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Divisors on real curves
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Abstract. Let X be a smooth projective curve over IR. In the first part, we study effective divi-
sors on X with totally real or totally complex support. We give some numerical conditions for
a linear system to contain such a divisor. In the second part, we describe the special linear sys-
tems on a real hyperelliptic curve and prove a new Clifford inequality for such curves. Finally,
we study the existence of complete linear systems of small degrees and dimension r on a real
curve.
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Introduction

In this note, a real algebraic curve X is a smooth proper geometrically integral scheme
over IR of dimension 1. A closed point P of X will be called a real point if the residue
field at P is IR, and a non-real point if the residue field at P is €. The set of real
points, X (IR), will always be assumed to be non-empty. It decomposes into finitely
many connected components, whose number will be denoted by s. By Harnack’s the-
orem we know that 1 < s < g+ 1, where g is the genus of X. A curve with g+ 1 —k
real connected components is called an (M — k)-curve.

The group Div(X) of divisors on X is the free abelian group generated by the closed
points of X. Let D € Div(X) be an effective divisor. We may write D = D, + D, in
a unique way, such that D, and D, are effective and with real, respectively non-real,
support. We call D, (resp. D.) the real (resp. non-real) part of D. In the sequel, we
will say that D is totally real (resp. non-real), if D = D, (resp. D = D.).

By R(X), we denote the function field of X. Let Pic(X) denote the Picard group
of X, which is the quotient of Div(X) by the subgroup of principal divisors, i.e.
divisors of elements in IR(X'). Since a principal divisor has an even degree on each
connected component of X (IR) ([4] Lemma 4.1), we may introduce the following
invariants of X:

* Partially supported by the EC contract HPRN-CT-2001-00271, RAAG.
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(i) N(X), the smallest integer n > 1 such that any divisor of degree n is linearly
equivalent to a totally real effective divisor (by [11] Theorem 2.7, we know that
N(X) is finite),

(i) M(X), the smallest integer m > 1 such that any divisor D of degree 2m such that
the degree of D on each connected component of X (RR) is even, is linearly equiva-
lent to a totally non-real effective divisor. If such an integer does not exist, then
M(X) = +oo.

The principal goal of the paper is to bound the previous invariants in terms of g and
s. The problem for N(X) was raised by Scheiderer in [11].
We briefly describe the structure of the paper. In Section 2, we show that

g< M(X)<2g.

Moreover, if X is a real rational curve or a real elliptic curve, then M (X) = 1. Using
this, we also prove that if X < Py, n > 2, is a non-degenerate linearly normal curve
of degree d with no pseudo-line in X(IR) (see the Section 2 for the corresponding
definitions), and if X satisfies one of the two following conditions

(i) X is rational or elliptic,
(ii) g =2 and d > 4g,

then X(R) is affine in P, i.e. there exists a real hyperplane H such that H(R)N
XR)=g.

In Section 3, we extend a result proved in [6] for M-curves, to (M — 1)-curve:
NX)<29-1

Under the assumption of a conjecture of Huisman [9] on unramified curves, we fur-
ther extend this result to (M — 2)-curves, the bound being slightly different.

In the last section of the paper, we give a large family of curves for which the invari-
ant N is explicitely calculated. For these computations, we use the results established
in Sections 4 and 5.

In Section 4, we prove a stronger version of the Clifford inequality for real hyper-
elliptic curves, which sharpen Huisman’s general result for real curves [8]: if X is a
real hyperelliptic curve such that s # 2 and D € Div(X) is an effective and special
divisor of degree d, then

dim|D| <

(d —a(D)),

| —

with 6(D) the number of connected components C of X (IR) such that the degree of
the restriction of D to C is odd.

Section 5 deals with the existence of complete linear systems of degree d and dimen-
sionr > 1 on X.

The author wishes to express his thanks to D. Naie and J. van Hamel for several
helpful comments concerning the paper. I also thank J. Huisman for bringing my
attention to his work on real algebraic curves.
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1 Preliminaries

We recall here some classical concepts and more notations that we will be using
throughout this paper.

Let X be a real curve. We will denote by X¢ the base extension of X to €. The
group Div(X¢) of divisors on X is the free abelian group on the closed points of X¢.
The Galois group Gal(C/R) acts on the complex variety X¢ and also on Div(X¢).
We will always indicate this action by a bar. If P is a non-real point of X, identifying
Div(X) and Div(Xg)%®/® | then P = Q + O with Q a closed point of X¢.

If D is a divisor on X or X¢, we will denote by [D] its class in the Picard group, and
by (O(D) its associated invertible sheaf. The dimension of the space of global sections
of this sheaf will be denoted by /(D) for D on X, and by /¢ (D) for D on X¢.

