisms are called continuous (smooth) automorphisms. Note that by [4], 4.7,
a continuous automorphism of a smooth projective plane is smooth. The automor-
phism group S of P is endowed with the compact-open topology derived from its
action on P or L, respectively. These two topologies coincide by [10], 44.2. In this
way, S becomes a locally compact topological group with a countable basis, see [10],
44.3. Hence, the dimension of S is defined, compare [10], 93.5 and 6. By a group
of automorphisms of P we mean a closed subgroup of S endowed with the induced
topology.

The projective planes Pl presented in this paper are the first examples of non-
classical smooth projective planes with large automorphism groups. They admit Lie
groups of smooth automorphisms of dimension 1, 4 or 13 for l ¼ 1, 2 or 4, respec-
tively. By [2], the dimension of the automorphism group of a 2l-dimensional non-
classical smooth projective plane is at most 2, 6 or 16 for l ¼ 1, 2 or 4, respectively.
These bounds are 2 less than the corresponding bounds in the case of compact pro-
jective planes, but it is not known if they are sharp. Our examples show that the
bounds found by Bödi are not far from the truth. The Lie groups of smooth auto-
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morphisms of the projective planes Pl mentioned above are in fact compact groups.
This shows that, in contrast to the automorphism groups of smooth projective planes,
the bounds for the dimensions of compact groups of automorphisms of non-classical
compact projective planes are the same as those in the smooth setting for l A f1; 2; 4g,
see Theorem 2.9.

2 Proofs and details

Let I ¼ ðP;L;FÞ be an incidence structure. The elements of P, L, and F are called
points, lines, and flags, respectively. For p A P, L A L we call PL ¼ pPðp�1

L ðLÞÞ the
point row associated with L and Lp ¼ pLðp�1

P ðpÞÞ the line pencil through p, where
pP : F ! P and pL : F ! L denote the canonical projections. A projective plane
P ¼ ðP;L;FÞ is called a smooth projective plane if P and L are smooth manifolds
such that the two geometric operations of joining distinct points and of intersecting
distinct lines are smooth, i.e. di¤erentiable in the sense of Cy. Real analytic or Nash

projective planes are defined analogously. The next theorem is essential for the proof
of the main result of this paper, for a proof see [3], 1.5, or [6], 4.5.

Theorem 2.1. Let I ¼ ðP;L;FÞ be an incidence structure which satisfies the following

conditions:

(SGP1) There is a positive integer l such that P and L are compact, connected smooth

2l-dimensional manifolds.

(SGP2) The flag space F is a closed smooth 3l-dimensional submanifold of P�L,
and the canonical projections pP and pL are submersions.

(SGP3) Any two distinct lines intersect transversally in P and any two line pencils

associated with distinct points intersect transversally in L.

Then there are positive integers m, n such that any two distinct points are joined by

exactly m lines and any two distinct lines intersect in exactly n points.

We add some comments on this theorem. The canonical projections pP and pL are
surjective since F is compact, submersions are open maps, and P, L are connected.
Hence, point rows and line pencils are smooth l-dimensional submanifolds of P and
L, respectively, by (SGP1) and (SGP2), see [3], 1.1, or [6], 4.1. Thus the transversality
condition in (SGP3) makes sense. Recall that two lines L, K of an incidence structure
satisfying conditions (SGP1) and (SGP2) are said to intersect transversally in some
point p, if the associated point rows PL and PK intersect transversally in p as sub-
manifolds of P, i.e. their tangent spaces in p span the tangent space TpP, or, equiva-
lently, the intersection of their tangent spaces in p is trivial. They are said to inter-
sect transversally if they intersect transversally in each common point. Note that two
lines which intersect transversally need not have a common point. Transversal inter-
section of line pencils is defined dually.

The proof of the main result of this paper is based on the following corollary (see
[3], 1.6, or [6], 4.6).
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Corollary 2.2. Assume that I ¼ ðP;L;FÞ satisfies the conditions of Theorem 2.1. If
there are two lines whose intersection consists of at most one point, or if there are two

points which are joined by at most one line, then I is a smooth projective plane.

We want to show now that the incidence structures Pl in general (l A R arbitrary)
admit non-trivial groups of smooth automorphisms which are compact Lie groups.

Lemma 2.3. For K ¼ R, the orthogonal group O2R acts on Pl as a group of smooth

automorphisms. For K ¼ C, the incidence structure Pl admits a group of smooth auto-

morphisms isomorphic to the unitary group U2C. Moreover, also complex conjugation

induces a smooth automorphism of Pl. For K ¼ H, the incidence structure Pl admits a

group of smooth automorphisms isomorphic to the product of Spin3R and Spin5R with

amalgamated centers.

