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Alexander duality in subdivisions of Lawrence polytopes
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Abstract. The class of simplicial complexes representing triangulations and subdivisions of
Lawrence polytopes is closed under Alexander duality. This gives a new geometric model for
oriented matroid duality.
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1 Introduction

The aim of this note is to show that oriented matroid duality can be seen as an
instance of Alexander duality of simplicial complexes (see e.g. [2]). We represent an
a‰ne oriented matroid ðM; f Þ on the ground set f1; . . . ; n; f g by a simplicial com-
plex DðM; f Þ on the vertex set fx1; . . . ; xn, y1; . . . ; yng as follows. The facets of
DðM; f Þ are the complements of the sets

fxi : i A CþgU fyj : j A C�g;

where C ¼ ðCþ;C�Þ runs over all signed cocircuits of ðM; f Þ such that the dis-
tinguished element f lies in Cþ. We have the following result:

Theorem 1. The Alexander dual of DðM; f Þ is the simplicial complex Dð�fM
�; f Þ

associated with the a‰ne oriented matroid ð�fM
�; f Þ. Here �fM

� denotes the oriented
matroid dual to M with the element f reoriented.

This duality can be expressed geometrically in terms of Lawrence polytopes. Sup-
pose that the contraction M=f is represented by a d � n-matrix D of rank d. Then the
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associated Lawrence polytope (see e.g. [11, §6.6]) is the convex hull of the columns of
the ðd þ nÞ � 2n-matrix

LðDÞ ¼ D 0

I I

� �
: ð1Þ

Here I is the n� n-identity matrix, 0 is the d � n-zero matrix, and the columns are
indexed by fx1; x2; . . . ; xn; y1; y2; . . . ; yng. Recall that fxi; yig is the complement of
a facet of LðDÞ, for all i. It turns out that DðM; f Þ is a polyhedral subdivision of the
Lawrence polytope LðDÞ, where each maximal face in the subdivision is represented
by the simplex on its set of vertices. This subdivision is a triangulation if and only if
the matroid Mn f is uniform. The Lawrence polytope LðDÞ itself is called uniform if
all d � d-minors of D are nonzero, or, in the non-realizable case, if the matroid M=f
is uniform.

The following is our main result:

Theorem 2. The following families of simplicial complexes on the 2n-element set

fx1; . . . ; xn; y1; . . . ; yng are closed under Alexander duality:

(1) Regular triangulations of uniform Lawrence polytopes,

(2) regular subdivisions of Lawrence polytopes,

(3) triangulations of uniform Lawrence matroid polytopes,

(4) subdivisions of Lawrence matroid polytopes.

Moreover, Alexander duality gives a bijection between regular triangulations of
Lawrence polytopes and regular subdivisions of uniform Lawrence polytopes. These
two families are not closed under Alexander duality.

The families (3) and (4) in Theorem 2 refer to the case when the oriented matroid
M=f cannot be represented by a matrix D. For the relevant definitions and notations
used here we refer to the books [3] and [10]. In particular, see [3, §9.3] for Lawrence
(matroid) polytopes and [3, §9.6] for subdivisions of (matroid) polytopes. The first
author proved in [10, Theorem 4.14] that every subdivision of a Lawrence (matroid)
polytope is induced by a lifting of oriented matroids M=f ! M.

Our presentation is organized as follows. In Section 2 we prove Theorem 1 and we
interpret DðM; f Þ in terms of hyperplane arrangements. The proof of Theorem 2 is
given in Section 4. Examples of Alexander dual pairs of subdivided Lawrence poly-
topes are given in Section 3. The smallest non-trivial example is the pair of triangular
prisms in Figure 1.

Section 5 concerns the Alexander duals of simplicial balls and spheres in general.
This section was added after we received the very helpful comments of an anonymous
referee. He or she pointed us to the work of Dong [5] and proposed the extension
stated in part 2 of Theorem 9.

The original motivation for this project came from commutative algebra and
hyperkähler geometry. The simplicial complex DðM; f Þ is represented algebraically
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as a square-free monomial ideal in k½x1; . . . ; xn; y1; . . . ; yn�. The minimal free resolu-
tion of this ideal constructed in [9] can be interpreted as a (suitably homogenized)
coboundary complex on the Alexander dual Dð�fM

�; f Þ. In particular, part (1)

in Theorem 2 furnishes a large class of Stanley–Reisner rings which are Cohen–
Macaulay and have an explicit linear resolution. The quotient of such a Stanley–
Reisner ring modulo a linear system of parameters was shown in [6] to equal the
cohomology ring of a toric hyperkähler variety. These varieties are complete inter-
sections in the toric variety whose fan is a cone over DðM; f Þ. It would be interesting
to explore the duality of toric hyperkähler varieties arising from our results.