We will always denote by Ci,...,Cs the connected components of X (IR). Let
D e Div(X), and denote by degc (D) the degree of the restriction of D to C;. Fol-
lowing [4], we will denote by ¢ the surjective morphism

Pic(X) — (Z/2)’,
[D] — (... ,degc (D)mod?2,...),

and we will write 6(D) for the number of connected components C of X(R) such
that deg.(D) is odd. The connected components of Pic?(X), the subgroup of divi-
sor classes of Pic(X) of degree d, correspond to the fibres of the restriction of ¢ to
Pic/(X). Let u = (u1,...,us) € (Z/2)*, we will denote by U(d;uy, ... us) = U(d,u)
the connected component of Pic?(X) that corresponds to ¢ !(u). Obviously,
U(d;uy,...,us) # & if and only if >} | u; = d mod 2. We will also denote the co-
ordinates of u = (u,...,u;) € (Z/2)" by ¢;(u) = u;.

Let J be the Jacobian of X. It is well known that Pic’(X) can be identified with
J(R) since X (R) # #. We will denote by J(IR), the connected component of the
identity of J(RR). Then J(IR), = U(0;0,...,0) ((11] Lemma 2.6).

We now reformulate the definition of the invariants N and M.

Definition 1.1. (i) N(X) is the smallest integer n > 1 such that for any real point P,
and for any « € J(RR), there exist P, ..., P, € X(R), such that « = ) | [P; — PJ, and

(i) M(X) is the smallest integer m > 1, such that for any real closed point P, and
for any « € J(IR),, there exist non-real points O, ..., O, such thato = Y"",[0; — 2P].
If such an integer does not exist, then M (X) = +co.

2 Divisors with a complex support

In this section, we bound the invariant M (X') from above and from below, and give a
geometric consequence.
The following proposition justifies the definition of the invariant M.

Proposition 2.1. Let P be a real point of X and o.€ J(R),. There is an integer m > 1
and non-real points Qy, ..., Qp such that o= ", [Q; — 2P].
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Proof. Let P be a real closed point of X and « € J(R),. Since J(IR), is a divisible
group, there is f € J(IR), such that 2 = «. By Riemann—Roch, the map

9, (SYX)(R) — Pic’(X)

is surjective for d > g, where S?X denotes the symmetric d-fold product of X over
R. Hence there exists D an effective divisor of degree g such that f + [¢gP] = [D]. By
Riemann—Roch, there is an integer k such that the divisor kP is very ample as a
complex divisor, and also as a real divisor, since kP € Div(X). Hence D + kP is also
very ample.

Let i denote the embedding of X in P associated to the linear system |D + kP|.
Let S be the quadric hypersurface of P& with equation x3 + --- + x7 = 0. Thus
2D + 2kP is linearly equivalent to the effective divisor D’ of degree 2(g + k) obtained
by intersecting S and X. Since S(IR) = ¢, D’ is totally non-real. Hence o = [D'] —
[2(g + k) P], and the result follows. O

The method of the previous proof allows us to give an upper bound for M(X) in
terms of g. The following theorem gives a better result.

Theorem 2.2. Let X be a curve of positive genus. We have M (X) < 2g.

Proof. Let P be a real point of X and V' = X(C)\X(R), where X(C) denote the set
of closed points of X¢. X(IR) is seen as a subset of X(C). By Riemann—-Roch, the
map X (C)? — Pic?(X¢) is surjective. Moreover, the map SYX — J is well known to
be a birational morphism of complete varieties. The image U of the map

& _)J(q:)v(Qla---7Qg) i Z[Qi_P]7

i=1

contains therefore an open dense subset of J(C). Thus U + U = J(C). The image of
the norm map N : J(C) — J(R), o — o+ &, is J(R), (see [11]). So N(U) + N(U) =
J(R),, and M(X) < 2g. O

Since any two divisors with the same degree on a rational real curve are linearly
equivalent, we trivially get the following proposition:

Proposition 2.3. Let X be a real rational curve, then M(X) = 1.
For real elliptic curves, the result of Theorem 2.2 can be improved.
Theorem 2.4. Let X be a real elliptic curve, then M(X) = 1.
Proof. Let P be a real point of X and o € J(IR),. Arguing as in the proof of Propo-

sition 2.1, there is ff € J(RR), such that 2f = a and § + [P] = [Po), with Py a real point.
Then
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o= [2Py] — [2P].