Proof. For K ¼ R, let G be the subgroup of O3R which fixes ð0; 0; 1Þ A R3. This
subgroup is isomorphic to O2R. The standard action of G on R3 induces an e¤ective
smooth action of G on the line space L. Analogously, we define an e¤ective smooth
action of G on P by G� P ! P : ðg; ðx; y; zÞ tÞ 7! g�1ðx; y; zÞ t. By definition of the
incidence relation in Pl we see that the induced action of G on P�L leaves Fl

invariant, i.e. G acts on Pl as a group of smooth automorphisms.
For K ¼ C, an analogous proof shows that the unitary group U2C acts on Pl as

a group of smooth automorphisms. The fact that complex conjugation induces a
smooth automorphism of Pl also follows directly from the definition of the incidence
relation.

For K ¼ H, let G be the subgroup of the unitary group U3H isomorphic to
U2H�U1H, which acts on the first two components of ðx; y; zÞ A H3 as U2H and
on the last component as U1H. Note that U1H is isomorphic to Spin3R and that

U2H is isomorphic to Spin5R, cf. [10], 95.10. The action of G on H3 induces an
e¤ective smooth action of the product of U2H and U1H with amalgamated centers
on the line space L. As before, we see that this group acts on Pl by smooth auto-
morphisms. r

The preceding lemma will enable us to choose appropriate coordinates in the proof
of the main result of this paper.

Theorem 2.4. The incidence structures Pl ¼ ðP;L;FlÞ are smooth projective planes

for jlj < 1
9 .

The next lemma presents the most di‰cult part of the proof of this theorem. In the
sequel, we will use the description of the point space P and the line space L of the
incidence structure Pl ¼ ðP;L;FlÞ by means of the standard charts: for the point
space P, the corresponding open sets U1, U2, and U3 are given by x0 0, y0 0, and
z0 0, respectively, and these sets are identified with K2 in the usual way. In the latter
case, for example, we use the map U3 ! K2 : ðx; y; zÞ t 7! ðx=z; y=zÞ. Analogously
we define open sets V1, V2, and V3 by a0 0, b0 0, and c0 0, respectively, which
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cover the line space L. Sometimes it will be convenient to identify K with Rl by
choosing f1g, f1; ig or f1; i; j; kg, respectively, as a basis of K over R. In this way,
left multiplication by some element c A K gives rise to a linear map Lc : Rl ! Rl ,
and right multiplication by c induces a linear map Rc : Rl ! Rl .

In order to avoid cumbersome notation we will sometimes use the same names for
di¤erent variables in the following two proofs, if such a choice is natural, facilitates
reading, and no confusion is possible.

Lemma 2.5. Let jlj < 1
9 . Then the set F� ¼ FV ðU3 � V3Þ is a smooth 3l-dimensional

submanifold of P�L. The restrictions of the natural projections pP and pL to F�

are submersions. The sets PL VU3 and Lp VV3 with p A pPðF�Þ and L A pLðF�Þ are
smooth l-dimensional submanifolds of P and L, respectively. If two distinct lines

L;L 0 A V3 intersect in a point p A U3 then the submanifolds PL VU3 and PL 0 VU3

intersect transversally in p. Also the dual statement holds.

Proof. We identify the open subsets U3 JP and V3 JL with two distinct copies of
K2. By means of these identifications, the set F� corresponds to

fðx; y; a; bÞ A K2 �K2 j ðjaj2 þ jbj2 þ 1Þðaxþ byþ 1Þðjxj2 þ jyj2 þ 1Þ þ l ¼ 0g:

For any ða; bÞ A V3 we define

gða;bÞ : K2 ! K : ðx; yÞ 7! ðjaj2 þ jbj2 þ 1Þðaxþ byþ 1Þðjxj2 þ jyj2 þ 1Þ þ l:

We want to prove the technical result that the kernels of the di¤erentials Dðx;yÞgða;bÞ
and Dðx;yÞgða 0;b 0Þ have trivial intersection for any two distinct quadruples ðx; y; a; bÞ;
ðx; y; a 0; b 0Þ A F�. Then the claims above will follow easily. By using transitivity
properties of the group of smooth automorphisms of Pl (see Lemma 2.3) we may
assume that y ¼ 0, x A R, and b A R. The above incidence relation then shows that
ax A Rnf0g (because of jlj < 1) and hence that a A R. Analogously we see that
a 0 A R. For the sake of simplicity we will assume in the following that K ¼ H. Some-
times we will identify H with R4 and associate to any element w A H a vector
ðw1;w2;w3;w4Þ A R4. In this way, the di¤erential of the map y : H ! H : t 7! jtj2 at
a point t A H corresponds to the map Dty : R4 ! R4 : ðw1;w2;w3;w4Þ 7! ð2ðw1t1 þ
w2t2 þ w3t3 þ w4t4Þ; 0; 0; 0Þ. Now let ðu; vÞ A kerDðx;0Þgða;bÞ V kerDðx;0Þgða 0;b 0Þ and
assume that ðu; vÞ0 ð0; 0Þ. By di¤erentiating gða;bÞ at ðx; 0Þ we get

ðRx2þ1La þ Laxþ1DxyÞuþ ðRx2þ1Lb þ Laxþ1D0yÞv

¼ ðx2 þ 1Þauþ ðaxþ 1Þ2xu1 þ ðx2 þ 1Þbv ¼ 0: ð1Þ

Here we have considered u and v as elements of R4 in the first line and as elements of
H in the second line. Analogously, we get

ðx2 þ 1Þa 0uþ ða 0xþ 1Þ2xu1 þ ðx2 þ 1Þb 0v ¼ 0: ð2Þ
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We multiply Equation (1) by b 0 from the left and Equation (2) by b. Subtracting the
two equations obtained in this way yields

ðab 0 � a 0bÞðx2 þ 1Þuþ ððaxþ 1Þb 0 � ða 0xþ 1ÞbÞ2xu1 ¼ 0

and hence

ðab 0 � a 0bÞððx2 þ 1Þuþ 2x2u1Þ þ ðb 0 � bÞ2xu1 ¼ 0: ð3Þ

As a next step we want to prove that b0 b 0. If we have b 0 ¼ b A R, then a and a 0

are zeros of the real polynomial function p : R ! R : s 7! ðs2 þ b2 þ 1Þðsxþ 1Þ �
ðx2 þ 1Þ þ l. Let s A R with p 0ðsÞ ¼ 0 (if it exists). Then we have 2sðsxþ 1Þþ
ðs2 þ b2 þ 1Þx ¼ 0 which implies that

sxþ 1 ¼ 1� 2s2

3s2 þ b2 þ 1
>

1

3
:

Hence, we get pðsÞ ¼ ðs2 þ b2 þ 1Þðsxþ 1Þðx2 þ 1Þ þ l > 1
3 þ l > 0 because of

jlj < 1
9 . Since p is a real polynomial function of degree 3, this shows that p has pre-

cisely one real zero. We conclude that a ¼ a 0, a contradiction. So, we have b0 b 0 and
therefore also u0 0 by Equations (1) and (2). Equation (3) then yields

ðb 0 � bÞ�1ðab 0 � a 0bÞ ¼ �2xu1ððx2 þ 1Þuþ 2x2u1Þ�1 ð4Þ

and

jab 0 � a 0bj2

jb 0 � bj2
¼ ð2xÞ2u21

ð3x2 þ 1Þ2u21 þ ðx2 þ 1Þ2ðu22 þ u23 þ u24Þ

c
ð2xÞ2

ðx2 þ 1Þ2
u21

u21 þ u22 þ u23 þ u24

c
2x

x2 þ 1

� �2
c 1:

Thus we get

jðb 0 � bÞ�1ðab 0 � a 0bÞjc 1: ð5Þ

On the other hand, Equation (4) implies that

ðb 0 � bÞ�1ðab 0 � a 0bÞxþ 1 ¼ 1� 2x2u1ððx2 þ 1Þuþ 2x2u1Þ�1

¼ ðx2 þ 1Þuððx2 þ 1Þuþ 2x2u1Þ�1:
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We conclude that

jðb 0 � bÞ�1ðab 0 � a 0bÞxþ 1j2 ¼ ðx2 þ 1Þ2juj2

ð3x2 þ 1Þ2u21 þ ðx2 þ 1Þ2ðu22 þ u23 þ u24Þ

d
ðx2 þ 1Þ2

ð3x2 þ 1Þ2
juj2

u21 þ u22 þ u23 þ u24
:

Because of x2þ1
3x2þ1

> 1
3 , we get the inequality

jðb 0 � bÞ�1ðab 0 � a 0bÞxþ 1j > 1

3
: ð6Þ

Since ðx; 0; a; bÞ AF� implies ða2 þ b2 þ 1Þðaxþ 1Þðx2 þ 1Þþ l ¼ 0, we have axþ 1¼
�lða2 þ b2 þ 1Þ�1ðx2 þ 1Þ�1 and, analogously, a 0xþ 1 ¼ �lða 02 þ jb 0j2 þ 1Þ�1 �
ðx2 þ 1Þ�1. We multiply the first of these two equations by b 0 and the second by b.
After subtracting these two equations we obtain

ðab 0 � a 0bÞxþ ðb 0 � bÞ ¼ � l

x2 þ 1

ða 02 þ jb 0j2 þ 1Þb 0 � ða2 þ b2 þ 1Þb
ða2 þ b2 þ 1Þða 02 þ jb 0j2 þ 1Þ

: ð7Þ

We want to multiply Equation (7) by ðb 0 � bÞ�1 in order to combine it with (6). We
have

ða 02 þ jb 0j2 þ 1Þb 0 � ða2 þ b2 þ 1Þb ¼ ða 02b 0 � a2bÞ þ ðjb 0j2b 0 � b3Þ þ ðb 0 � bÞ;

where a 02b 0 � a2b ¼ ðb 0 � bÞða2 þ aa 0 þ a 02Þ � ðab 0 � a 0bÞðaþ a 0Þ, and jb 0j2b 0 � b3 ¼
ðb 0 � bÞðjb 0j2 þ b 0bþ b2Þ � ðb 0 � b 0Þb2 with

jb 0 � b 0j2

jb 0 � bj2
¼ 4ðb 02

2 þ b 02
3 þ b 02

4 Þ
ðb 0

1 � bÞ2 þ b 02
2 þ b 02

3 þ b 02
4

c 4:

Hence, we get

jðb 0 � bÞ�1ðjb 0j2b 0 � b3Þjc jb 0j2 þ jb 0bj þ b2 þ jðb 0 � bÞ�1ðb 0 � b 0Þjb2

c jb 0j2 þ jb 0bj þ 3b2

and

jðb 0 � bÞ�1ða 02b 0 � a2bÞj

c a2 þ jaa 0j þ a 02 þ jðb 0 � bÞ�1ðab 0 � a 0bÞjðjaj þ ja 0jÞ

c a2 þ jaa 0j þ a 02 þ jaj þ ja 0j
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by inequality (5). By combining these inequalities with (6) and (7), we obtain

1

3
< jðb 0 � bÞ�1ðab 0 � a 0bÞxþ 1j

c jlj a
2 þ jaa 0j þ a 02 þ jaj þ ja 0j þ jb 0j2 þ jb 0bj þ 3b2 þ 1

ða2 þ b2 þ 1Þða 02 þ jb 0j2 þ 1Þ
: ð8Þ

Obviously, we have

a2 þ a 02 þ jb 0j2 þ b2 þ 1

ða2 þ b2 þ 1Þða 02 þ jb 0j2 þ 1Þ
c 1:

Using that s� 1
2

� �2
d 0, and hence sc s2 þ 1

4 , for every s A R, we get

jaj þ ja 0j þ jaa 0j þ jbb 0j þ b2 c a2 þ a 02 þ jaa 0j2 þ jb 0bj2 þ 1þ b2

c ða2 þ b2 þ 1Þða 02 þ jb 0j2 þ 1Þ:

Hence, we obtain

ða2 þ a 02 þ jb 0j2 þ b2 þ 1Þ þ ðjaj þ ja 0j þ jaa 0j þ jb 0bj þ b2Þ þ b2

c 3ða2 þ b2 þ 1Þða 02 þ jb 0j2 þ 1Þ;

which shows together with inequality (8) that 1
3 < 3jlj, in contradiction to jlj < 1

9 .
Thus the kernels of the di¤erentials Dðx;yÞgða;bÞ and Dðx;yÞgða 0;b 0Þ intersect trivially for
any two distinct quadruples ðx; y; a; bÞ; ðx; y; a 0; b 0Þ A F�.