2 Oriented matroid duality is Alexander duality

We recall the combinatorial definition of Alexander duality. Let K be a simplicial
complex on the vertex set V . Then the Alexander dual of K is the simplicial complex

K4 :¼ fV ns : s B Kg

The Alexander Duality Theorem states that the i-th reduced homology group
~HHiðK ;ZÞ of K equals the ðjV j � 3� iÞ-th reduced cohomology group ~HH jV j�3�iðK4;ZÞ
of K4. See, e.g., [2, Equation (2)] or [1, (9.17)]. In particular, the Alexander dual of
an acyclic simplicial complex is acyclic, although the Alexander dual of a contractible
simplicial complex need not be contractible. See Section 5 for a discussion of this and
related topological issues.

Proof of Theorem 1. The statement can be rephrased as the following claim: given
an oriented matroid M on the ground set f1; . . . ; n; f g, for any pair of subsets
s1; s2 J f1; . . . ; ng one and only one of the following happens:

(1) There is a cocircuit ðCþ;C�Þ in M with C� J s1, and f A Cþ J s2 U f f g, or

(2) There is a cocircuit ðDþ;D�Þ in M� (that is, a circuit in M) with f A D� J
f1; . . . ; n; f gns1 and Dþ J f1; . . . ; ngns2.

Figure 1. The triangulation of a triangular prism is Alexander self-dual, after relabeling the
vertices. The non-edges on the left are the complements of the tetrahedra on the right.

Alexander duality in subdivisions of Lawrence polytopes 179



Indeed, condition (1) above is equivalent to

fxi : i B s2gU fyj : j B s1g A DðM; f Þ;

and condition (2) is equivalent to

fxi : i A s2gU fyj : j A s1g A Dð�fM
�; f Þ:

The claim follows from Lemma 3 below, taking e ¼ f and color classes B ¼
ðs2ns1ÞU f f g, W ¼ s1ns2, R ¼ s1 V s2, and G ¼ f1; . . . ; ngnðs1 U s2Þ. We also set
ðCþ;C�Þ ¼ ðYþ;Y�Þ and ðDþ;D�Þ ¼ ðX�;XþÞ.

Lemma 3 is just a rephrasing of the 4-painting axiom of oriented matroid circuits
and cocircuits. The notation in the lemma is chosen to exactly match the axiom as it
appears in [3, Theorem 3.4.4]. This is the reason why we have X ¼ �D above rather
than reorienting X in the lemma. r

Lemma 3. Let B, W, G and R be a partition of the ground set of an oriented matroid

M. Let e A BUW be one of the elements. Then, exactly one of the following happens:

(1) There is a circuit ðXþ;X�Þ with X� JW UG and e A Xþ JBUG, or

(2) There is a cocircuit ðYþ;Y�Þ with e A Yþ JBUR and Y� JW UR.

We now interpret DðM; f Þ in terms of hyperplane arrangements. By the Topolog-
ical Representation Theorem [3, §4], an a‰ne oriented matroid ðM; f Þ of rank d on
f1; . . . ; n; f g represents an a‰ne arrangement HðM; f Þ of n pseudo-hyperplanes in
Rd�1, with the distinguished element f playing the role of the hyperplane at infinity.
We can regard HðM; f Þ as a cover of Rd�1 by 2n closed half-spaces fx1; . . . ; xn;
y1; . . . ; yng, where xi and yi label respectively the positive and negative sides of the
i-th oriented hyperplane. It is straightforward to check that a subset of these half-
spaces has a non-empty intersection in Rd�1 if and only if the corresponding subset
of fx1; . . . ; xn; y1; . . . ; yng is a simplex in DðM; f Þ. In other words:

Remark 4. The simplicial complex DðM; f Þ is the nerve of the cover of Rd�1 con-
sisting of the 2n closed half-spaces in the arrangement HðM; f Þ.