The linear system |3Py| gives a closed immersion X < IP%. Using Riemann-Roch
and after linear changes of coordinates, we obtain a closed immersion ¢ : X — P&
such that the image is the curve

¥’ = (x = a)R(x),

with ¢ € R and R(x) € R[x] a monic and separable polynomial of degree 2. The point
Py goes to the point at infinity (0 : 1 : 0) on the y-axis (see [5] Proposition 4.6, p. 319).
If we project from P, onto the x-axis, we get a finite morphism f : X — IP}, of degree
2, sending Py to oo, and being ramified at least at one more real point of IP]}{, besides
oo. In fact, f may be defined using the linear system |2Py|. Since f is ramified with
order 2 at oo, then locally on one side of oo the fiber over Pk (IR) is totally real and
on the other side the fiber is totally non-real. In particular, there exists 1 € Py (R)
such that f~'(1) = {Q}, with Q a non-real point of X. Then [2Py] = [Q] and « =
(0] - [2P. O

For a given complete linear system of degree sufficiently big, an upper bound exists
for the least degree of the real part of divisors in the linear system.

Corollary 2.5. For any complete linear system |D| with deg(D) = 4g+ (D) if g = 2,
deg(D) =2+ (D) if g € {0, 1}, there exists D' € |D| such that the real part of D' has
degree 6(D).

Proof. We give the proof only for the case g > 2. Let Py, ..., P5p) be some real points
belonging to the connected components of X (IR) where the degree of D is odd, and
such that no two of them belong to the same connected component of X (IR). We set
d = deg(D). We remark that d — ¢ is necessarily even. By Theorem 2.2, D — Zf:(ll)) P;
is linearly equivalent to a totally non-real effective divisor and the proof is done. []

We give a lower bound for the invariant M (X).

Proposition 2.6. Assume g = 2. Then M(X) = g.

Proof. Let P e X(IR) and consider the divisor D’ = K — P, where K denotes the ca-
nonical divisor. Choose P’ # P € X(RR) belonging to the same connected component
of X(R) as P. Since X is not rational, using the fact that /(P — P") = 0, it follows
that

(D' +P)=g—1=/(D).
Hence P’ is a base point of the linear system |D’+ P’|. Since D’ + P’ has degree

2¢g — 2 and has an even degree on each connected component of X (R) (see [9] Prop-
osition 2.1), we easily see that M(X) > g — 1. O
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We give now a geometric consequence of the previous results. Let X < [Py be a
non-degenerate real curve, i.e. X is not contained in a real hyperplane of IP;. We will
say that X (IR) is affine in Py if there exists a real hyperplane H such that H(R)N
X(R) = . In this case X(RR) is a real algebraic subvariety of A (R) =IR" in the
sense of [2]. Since the real hypersurface S of IPj; with equation xZ + - -+ + x2 = 0 has

no real points, X (IR) is always contained in an affine open subset of IPy. More pre-

cisely the image of X(IR) by the 2-uple embedding is affine in Py >"""2~ we

may wonder if X(RR) is already affine in IPy. Recall that X is linearly normal if the
restriction map

H(Pg, 0(1)) — H°(X, 0(1))

is surjective. Let C be a connected component of X (IR). The component C is called a
pseudo-line if the canonical class of C is nontrivial in H, (IPg (R),Z/2). Equivalently,
C is a pseudo-line if and only if for each real hyperplane H, H(R) intersects C in
an odd number of points, when counted with multiplicities (see [9]). So a necessary
condition for X (RR) to be affine in IPj is that X (IR) has no pseudo-line.

Proposition 2.7. Let X < P}, n = 2, be a non-degenerate linearly normal curve of
degree d such that X(R) has no pseudo-line. If X satisfies one of the two following
conditions

(i) X is rational or elliptic,
(i) g =2 and d = 4y,
then X (R) is affine in PPy.

Proof. A hyperplane section has even degree on each connected component of X (RR)
and its degree = 2M (X). The results follows from Corollary 2.5 and the linear nor-
mality. O

Example 2.8. Let X be an elliptic quartic curve in IP;, with only one real connected
component. Then X (IR) is affine in ]P% since X satisfies the hypotheses of the prop-
osition: X is a complete intersection and d is even (use Bezout’s theorem).

Proposition 2.9. Let X < Py be a non-degenerate curve of degree d < 2n — 1 such that
X(R) has no pseudo-line and g=d —n. If n<d<n+1ord< %n then X(R) is
affine in Pp.

Proof. Let H be a hyperplane section of X. By Clifford’s inequality and since
d <2n—1, H is non-special (see Section 4). By Riemann-Roch, g = d — dim|H|.
Consequently dim|H| =n and X is linearly normal. The proof follows now from
Proposition 2.7. O

Example 2.10. Let X be a smooth quartic curve in P3. Then X is the canonical
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model of a curve of genus 3. By [4], X has always odd theta-characteristics that are
in one-to-one correspondence with the real bitangent lines to X. Since the degree of
X is 4, a real bitangent line to X intersects the curve X¢ only at the two points of
tangency. If these two points are non-real and switched by the complex conjugation,
then X (R) is affine in IP%. If the points are real, we may move the line to get a line
which does not intersect X (R), X(IR) is again affine in IP%. Notice that the conclu-
sion cannot be deduced from Proposition 2.7.