We want to show next that there are infinitely many lines in V3 through any point
ðx; yÞ A pPðF�Þ. Using the transitivity properties of the automorphism group of Pl

we may arrange again that ðx; yÞ ¼ ðx; 0Þ with x A R. Because of ðx; 0Þ A pPðF�Þ
there is a line ða 0; b 0Þ A V3 incident with the point ðx; 0Þ. We then have ðja 0j2 þ
jb 0j2 þ 1Þða 0xþ 1Þðx2 þ 1Þ þ l ¼ 0, which shows that x0 0. Hence the real polyno-
mial function qb : R ! R : s 7! ðs2 þ b2 þ 1Þðsxþ 1Þðx2 þ 1Þ þ l has degree 3 for
every b A R. Thus, for any b A R there exists a A R such that ða2 þ b2 þ 1Þðaxþ 1Þ �
ðx2 þ 1Þ þ l ¼ 0, i.e. such that ðx; 0; a; bÞ A F�.

By ðx; yÞ we denote again an arbitrary point of pPðF�Þ. Choose two distinct lines
ða; bÞ; ða 0; b 0Þ A V3 through ðx; yÞ. By definition of gða;bÞ and gða 0;b 0Þ, the dimensions of
the kernels of the two di¤erentials Dðx;yÞgða;bÞ and Dðx;yÞgða 0;b 0Þ are at least l. Since
they intersect trivially, their dimension is precisely l and hence these di¤erentials are
surjective. In particular, also the total di¤erential of the map

f : K2 �K2 ! K : ðx; y; a; bÞ 7! ðjaj2 þ jbj2 þ 1Þðaxþ byþ 1Þðjxj2 þ jyj2 þ 1Þ þ l

is surjective at every point of F�. Therefore F� is a 3l-dimensional submanifold of
U3 � V3 and hence of P�L.
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Now we want to show that the restriction of the natural projection pL to F� is a
submersion. Choose ðx; y; a; bÞ A F� arbitrarily. An element of kerDðx;y;a;bÞpL has
the form ðu; v; 0; 0Þ with ðu; vÞ A K2. By definition of F� we have Dðx;yÞgða;bÞðu; vÞ ¼
Dðx;y;a;bÞ f ðu; v; 0; 0Þ ¼ 0. Since the kernel of Dðx;yÞgða;bÞ is l-dimensional, we conclude
that the dimension of kerDðx;y;a;bÞpL is at most l. Thus the di¤erential Dðx;y;a;bÞpL
is surjective. Hence the restriction of pL to F� and, for reasons of symmetry, also the
restriction of pP to F� are submersions. By [3], 1.1, or [6], 4.1, it follows that the sets
PL VU3 and Lp VV3 are smooth l-dimensional submanifolds of P and L, respec-
tively, for any p A pPðF�Þ, L A pLðF�Þ.

It remains to show that any two distinct lines L ¼ ða; bÞ and L 0 ¼ ða 0; b 0Þ in V3

which intersect in a point p ¼ ðx; yÞ A U3 intersect transversally in p. The dual state-
ment then follows by symmetry. Choose ðu; vÞ in the intersection of the tangent
spaces of the point rows PL and PL 0 in p. Since gða;bÞ vanishes on PL VU3, we con-
clude that Dðx;yÞgða;bÞðu; vÞ ¼ 0. Analogously, we get Dðx;yÞgða 0;b 0Þðu; vÞ ¼ 0 and hence
ðu; vÞ ¼ ð0; 0Þ, since the kernels of Dðx;yÞgða;bÞðu; vÞ ¼ 0 and Dðx;yÞgða;bÞðu; vÞ ¼ 0 have
trivial intersection. This completes the proof. r

Proof of Theorem 2.4. As in the classical projective plane P0 ¼ P2K, the point rows
of the lines ð1; 0; 0Þ; ð0; 1; 0Þ A L intersect precisely in the point ð0; 0; 1Þ t A P. Hence,
by Corollary 2.2, it su‰ces to verify the conditions of Theorem 2.1. We first show
that the flag space Fl is a 3l-dimensional submanifold of P�L and that pL is a
submersion. Then also the natural projection pP is a submersion for reasons of sym-
metry. By the previous lemma, it remains to prove these properties in neighbour-
hoods of flags ðp;LÞ in P�L, where the last coordinate of p or L is 0. By using
transitivity properties of the group of smooth automorphisms of Pl (see Lemma 2.3),
we see that it is su‰cient to consider the following cases:

(F1) p ¼ ðx; y; 1Þ t, L ¼ ð1; 0; 0Þ,

(F2) p ¼ ðx; 1; 0Þ t, L ¼ ð1; 0; 0Þ,

(F3) p ¼ ð1; 0; 0Þ t, L ¼ ða; b; 1Þ.