The facets of DðM; f Þ are maximal intersecting families of closed half-spaces. They
correspond to the vertices of the arrangement HðM; f Þ. The face poset of HðM; f Þ
appears as a subposet in the face poset of DðM; f Þ. A simplex s A DðM; f Þ is called
full if sV fxi; yig0q for all i.

Remark 5. If Mn f is uniform, then the face poset of HðM; f Þ is anti-isomorphic
to the poset of full simplices of DðM; f Þ. If Mn f is not uniform, then the former is a
strict subposet of the latter.
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This implies that the oriented matroid M can be recovered from the simplicial
complex DðM; f Þ provided M is uniform. The same statement is not true for general
oriented matroids. For instance, consider an arbitrary arrangement of hyperplanes
which intersect in a line, and then adjoin two parallel hyperplanes transverse to that
line. Here DðM; f Þ consists of two simplices of the same dimension which share a
common facet, regardless of which arrangement we started with.

3 Lawrence polytopes in dimension three, four and five

In Section 4 we are going to prove Theorem 2 by translating Theorem 1 into the
language of subdivisions of Lawrence (matroid) polytopes. As a preparation for that
we describe in this section all the Lawrence polytopes which exist in dimensions up to
5, and an example of our Alexander duality result involving two Lawrence polytopes
of respective dimensions 4 and 5.

We first recall the construction of Lawrence polytopes in oriented matroid lan-
guage, and then we discuss low-dimensional Lawrence polytopes. Let M be an ori-
ented matroid of rank d on f1; . . . ; ng, and let M� be its dual. Let M� U ð�M�Þ be
the oriented matroid on fx1; . . . ; xn; y1; . . . ; yng defined by labeling the i-th element
of M� as xi and extending M� by an element yi opposite to each xi. The dual of
M� U ð�M�Þ is called the Lawrence oriented matroid (or Lawrence polytope, since it
is a matroid polytope) of M, and denoted LðMÞ. It has 2n elements and rank d þ n.
Lawrence (matroid) polytopes are studied in Section 9.3 of [3] and in Chapter 4 of
[10]. For example, [3, Lemma 4.11(ii)] implies that LðMÞ has n� l þ 2c facets, where
c is the number of cocircuits of M and l the number of coloops.

Since all the oriented matroids with d þ nc 11 are realizable, all Lawrence
matroid polytopes of dimension at most 10 are honest polytopes, that is, they can
be realized by ðd þ nÞ � 2n-matrices of the form LðDÞ as in (1). In what follows we
describe all Lawrence polytopes of dimension d þ n� 1c 5.

Let us first discuss the degenerate cases when M has a loop or coloop. If xi is a
coloop in M (i.e. if the i-th column of D is linearly independent of all others), then
it becomes a loop in M�. Then, xi and yi are loops in M� U ð�M�Þ and coloops
in LðMÞ. Geometrically, LðDÞ is an iterated pyramid over the Lawrence polytope
LðDnfxigÞ. If xi is a loop in M (i.e. if the i-th column of D is zero), then LðMÞ is
obtained from LðMnfxigÞ by adjoining a pair of parallel elements which forms a
positive cocircuit. Geometrically, LðDÞ is a pyramid over LðDnfxigÞ with apex at a
pair of identified points xi and yi. The right picture of Figure 2 represents this situa-
tion. The apex of the pyramid corresponds to the identified points y3 and x3. Note
that the triangulation uses x3 and not y3 as a vertex. This is indicated in the diagram
with a filled dot for x3 and an empty dot for y3.

We now consider only Lawrence polytopes that are not pyramids over other Law-
rence polytopes, which is the same as allowing only oriented matroids without loops
or coloops. There are eight combinatorial types of such Lawrence polytopes having
dimension at most five. The corresponding parameters ðn; dÞ are ð2; 1Þ; ð3; 1Þ; ð4; 1Þ;
ð5; 1Þ; ð3; 2Þ; ð4; 2Þ; ð4; 2Þ; ð4; 2Þ:

If d ¼ 1, then the Lawrence polytope of M equals the product D1 � Dn�1 of a seg-
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ment and a simplex of dimension n� 1. The polytope D1 � Dn�1 has n! triangulations
each isomorphic to the well-known staircase triangulation. The case n ¼ 2 is featured
in Figure 1. The case n ¼ 3 appears in (4) below.