3 Divisors with real support
This section is dedicated to the study of the invariant N(X). We clearly have
Proposition 3.1. If X is a real rational curve or a real elliptic curve, then
NX) =1

Hence, in the remainder of this section we will assume that g > 1, and use the invari-
ant e defined by:
o {

Let us state the principal result of this section:

(g—19) if g — s even,
(g—s+1) if g—sodd.

D= B —

Theorem 3.2. Any complete linear system of degree >=s — 1 + g contains a divisor whose
non-real part has degree < 2e.

Proof. Let D be a divisor of degree d = s — 1 + g. We will prove that D is linearly
equivalent to an effective divisor, whose non-real part has degree < 2e.

Let P be a real point and « = [D —dP] e J(R). We fix Ry,...,R; 2 in g—2e
distinct components among Cj, ..., C;. To simplify the proof, we set R; € C;. Let us
denote f = o + 329" [P — R;]. Consider the restriction to Pic(X) of the morphism ¢
defined in Section 1, then it clearly induces an isomorphism J(R)/J(R), ~ (Z/ 2)* 1
Hence there exist Py_set1, ..., Py_2ers—1 € X (IR) such that

—_

§—

=
I

[Py—2e+j — P + By,
1

J

with f, € J(R),.

By Riemann—Roch, the natural map (SYX)(R) — Pic/(X) is surjective, SYX
denoting the symmetric d-fold product of X over R. Moreover if [D'] = [D”] in
Pic/(X), then degc (D') = degc,(D") mod2fori=1,...,s Letue (Z/2)’ such that
ci(uy=1for i=1,...,9 —2e and ¢, 2.41(u) = 0. Consequently, if [D'] € U(g;u),
then D’ is linearly equivalent to the effective divisor
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g—2e e
D Pi+) 0
i=1 i=1

where
1) P,eC, 1 <i<g—2eand,

2) Q; is either a non-real point or a sum of two real points contained in the same
connected component of X (R), i =1,...,e.

The translation by —[>>9"* R)] — 2¢[P] is a bijection between U(g;u) and J(R), =
U(0;0,...,0), hence

g—2e g—2e e
Bo+|D>_ Ri|+2e[P] =D [P+ [0
i=1 i=1 i=1
Finally,
s—14+g—2e e
o= > [P—P|+> [0;—2P]
i=1 i=1
and the proof is done. O

The above theorem allows to give an upper bound for M-curves or (M — 1)-curves.

Corollary 3.3. Let X be an M-curve or an (M — 1)-curve. Then
NX)<s—1+g.

In [6], it is shown that N(X) <2g — 1 for M-curves. Following the method used
in [6], we will now show that the result of Theorem 3.2 may be improved in the case
s=g+ 1 mod?2.

Let s > 2. By Theorem 3.2, we already know that for every complete linear system
|D| of degree =5 — 1 + g, there exists D’ € |D| such that the non-real part of D’ has
degree < 2e. We would like to extend the result to linear systems of degree g + d,
0 < d < s — 2, under certain conditions on the invariant J.

Proposition 3.4. Assume deg(D)=g+d for de{0,...,s=2}. If (D) =s—d—
L1 = (=1)*79), then there exists D' € |D| such that the non-real part of D' has
degree < 2e.

Proof. The proof depends on the parity of s — g.
First, assume that s — g is odd. For i =1,...,s, let u; € (Z/2)" such that ¢;(u;) =
1 —0;; (0 is Kronecker’s symbol). By Riemann—Roch, any divisor in U(g, u;) is lin-
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early equivalent to an effective divisor whose non-real part has degree < 2e. We
translate D by —D”, with D" a totally real effective divisor of degree d such that
[D—D"] € U(g,u;) for a i. We have (D) = g + d mod 2. Hence there exists k € Z
such that J(D)+2k =g+ d. Moreover g+d=5—d—1mod2, hence g+d =
s —d — 1+ 2r, with r € Z. By a closer look at these identities, we see that k£ and r are
non-negative. Consequently

oD)=20r—k)+s—d-1. (1)
By the hypothesis 6(D) > s —d — 1. Hence / = r — k = 0 and by (1),
(s—=do(D)—1)+2/=d. (2)

We remark that s — (D) corresponds to the number of connected components C of
X (R) where deg(D) is even. If s # d(D), then we choose a component C; such that
degc. (D) is even, and by (2), we take as D" a divisor that cuts out schematically a
point on the components C; # C; where deg, (D) is even, and a point with multi-
plicity 2/ on C;. Then [D — D"] € U(g, u;). If s =3J(D), then d =2/ — 1 is odd, and
we take D" = dP;, with P, € C,. Again [D — D"] € U(g,u).