Note that the point ð1; 0; 0Þ t and the line ð1; 0; 0Þ are not incident. Moreover, the
condition that ðp;LÞ is a flag implies that x ¼ 0 in the first two cases and that a ¼ 0
in (F3). As in the proof of the previous lemma we introduce appropriate inhomo-
geneous coordinates. In the Case (F1) we identify U3 and V1 with two copies of
K2. In this way, the point p corresponds to ð0; yÞ A K2 and the line L corresponds
to ð0; 0Þ A K2. The set Fl � ðU3 � V1Þ is then given by ð f ð1ÞÞ�1ðf0gÞ, where f ð1Þ is
defined by

f ð1Þ : K2 �K2 ! K :

ðx; y; b; cÞ 7! ð1þ jbj2 þ jcj2Þðxþ byþ cÞðjxj2 þ jyj2 þ 1Þ þ ljcj2c:

For any ðb; cÞ A K2 we define g
ð1Þ
ðb; cÞ : K

2 ! K : ðx; yÞ 7! f ð1Þðx; y; b; cÞ. We have

Dð0;yÞg
ð1Þ
ð0;0Þ : K

2 ! K : ðu; vÞ 7! ðjyj2 þ 1Þu, which shows that Dð0;yÞg
ð1Þ
ð0;0Þ is surjective.
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Hence, the total di¤erential of f ð1Þ in ð0; y; 0; 0Þ is also surjective. Thus there exists
an open neighbourhood W of ðp;LÞ in P�L such that Fl VW is a 3l-dimensional
submanifold of W . Moreover, we see as in the proof of Lemma 2.5 that the restric-
tion of the natural projection pL to Fl VW is a submersion if the neighbourhood
W of ðp;LÞ is small enough so that the di¤erential of g

ð1Þ
ð0;0Þ is surjective at all points

of W .
For (F2) we identify U2 and V1 with K2 such that ðp;LÞ corresponds to

ð0; 0; 0; 0Þ A K2 �K2. We define

f ð2Þ : K2 �K2 ! K :

ðx; z; b; cÞ 7! ð1þ jbj2 þ jcj2Þðxþ bþ czÞðjxj2 þ 1þ jzj2Þ þ ljcj2czjzj2

such that Fl V ðU2 � V1Þ is identified with the set ð f ð2ÞÞ�1ðf0gÞ. The di¤erential of

g
ð2Þ
ð0;0Þ : K

2 ! K : ðx; zÞ 7! xðjxj2 þ 1þ jzj2Þ;

defined analogously to g
ð1Þ
ðb; cÞ, at ð0; 0Þ is given by Dð0;0Þg

ð2Þ
ð0;0Þ : K

2 ! K : ðu; vÞ 7! u

and hence is surjective. As in the previous case we conclude that there is an open
neighbourhood W of ðp;LÞ in P�L such that Fl VW is a submanifold of W and
pL restricted to Fl VW is a submersion.

In (F3) we identify U1 � V3 with K2 �K2 such that the flag ðp;LÞ corresponds
to ð0; 0; 0; bÞ A K2 �K2. The set Fl V ðU1 � V3Þ is then identified with ð f ð3ÞÞ�1ðf0gÞ,
where

f ð3Þ : K2 �K2 ! K :

ðy; z; a; bÞ 7! ðjaj2 þ jbj2 þ 1Þðaþ byþ zÞð1þ jyj2 þ jzj2Þ þ lzjzj2:

We define g
ð3Þ
ð0;bÞ : K

2 ! K : ðy; zÞ 7! f ð3Þðy; z; 0; bÞ. Then we have

Dð0;0Þg
ð3Þ
ð0;bÞ : K

2 ! K : ðu; vÞ 7! ðjbj2 þ 1Þðbuþ vÞ;

which shows that Dð0;0Þg
ð3Þ
ð0;bÞ is surjective. The Case (F3) is then completed as the

previous two cases above. Hence, Fl is a 3l-dimensional submanifold of P�L and
the natural projections pP and pL are submersions. Note that F is obviously closed
in P�L. Thus pP and pL are surjective since F is compact, submersions are open
maps, and P, L are connected. It follows that point rows and line pencils are l-
dimensional submanifolds of P and L, respectively, see [3], 1.1, or [6], 4.1.