If n� d ¼ 1, then M� and M� U ð�M�Þ have rank 1, and LðMÞ has corank 1,
i.e., it has a unique circuit. Assuming without loss of generality that all the elements
of M have the same orientation, this unique circuit is ðfx1; . . . ; xng; fy1; . . . ; yngÞ.
The polytope LðMÞ can be realized as the convex hull of the union of two ðn� 1Þ-
simplices in R2n�2 whose relative interiors intersect in a unique point. This Lawrence
polytope is the cyclic ð2n� 2Þ-polytope with 2n vertices.

Up to reorientation, there are three oriented matroids M1;M2;M3 of rank 2 on 4
elements. They are represented by 2� 4-matrices

D1 ¼ ðv1; v1; v2; v2Þ; D2 ¼ ðv1; v1; v2; v3Þ; D3 ¼ ðv1; v2; v3; v4Þ:

Here the vi are pairwise linearly independent vectors in the plane. In each case, LðDiÞ
is a five-dimensional Lawrence polytope with eight vertices and with 6þ 2i facets.
For instance, LðD1Þ is the join of two squares.

We shall examine the Lawrence polytope LðD3Þ by computing one of its triangu-
lations along with its Alexander dual. We start out with the 2� 5-matrix

A ¼
�x1 x2 x3 x4 f

1 1 1 1 1

4 3 2 1 0

�
;

and we fix the following Gale dual 3� 5-matrix, with last column reoriented:

B ¼

0
B@
x1 x2 x3 x4 f

1 �2 1 0 0

0 1 �2 1 0

0 0 1 �2 �1

1
CA:

Thus A and B represent uniform matroids. Let A 0 ¼ A=f and B 0 ¼ B=f denote the

Figure 2. This subdivision of a uniform Lawrence polytope (the triangular prism) is Alexander
dual to a triangulation of a non-uniform Lawrence polytope (the pyramid).
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matrices gotten from A and B by contracting the last column. Contracting f means
projecting every vector v A Anf f g along the direction of f to a linear hyperplane not
containing f . In our case:

A 0 ¼ ð
x1 x2 x3 x4

4 3 2 1 Þ; B 0 ¼
�x1 x2 x3 x4

1 �2 1 0

0 1 �2 1

�
:

The 2� 4-matrix B 0 has the form of D3 in the previous paragraph and will play the
role of D in the big matrix LðDÞ of Equation (1). The polytopes LðA 0Þ and LðB 0Þ are
4-dimensional and 5-dimensional, both with eight vertices. As we saw above, LðA 0Þ
is (a‰nely isomorphic to) the product of a segment and a tetrahedron.

There are precisely six signed cocircuits of B (or circuits of A) in which the element
f is positive:

fy1; x2; f g; fy1; x3; f g; fy1; x4; f g; fy2; x3; f g; fy2; x4; f g; fy3; x4; f g:
ð2Þ

There are precisely four signed cocircuits of A (or circuits of B) in which the element
f is positive:

fx2; x3; x4; f g; fy1; x3; y4; f g; fy1; y2; x4; f g; fy1; y2; y3; f g: ð3Þ

Taking complements in (2) we obtain the maximal simplices in a regular triangula-
tion of the 5-dimensional Lawrence polytope LðB 0Þ:

fx1; x2; x3; y1; y2; y4g; fx1; x2; x3; y1; y3; y4g; fx1; x2; x4; y1; y3; y4g;

fx1; x2; x3; y2; y3; y4g; fx1; x2; x4; y2; y3; y4g; fx1; x3; x4; y2; y3; y4g:

Taking complements in (3) we obtain the maximal simplices in a staircase triangu-
lation of the 4-dimensional Lawrence polytope LðA 0Þ ¼ D1 � D3:

fx1; y1; y2; y3; y4g; fx1; x2; y2; y3; y4g; fx1; x2; x3; y3; y4g; fx1; x2; x3; x4; y4g:
ð4Þ

These two simplicial complexes are Alexander dual to each other. The Stanley–
Reisner ideals of the two triangulations are gotten from (2) and (3) by deleting f and
f and regarding each set as square-free monomial. Namely, the Stanley–Reisner
ideal of our triangulation of DðB 0Þ is

hy1x2; y1x3; y1x4; y2x3; y2x4; y3x4i; ð5Þ

and the Stanley–Reisner ideal of our triangulation of DðA 0Þ is

hx2x3x4; y1x3x4; y1y2x4; y1y2y3i: ð6Þ
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4 Duality of subdivided Lawrence polytopes

The proof of Theorem 2 is based on the non-trivial fact that all subdivisions of
a Lawrence matroid polytope are lifting subdivisions. This fact is one of the main
results in the monograph [10].