Second, assume that s — ¢ is even.

The situation is simpler since we know that any divisor in U(g,u), with u =
(1,...,1) e (Z/2)", is linearly equivalent to an effective divisor whose non-real part
has degree < 2e. So we translate D by —D” with D" a totally real effective divisor of
degree d, such that [D — D"] € U(g,u). By the same arguments as before,

O(D) =2(r—k)+s—d, (3)

for some non-negative integers r and k. If we assume that d(D) = s —d, then [/ =
r—k >0, and by (3),

(s—d(D)) +21 =d. 4)

Again s — 6(D) corresponds to the number of connected components C of X(IR)
where deg(D) is even. For D", we take the sum of any real point with multiplicity
2[, with a divisor whose support consists of a unique point in each of the component
C of X(R), where deg(D) is even. O

Corollary 3.5. Assume s — g is odd and s = 2. Any complete linear system of degree
=5 — 2 + g contains a divisor whose non-real part has degree < 2e.

Proof. Using the previous proposition, we only have to prove that if D is a divisor of
degree g + s — 2, then 6(D) = 1. If 6(D) =0, then g + s — 2 must be even, contra-
dicting the hypotheses. O

Let us state a nice consequence of the previous results:
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Theorem 3.6. Let X be an M-curve or an (M — 1)-curve. Then N(X) < 2g — 1.

Equivalently, the theorem says that, for an M-curve or an (M — 1)-curve, the natural
map X (R)%*~" — Pic®~!(X) is surjective.

(M — 2)-curves and unramified real curves in odd-dimensional projective spaces. Let X
be real curve and D € Div(X). For D =) n;P; — Y m;Q;, with n; and m; positive,
and the sum taken over distinct closed points of X, we define Dyeqa = > P — Y O;.
We also define the weight of D to be the natural number w(D) = deg(D — Dyeq). If
X < PR, n > 1, is non-degenerate, we say that X is unramified if for each hyperplane
H of Py, we have w(H - X) <n— 1.

The corresponding notion of an unramified complex algebraic curve in complex
projective space is well understood. Indeed, any unramified complex algebraic curve
is a rational normal curve and conversely [3]. Over R, the situation is different and
Huisman has given the following conjecture (see [9] Conjecture 3.6):

Conjecture. Let n > 3 be an odd integer and X = Py be a non-degenerate real alge-
braic curve of positive genus. If X is unramified, then X is an M-curve.

We relate this conjecture and the invariant N studied in this paper.

Theorem 3.7. Let X be an (M — 2)-curve. Assuming the above conjecture, we get:
(i) N(X) <3g—1,ifgis even, and
(ii) N(X) < 3g, if g is odd.

Proof. Let P € X(R) and « € J(IR). Recall that s = g — 1 and that Cy,. .., C,_; denote
the connected components of X (IR). We may assume that P € C;.

Assume g is even. Let D = P> + --- 4+ P;_1 + Q be an effective divisor with P; € C;
for i=2,...,9—1, and Q be a non-real point. In fact [D] € U(g;0,1,...,1). Let
D' =D+ (g+1)P. Then D’ is very ample and the linear system |D’| allows us to
embed X in ]P]%“. Using the above conjecture, X is not unramified. Consequently
there is an hyperplane H of P4 such that H - X = 3"/ mR; + > -1 m;Q;, where
the sum is taken over distinct points. The R; are real points and the Q; are non-real
points. Moreover,

r t
> omi+2> mi=2g+1 (5)
i=1 j=1

and

r t

wH-X) = (n—1)+2) (mj—1)>g+1. (6)
=1

i=1
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Since deg. (D’) is odd for i=1,...,s, each connected component of X(R) is a
pseudo-line. It follows that

w(H - X) =deg((H - X) = (H-X)q) <(29+1)—(9—-1)=g+2.  (7)
Using (5), (6) and (7), we getg+2 > —(r+2t)+2g9+1>g¢g+ 1 and
g=(r+2t)=9g—1.

Since r = g — 1, we have ¢t = 0 and D’ is linearly equivalent to a totally real effective
divisor. By Theorem 3.2, there are 2g — 4 points Pj, ..., P»;_4 € X(R) and Q a non-
real point or a sum of two real points contained in the same connected component of
X(R), such that

. (224[10 - 7l) + (@~ ).

i=1

Moreover, looking at the proof of Theorem 3.2, we may choose P; e C; for
i=2,...,9— 1. Writing o = « + (g + 1)[P] — (g + 1)[P], the statement follows from
the above construction.