In order to complete this proof, it su‰ces for reasons of symmetry to show that
any two distinct lines L, L 0 intersect transversally. By using transitivity properties
of the group of smooth automorphisms of Pl, the di¤erent possibilities of pairs
ðL;L 0Þ A L�L reduce to the following three cases:

(L1) L ¼ ða; b; 1Þ, L 0 ¼ ða 0; b 0; 1Þ,
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(L2) L ¼ ða; b; 1Þ, L 0 ¼ ð1; 0; 0Þ,

(L3) L ¼ ða; 1; 0Þ, L 0 ¼ ð1; 0; 0Þ.

In the first case, we may use the group of smooth automorphisms of Pl in order to
choose appropriate coordinates for possible intersection points of L and L 0. We may
assume that these two lines intersect in the point ð1; 0; 0Þ t or in a point ðx; y; 1Þ t.
Since the second case has been treated already in Lemma 2.5, we assume that the
intersection point of L and L 0 is ð1; 0; 0Þ t. Then we have a; a 0 ¼ 0 and hence b0 b 0

since L and L 0 are distinct. We identify the open sets U1 and V3 with two disjoint
copies of K2 such that L and L 0 are identified with ð0; bÞ and ð0; b 0Þ, respectively, and
ð1; 0; 0Þ t is identified with ð0; 0Þ. The map g

ð3Þ
ð0;bÞ of the previous paragraph vanishes

on PL VU1. Thus the di¤erential

Dð0;0Þg
ð3Þ
ð0;bÞ : K

2 ! K : ðu; vÞ 7! ðjbj2 þ 1Þðbuþ vÞ

vanishes on the tangent space of PL VU1 in ð0; 0Þ, and an analogous statement holds
for the line L 0. Since the kernels of the di¤erentials Dð0;0Þg

ð3Þ
ð0;bÞ and Dð0;0Þg

ð3Þ
ð0;b 0Þ have

trivial intersection, we conclude that L and L 0 intersect transversally in ð1; 0; 0Þ t.
In the Case (L2), let ðx; y; zÞ t denote an intersection point of L and L 0. Then we

have x ¼ 0 and hence ðx; y; zÞ t ¼ ð0; y; 1Þ t or ðx; y; zÞ t ¼ ð0; 1; 0Þ t. Let us first assume
that ð0; y; 1Þ t is an intersection point of L and L 0. By using the transitivity proper-
ties of the group of smooth automorphisms acting on Pl we may assume that y A R.
After identifying U3 with K2, the intersection point corresponds to ð0; yÞ and the
submanifolds PL VU3 and P 0

L VU3 correspond to g�1
ða;bÞð0Þ and f0g �K with gða;bÞ as

in the proof of Lemma 2.5. Choose ðu; vÞ in the intersection of the tangent spaces of
PL VU3 and P 0

L VU3 in ð0; yÞ. Then we get

ðy2 þ 1Þauþ ðy2 þ 1Þbvþ ðbyþ 1Þ2yv1 ¼ 0

by di¤erentiating gða;bÞ (compare the proof of Lemma 2.5) and u ¼ 0. Thus we have
ðy2 þ 1Þbvþ ðbyþ 1Þ2yv1 ¼ 0 and hence

jbj ¼ 2jbyþ 1j jyj
y2 þ 1

jv1j
jvj

provided that v0 0. We obtain that

jbyjc 2jbyþ 1j y2

y2 þ 1
c 2jbyþ 1j:

Because of

gða;bÞð0; yÞ ¼ ðjaj2 þ jbj2 þ 1Þðbyþ 1Þðy2 þ 1Þ þ l ¼ 0

we have jbyþ 1jc jlj, which implies that 1c jbyj þ jbyþ 1jc 3jlj, a contradiction.
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Thus we have v ¼ 0. This proves the transversal intersection of L and L 0 in ð0; y; 1Þ t.
Let us now consider the case that L and L 0 intersect in the point ð0; 1; 0Þ t. Then we
have b ¼ 0. We identify U2 with K2 such that ð0; 1; 0Þ t corresponds to ð0; 0Þ A K2.
The submanifolds PL VU3 and PL 0 VU3 are identified with the submanifolds
ðgð4Þða;0ÞÞ

�1ðf0gÞ and f0g �K, respectively, where

g
ð4Þ
ða;0Þ : K

2 ! K : ðx; zÞ 7! ðjaj2 þ 1Þðaxþ zÞðjxj2 þ 1þ jzj2Þ þ lzjzj2:

The di¤erential Dð0;0Þg
ð4Þ
ða;0Þ : ðu; vÞ 7! ðjaj2 þ 1Þðauþ vÞ vanishes on the tangent space

of PL VU3 in ð0; 0Þ. This proves the transversal intersection of L and L 0 in ð0; 1; 0Þ t,
since kerDð0;0Þg

ð4Þ
ða;0Þ and f0g �K have trivial intersection.