We recall the definition of lifting subdivisions. Let ðM; f Þ be an a‰ne oriented
matroid on the ground set f1; . . . ; n; f g, and assume that f belongs to some positive
cocircuit. Consider the sets fxi : i B Cþg where C runs over all positive cocircuits of
M with f A Cþ. These sets form (the maximal cells of ) a subdivision of the oriented
matroid M=f . Subdivisions of an oriented matroid obtained in this manner are called
lifting subdivisions. For the general definition of subdivisions of oriented matroids see
[3, §9.6] or [10].

IfM=f is realized by a vector configuration, then subdivisions ofM=f are the same
as polyhedral subdivisions (also called polyhedral fans) of it. If not only M=f but
also M is realized by a vector configuration A, then the lifting subdivision induced by
ðM; f Þ is the regular subdivision of A=f corresponding to the lifting A=f ! A. Some
lifting subdivisions of vector configurations are not regular, and some polyhedral sub-
divisions are not lifting. See [3, Corollary 9.6.8]. By [3, Proposition 9.1.1], every lift-
ing subdivision is either a ðd � 1Þ-ball or a ðd � 1Þ-sphere, where d is the rank of
M=f , and the latter happens exactly when M is acyclic and M=f totally cyclic. The
topological type, or even the homotopy type, is not known for general subdivisions of
non-realizable oriented matroids.

Proposition 6. Let S be a lifting subdivision of a rank d oriented matroid on n elements.
If S is not a triangulation we consider it as a simplicial complex whose facets are the

maximal faces of S. Then, the Alexander dual S4of S is either contractible or homotopy

equivalent to an ðn� d � 2Þ-sphere, depending on whether S itself is contractible or a

ðd � 1Þ-sphere.

Proof. A subset sJ f1; . . . ; ng is in S4 if and only if M has no positive cocircuit with
f A Cþ J s. By Lemma 3 (with W ¼ R ¼ q, B ¼ s and G ¼ f1; . . . ; n; f gns) this
happens if and only if M has a circuit ðDþ;D�Þ with f A Dþ and D� V s ¼ q.
Equivalently, if the closed positive half-spaces labeled by s have non-empty inter-
section in the arrangement HðM�; f Þ.

In other words, S4 is the nerve of the family of closed positive half-spaces of
HðM�; f Þ. By the Nerve Theorem (see [1, §11]) S4 has the homotopy type of the
union of these half-spaces, which equals the complement of the (open) cell of
HðM�; f Þ corresponding to the covector ð f ; f1; . . . ; ngÞ, or the entire a‰ne space
if that covector does not appear in M�. This complement is contractible unless
the covector exists and the corresponding cell is bounded, in which case it is an
ðn� d � 2Þ-sphere. The cell ð f ; f1; . . . ; ngÞ exists and is bounded if and only if M�n f
is acyclic and M� totally cyclic. r

We now shift gears and replace M=f by LðM=f Þ. It was proved in [10, Theorem
4.14] that every subdivision of a Lawrence matroid polytope LðM=f Þ is a lifting
subdivision. See also [7, §4] for the realizable case. Moreover, lifts of LðM=f Þ and
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lifts of M=f are essentially the same thing. In particular, ðM; f Þ represents a lift of
LðM=f Þ and a lifting subdivision of it. We denote this subdivision by SðM; f Þ. Its
maximal faces are the sets

fxi : i B CþgU fyi : i B C�g

where C runs over all cocircuits of M with f A Cþ. Hence SðM; f Þ coincides with
DðM; f Þ if we regard SðM; f Þ as a simplicial complex as in the statement of Propo-
sition 6. Observe that SðM; f Þ is a triangulation if and only if Mn f is uniform.
Theorem 1 can be rephrased as:

Corollary 7. Let ðM; f Þ be an a‰ne oriented matroid. Let ð�fM
�; f Þ be its dual,

reoriented at f . The subdivisions SðM; f Þ and Sð�fM
�; f Þ of LðM=f Þ and LðM�=f Þ

are Alexander dual to one another.