If we assume that g is odd, the proof is similar but for D' = D+ (g +2)P
here. O

Assuming the above conjecture, we may also obtain a more general result.

Proposition 3.8. Let X be a real curve such that s < g — 1. Any complete linear sys-
tem of degree >s+2g+%(l — (=1)) contains a divisor whose non-real part has

degree < 2e — 2.

The above method allows us to have a description of a linear system with one non-
real point less. Unfortunately this method is rigid; a repetition of this method does
not give a description of a linear system with only real points.

4 C(lifford’s inequality and linear systems on real hyperelliptic curves

In this section, we study the family of special linear systems on real algebraic curves.
Let D e Div(X) and K be the canonical divisor. If /(K — D) > 0, D is said to be
special. If not, D is said to be non-special. By Riemann—Roch, if deg(D) > 2g — 2
then D is non-special. The classical Clifford inequality states that the dimension of a
nonempty special complete linear system on a curve is bounded by half of its degree
(see [5] Theorem 5.4, p. 343). We now recall the Clifford inequality for real curves
given by Huisman ([8] Theorem 3.1).

Theorem 4.1. Let D € Div(X) be an effective divisor of degree d. The following state-
ments hold.



350 Jean-Philippe Monnier

(i) If d +d(D) < 2s, then dim|D| < §(d — 6(D)).
(ii) If d + (D) = 2s, then dim|D| < d — s+ 1.

A real hyperelliptic curve is a real curve X such that X¢ is hyperelliptic, i.e. X¢
has a g (a linear system of dimension 1 and degree 2). As always, we assume that
X(R) # & and moreover that g > 2.

Lemma 4.2. Let X be a real hyperelliptic curve. Then X has a unique g3.

Proof. By [5] Proposition 5.3, X¢ has a unique gi. Let D be an effective divisor of
degree 2 on X¢ satisfying |D| = g%. Since this unique g% is also complete and X is
defined over IR, we have |D| = g}. Let P e X(R), we also denote by P the corre-
sponding closed point of X¢. Since /¢(D — P) > 0, we may assume that D = P+ Q
with Q a closed point of X¢. Then [P+ Q] = [P+ Q] in Pic(X¢) and Q = Q, since
X¢ is not rational. Hence D = D and since /(D) = /¢ (D), the proof is done. ]

This g1 induces an involution, denoted by 2, on the closed points of X. A real
hyperelliptic curve X is said to be respected by the involution (we will abbreviate by
r.b.i.), if for any real point P, P and (P) belong to the same real connected compo-
nent. Most real hyperelliptic curves are r.b.1.

Proposition 4.3. Let X be a real hyperelliptic curve such that X is not r.b.i. Then X is
given by the real polynomial equation y* = f(x), where f is a monic polynomial of
degree 2g + 2, with g odd, and where f has no real roots. In particular, the number of
connected components of X (R) is 2.

Proof. Using the g}, we easily see that an affine model of X is given by the real
equation y? = f(x), with deg(f) = 2¢g + 2. Since X is not r.b.i., f cannot have a real
root. We may assume that f is monic since X (R) # (. If g is even, then s = 1 ([4]
Proposition 6.3), contradicting the hypotheses. If g is odd, then X (IR) has 2 con-
nected components exchanged by . ]

We give now the Clifford inequality for real hyperelliptic curves which are r.b.i.

Theorem 4.4. Let X be a real hyperelliptic curve that is r.b.i. and let D € Div(X) be an
effective and special divisor of degree d. Then

dim|D| < = (d — d(D)).

| =

Proof. The classical Clifford inequality allows us to assume that 6(D) > 1. We may
further assume that Cy, ..., Cyp) are the connected components of X (IR), where the
degree of D is odd. Let D’ < D be the greatest effective common subdivisor of D and

(D) with the property that |D]| = deg deg(D,) =£-r g1, D! denoting the real part of D’. Write
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D" =D — D'. Since X is r.b.i., then 6(D’) = 0. So, there are real points Py, ..., Pyp)
such that Py 4---- + Pspy < D" and Pie C;, i = 1,...,6(D). We remark that
a) d +9(D) <2g— 2 since D is special ([9] Theorem 2.3),

b) 2(P;) ¢ Supp(D”) or P; is a fixed point for 2 such that 2P; is not a subdivisor of D",
i=1,...,0(D).