In the third case, both point rows PL and PL 0 are equal to point rows of the clas-
sical projective plane P0 ¼ P2K. Hence they intersect transversally. r

For the projective planes Pl, where jlj < 1
9 , the join map4 and the intersection

map5are not only smooth but real analytic and even Nash maps, i.e. the Pl are real
analytic or Nash projective planes, respectively. This will be obtained from the fol-
lowing general fact:

Proposition 2.6. Let P ¼ ðP;L;FÞ be a projective plane which satisfies the following

conditions:

(APP1) There is a positive integer l such that P and L are real analytic (or Nash) 2l-
dimensional manifolds.

(APP2) The flag space F is a real analytic (or Nash) 3l-dimensional submanifold of

P�L, and the canonical projections pP and pL are submersions.

Suppose, moreover, that any two distinct point rows and any two distinct line pencils

intersect transversally. Then the join map4 and the intersection map5 are real ana-

lytic (or Nash maps, respectively).

This proposition can be proved by simply copying the proof of [3], 1.4, or [6], 4.4,
and using a real analytic or Nash version, respectively, of the implicit function theo-
rem, see, e.g., [9], 1.8.3, and [1], 2.9.8.

It remains to check the conditions of the above proposition for the projective
planes Pl with jlj < 1

9 . For simplicity we concentrate on the Nash setting in the
sequel. First, the point space P and the line space L are copies of the point space and
the line space of the classical projective plane P2K with their usual algebraic struc-
ture. Hence, P and L are Nash manifolds. In the proofs of Theorem 2.4 and Lemma
2.5 we have shown that for each flag there is an open neighbourhood W in P�L
(identified with an open subset of K2 �K2) and a real polynomial submersion
fW : W ! K such that Fl VW ¼ f �1

W ð0Þ. By a Nash version of the standard result
on preimages of regular values we conclude that Fl is a Nash submanifold of P�L,
cf. [6], the end of Chapter 3, or [5], 5.1–5.9, [9], 1.8.1, [1], 2.9.7. The other conditions
required in Proposition 2.6 have already been verified above. Hence, the join map4
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and the intersection map5are Nash maps and, in particular, they are real analytic.
So, we have proved the following

Theorem 2.7. For jlj < 1
9 , the incidence structures Pl are Nash projective planes and, in

particular, real analytic projective planes.

The following theorem contains results on the dimensions of the automorphism
groups of the planes Pl, which are direct consequences of Lemma 2.3.

Theorem 2.8. The smooth projective planes Pl admit groups of smooth automorphisms

which are compact Lie groups of dimension 1, 4 or 13 for l ¼ 1, 2 or 4, respectively.

By the main result of [2], the dimension of the automorphism group of a 2l-
dimensional, non-classical smooth projective plane is at most 2, 6 or 16 for l ¼ 1, 2 or
4, respectively. By Theorem 2.8, the smooth projective planes Pl admit Lie groups of
smooth automorphisms whose dimensions are close to these bounds. The dimensions
of automorphism groups of non-classical compact projective planes of dimension
2l can be higher than in the smooth case, see [10], Section 65. The maximal dimen-
sions of compact groups of automorphisms of non-classical compact projective planes
(with l ¼ 1, 2 or 4), however, are the same as the dimensions of the Lie groups in
Theorem 2.8, i.e. in this respect there is no di¤erence between compact projective
planes and smooth projective planes. Indeed, by [10], 32.21 and 22 a compact group
of automorphisms of a 2-dimensional, non-classical compact projective plane is a Lie
group of dimension at most 1. In the 4-dimensional case, 71.9 and 72.6 in [10] imply
that the dimension of a compact group of automorphisms acting on a non-classical
compact projective plane is at most 4. Finally, in dimension 8 a compact group of
automorphisms acting on a non-classical compact projective plane is at most 13-
dimensional, see [10], 84.9. Even more, the identity connected component of such
a group is necessarily isomorphic to SO2R for l ¼ 1, to U2C for l ¼ 2, and to the
product of Spin3R and Spin5R with amalgamated centers for l ¼ 4. The following
theorem summarizes the general information obtained in this way.

Theorem 2.9. The maximal dimensions of compact groups of automorphisms of 2l-
dimensional, non-classical smooth projective planes are the same as those in the case of

2l-dimensional, non-classical compact projective planes for l A f1; 2; 4g.
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