Proof of Theorem 2. Part (4) follows from Corollary 7. Part (3) corresponds to the
case where both M=f and Mn f are uniform and part (2) is the case where both M=f
and Mn f are realizable. Part (1) is the intersection of both cases. Observe that Mn f
is uniform or realizable if and only if M�=f ¼ ðMn f Þ� has that property. r

Triangulations of Lawrence matroid polytopes and subdivisions of uniform Law-
rence matroid polytopes, intermediate between Cases (3) and (4) of Theorem 2, cor-
respond respectively to Mn f and M=f being uniform. Hence they are not self-dual
classes of simplicial complexes DðM; f Þ, but classes dual to one another. Adding
the attribute ‘‘regular’’ to both sides gives another two dual classes. Figure 2 was
an example of this. Figure 3 below summarizes Theorem 2 and this remark, showing
how Alexander duality acts on the following eight families of simplicial complexes on
fx1; . . . ; xn; y1; . . . ; yng:

S ¼ fSubdivisions of matroid Lawrence polytopesg.

R ¼ fRegular subdivisions of Lawrence polytopesg.

Figure 3. A diagram showing the action of Alexander duality on several families of simplicial
complexes.
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T ¼ fTriangulations of matroid Lawrence polytopesg.

U ¼ fSubdivisions of uniform matroid Lawrence polytopesg.

RT ¼ RVT, RS ¼ RVS, TU ¼ TVU, RTU ¼ RVTVU.

This is a Hasse diagram: thin lines represent set-theoretic inclusions among the eight
families. Thick arrows indicate the action of Alexander duality.

Remark 8. When we say ‘‘DðM; f Þ is a regular triangulation of a Lawrence poly-
tope’’ we mean ‘‘there is a realization D of M=f for which the subdivision corre-
sponding to DðM; f Þ is regular’’. A stronger meaning would be ‘‘in every realization
D of M=f the subdivision corresponding to DðM; f Þ is regular’’. Theorem 2 is not
true with this stronger meaning, as the following example shows. Let M be the ori-
ented matroid realized by

A ¼

0
@
x1 x2 x3 x4 x5 x6 f

1 2 �e 0 e� 1 �2 0

e 0 1 2 �1 �2 0

1 1 1 1 1 1 1

1
A;

where e is su‰ciently small and positive. Let A1 ¼ An f and let A2 ¼ fv1; . . . ; v6g be
a realization of Mn f in which the planes spanned by fv1; v2g; fv3; v4g and fv5; v6g
meet in a line. Let B1 and B2 be Gale transforms of A1 and A2, respectively. Since
A2 cannot be extended to a realization of M, Dð�fM

�; f Þ is a regular triangulation
of LðB1Þ but not of LðB2Þ, even though both represent the same matroid polytope
LðM�=f Þ. On the other hand, DðM; f Þ is a regular triangulation of any realization of
LðM=f Þ, because any realization of M=f is the contraction of one of M.

In closing we relate our discussion to zonotopal tilings, which is the geometric
model for oriented matroids featured prominently in [11]. Suppose that M=f can be

realized as a vector configuration D ¼ fv1; . . . ; vngHRd�1. The Bohne–Dress The-
orem (see [11, §7.5]) says that the cell-complex dual to the arrangement HðM; f Þ is
a zonotopal tiling ZðM; f Þ of the zonotope ZðDÞ ¼

Pn
i¼1½O; vi�. The exact relation

between ZðM; f Þ and SðM; f Þ is as follows. Let p : LðDÞ ! Dn�1 be the projection
sending the pair of vertices xi and yi to the i-th vertex of the standard ðn� 1Þ-simplex
Dn�1. In coordinates, this projection just forgets the first d rows in the matrix LðDÞ
given in (1). Let P be the centroid of Dn�1. Then, p�1ðPÞ is a scaled copy of the
zonotope ZðDÞ. The Cayley Trick [7] states that the zonotopal tiling ZðM; f Þ is the
intersection of the subdivision SðM; f Þ with that zonotope.

5 The topology of Alexander duals

We start by showing that the Alexander dual of a contractible simplicial complex
need not be contractible, with the following reasoning suggested to us by Anders
Björner. Let K be any acyclic but not contractible simplicial complex with at least 5
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more vertices than its dimension. Small such complexes, with dimension 2 and 10
vertices, are described in [4, p. 284]. By the assumption on dimension, every three
vertices form a triangle in K4, and hence K4 is simply connected. It is also acyclic by
the Alexander Duality Theorem. By standard algebraic topology results, acyclic and
simply connected simplicial complexes are contractible.