Let w be a global differential form on X, such that div(w) > D. Then div(w) > D+
W(Py) 4+ 1(Pyp)), since K = (g — 1)g3 and d + (D) < 2g — 2. Hence /(K — D) =
/(K —(D+(P1)+---+1(Psp)))), and D +1(Pr) + - - +1(Pypy) is also special. By
Riemann—Roch,

dim|D| — dim|K — (D +(P1) +--- +2(Psp)))| =d —g + 1, (8)
and
d1m|D + Z(Pl) + -+ ’L(P(;(D))| - d1m|K — (D + I(Pl) + -t Z(P(;(D>))|
=d+d6(D)—g+ 1. 9)

Since D +4(Py) + - - +1(Ps(p)) is effective and special, by the classical Clifford
inequality, we get

1

d1m|D + Z(P]) + -+ 'L(PJ(D))| < E(d +5(D))

Replacing in (9), we have

dim|K — (D +o(P1) + -+ u(Psp)))| < %(d+5(D)) —(d+d(D))+g-1
=g 15 +a(D). (10)
Finally, combining (8) and (10), we get
dim|D| < %(d —d(D)). O

Theorem 4.5. Let X be a real hyperelliptic curves that is not r.b.i. and let D € Div(X)
be an effective and special divisor of degree d. Then

. 1
dim|D| <

(d —a(D)),

[\S]]

except when |D| = rg}, with 0 < r < g — 1 and r odd, in which case dim|D| = r =1d.

1
2
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Proof. We recall that under these hypotheses s = 2. If 6(D) = 0, the classical Clifford
inequality applies.

So let us assume d(D) = 1. As in the previous proof, we write D = D’ + D", with
D’ the greatest effective common subdivisor of D and (D), and D" effective. Since
d(D) =1 and since the two connected components of X (IR) are exchanged by 2, we
easily see that there exists a real point P in the support of D”. Repeating the proof of
the previous theorem, we get the result.

Now, if 6(D) =2, then the above arguments give the proof, except when D is
invariant by 2. In this case |D| = rg}, r is odd and dim|D| = r. ]

We give some applications of the previous theorems. We know that Castelnuevo’s
inequality is one of the consequences of the (complex) Clifford inequality (see [3] cor-
ollary p. 251). Hence, we obtain a Castelnuevo inequality for real hyperelliptic curves.

Proposition 4.6. Let n > 2 be an integer and X < Py be a non-degenerate real hyper-
elliptic curve r.b.i. Let d be the degree of X and J be the number of pseudo-lines of X .
Assume d < 2n+ 9. Then

g<d-—n,
with equality holding if and only if X is linearly normal.

Proof. Let H be a hyperplane section of X. Then dim|H| > n > 1(d — 6(H)) by the
hypotheses. Theorem 4.4 says that H is non-special and by Riemann—Roch,

g=d—dm|H|<d—n.

Clearly, the previous inequality becomes an equality if and only if the map
H(P, 0(1)) — H°(X,0(1)) is an isomorphism. O

Proposition 4.7. Let X be a real hyperelliptic curve r.b.i. Let D= P +---+ P,,
0<r<g, such that Py,...,P, € X(R) and such that no two of them belong to the
same connected component of X (IR). Then /(D) = 1.

Remark 4.8. In the previous proposition, if X is any real algebraic curve and r = s, by
Theorem 4.1, we can only say that /(D) < 2.

Let us set some more notations. For d > 0, let S“X denote the symmetric d-fold
product of X over R. We have a natural map ¢, : (SYX)(R) — Pic/(X). Write
W,(R) = Im(p,) for the real part of the subvariety W, of Pic?(X¢) (see [1]), and
O(R) = J(R) for the real part of the theta divisor.

Proposition 4.9. Let X be a real hyperelliptic curve r.b.i. such that s =g —1. If
ue (Z)2)" satisfies >.;_, ci(u) =g — 1, then Wy_1(R)N U(g — 1;u) does not contain
any singularity of Wy_i.
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Proof. If >0 ci(u) =g, then W,_;(R)NU(g — 1;u) = &. Let [D] e W,_(R)N
U(g — 1;u), where u e (Z/2)" satisfies Y ;_, ¢;(u) =g — 1. Then /(D) >0 and we
may assume that D is effective. By [1] Corollary 4.5, p. 190, the singular points of
W,_1 correspond to the complete linear systems of dimension >1 and degree g — 1.
By Theorem 4.4, dim|D| = 0, hence the result. O

We may extend the previous proposition in any degree.

Proposition 4.10. Let X be a real hyperelliptic curve r.b.i., and let d be a non-negative
integer <s. If u € (Z/2)" satisfies Y _;_, c;i(u) = d, then Wy(IR) N U(d; u) does not con-
tain any singularity of W.