This fact contrasts the following result, pointed out to us by an anonymous referee.
Part 1 is taken from [5]. The proof of the second part is due to the referee.

Theorem 9 (Dong [5]). Let S be a simplicial complex of dimension d with n vertices.
Then:

(1) If S is a d-sphere then S4 has the homotopy type of the ðn� d � 3Þ-sphere.

(2) If S is a d-ball then S4 is contractible.

Proof. If nd d þ 5, the argument above gives that S4 is simply connected. This,
together with the fact that it has the homology groups of the ðn� d � 3Þ-sphere (re-
spectively, of a contractible space) implies that it is homotopy equivalent to the
ðn� d � 3Þ-sphere (respectively, it is contractible).

Let us now assume that nc d þ 4. In part 1, this implies that S is actually poly-
topal, by a classical result of Mani [8]. Corollary 22 in [5] implies that the Alexander
dual of a simplicial d-polytope with n vertices is homotopy equivalent to the
ðn� d � 3Þ-sphere.

In part 2, the case nc d þ 3 is proved by similar arguments: Coning the boundary
of S to a new vertex we get a simplicial d-sphere with at most d þ 4 vertices, hence a
polytopal one. This implies that S is a shellable ball, hence collapsible (see Lemma 17
in [5]). The Alexander dual of a collapsible space is contractible, by [5, Corollary 12].

We still have to deal with the case n ¼ d þ 4 in part 2. We will prove that in this
case S4 is simply connected. Hence, the same arguments as in the case nd d þ 5
apply. The complex S4has a complete 1-skeleton, but not a complete 2-skeleton. The
triangles missing are precisely the complements of the maximal simplices in S, and
our task is to show that they all produce null-homotopic loops. To see this, let s be a
d-simplex in S, with complement fp; q; rg. If s has a boundary facet snfsg, then
fp; q; sg; fp; r; sg, and fq; r; sg are triangles in S4, hence the loop fp; q; rg is null-
homotopic. If s has no boundary facet, let s 0 a d-simplex of S4 adjacent to s. Sup-
pose the complement of s 0 is fp; q; sg. Then the triangles fp; r; sg and fq; r; sg are in
S4 and prove that the loops fp; q; rg and fp; q; sg are homotopic. In other words,
missing triangles of S4 corresponding to adjacent d-simplices of S are homotopic.
Any maximal simplex in the ball S can be connected to one incident to the boundary.
This proves that every missing triangle is homotopic to a null-homotopic one. r

This result in particular implies Proposition 6 for lifting triangulations. But actually
Dong’s paper [5] contains the ingredients needed to generalize it to arbitrary subdivi-
sions. Indeed, his Theorem 27 (together with his Lemma 25) states that the Alexander
dual of every polyhedral decomposition of a d-sphere, considered as a simplicial
complex as we did in Proposition 6, is homotopy equivalent of a ðn� d � 3Þ-sphere.
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But the three properties of polyhedral complexes that he uses are also satisfied by
subdivisions of oriented matroids. Namely: (1) they are regular cell complexes, (2) the
intersection of any two closed cells is a closed cell (Dong calls this the meet property)
and (3) they can be refined to triangulations without the addition of new vertices by
the so-called pulling construction (for the pulling refinement of oriented matroid sub-
divisions see [3, Section 9.6] or [10, Remark 4.4]). Hence, we can generalize Proposi-
tion 6 as follows:

Theorem 10. Let S be a subdivision of a rank d oriented matroid on n elements. If S is

not a triangulation we consider it as a simplicial complex whose facets are the maximal

faces of S. Then:

(1) If S (as a cell complex) is a ðd � 1Þ-sphere, then S4 is homotopy equivalent to a

ðn� d � 2Þ-sphere.

(2) If S (as a cell complex) is a ðd � 1Þ-ball, then S4 is contractible.

Proof. Let T be a triangulation obtained by the pulling refinement of S. As men-
tioned in [5], S (considered as a simplicial complex) collapses to T and this implies
that T4collapses to S4. Since T is homeomorphic to (the cell complex) S, the homo-
topy type of T4 is given by Theorem 9. r

It is not known whether Cases (1) and (2) of Theorem 10 cover all subdivisions
of oriented matroids. They cover, at least, all subdivisions of realizable ones and all
lifting subdivisions of non-realizable ones.
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