We prove a result similar to Theorem 3.1 in [7].

Proposition 4.11. Let X be a real hyperelliptic curve r.b.i. which is an (M — 2)-curve.
Then Cy x - -- x Cy_1 is homeomorphic to the real part of the theta divisor contained in
the neutral component J(R),, of the real part of the Jacobian.

Proof. By Proposition 4.9, C; x ---x C,_; is homeomorphic to the part of
W,_1(R) contained in U(g — 1;1,...,1). We may easily find a theta-characteristic
K € Pic?" (X)) (i.e. 2k = [K]) such that x € U(g — 1;1,...,1). By Riemann’s theorem
(see [1] p. 27), Wy—1 = 0 + x and the proof is straightforward. O

Remark 4.12. Most of the results of this section are also valid for any real algebraic
curve with s > g (see [8] and Theorem 4.1).

The following result states a remarkable property of some special linear systems.
Proposition 4.13. Let X be a real hyperelliptic curve r.b.i. Let D € Div(X) be a spe-
cial effective divisor of degree d satisfying dim|D| =1 (d — 6(D)). Then |D| contains a

totally real divisor.

Proof. Firstly, we assume that d < g. A consequence of the geometric version of the
Riemann—Roch theorem is that any complete g, on X¢ is of the form

rgs + Pi+ -+ Paar,
where no two of the P; are conjugate under 2. Hence the complete linear system |D|

on X is of this form, with r =1 (d — 6(D)). Since D = D, we have D' = P; + -+ -+
Py 5 € Div(X). It follows that |D| is of the form

(d = 3(D))gy + D',

N —

where D’ is an effective divisor of degree 6(D). Any divisor in g1 is linearly equivalent
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to P + 1(P) where P € X(R). Since X is r.b.i., we have 6(D’) = d(D) and D’ is totally
real.

Secondly, let d > g. The residual divisor K — D is of degree 2g —2 —d < g — 2.
Since the degree of K is even on each connected component of X (IR), K — D is also
special and satisfies (K — D) = d(D). So, dim|K — D| =1(d —6(D)) —d +g—1 =
%(2g —2—-d—-0o(D)) = %(deg(K — D) —0(K — D)). We may apply the first part of
the proof to K — D to obtain that

K =Dl = |50 -2 d=0D)(P+P)| + [Pt 4 i) (1)

where P, Pi,..., Pspye X(R) and no two of the P; are conjugate under 2. Since
|K| = (9 — 1)g3, then [K] = [(g — 1)(P ++(P))]. From (11), we get

D)= 5+ AN + 4P| = 17 + -+ Pao)].

Then [D] — [u(P) + -+ + 1(Ps(p))] = [ (d — (D)) (P + +(P))] and the proof is done.
O

5 Existence of special linear systems of dimension r on real curves

Curves are classified by their genus. But we may further subdivide them according to
whether or not they possess complete g/, i.e. complete linear systems of degree d and
dimension r > 1, for various d and r. For complex curves, we may find numerous
results on this subject, it is a part of the Brill-Noether theory. This section deals with
these problems for real curves.

5.1 Complete linear systems of dimension r on real curves.

Definition 5.1. For X a real curve and r a positive integer, we set:
(i) pe(X,r) =1inf{d € N| X¢ has a complete g/ }.
(ii) pr(X,r) =inf{d e N| X has a complete g/;}.
For g = 0 and r > 0, we set:
(iii) pe(g,r) = sup{p¢(X,r)| X is a curve of genus g}.
(iv) pr(g,r) = sup{pr(X,r)| X is a curve of genus g}.
Remark 5.2. It is easy to check that the g;R( X) and g;(E (x ) are necessarily complete.
Using the Riemann—Roch formula, it is easy to show that pr(0,7r) = pe(0,7) = r,

and that pR(1l,7r) = pe(l,r) = r+ 1. In the remainder of the section we will assume
that g > 2.
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Remarks 5.3. If r > g — 1, by the classical Clifford inequality, a complete g/, is non-
special and pR(X,r) = g + r. From now on, we will also assume that r < g —1 in
order to deal with special linear systems. By the classical Clifford inequality, and
since there exist non-special linear systems of degree ¢g + r, we have

2 < prl(X,r) <g+r.

Since the canonical divisor is invariant by the complex conjugation, by the previous
inequality, we have the equalities

PrR(X,9=1)=pr(9,9 1) =pc(X,9— 1) = pc(g9,9 — 1) =29 — 2.

From the classical theory of special linear systems (see [1] Theorem 1.1 p. 206, The-
orem 1.5 p. 214), we may see pg(g,r) as the smallest integer d such that the Brill-
Noether number p(g,r,d) =g — (r + 1)(g — d + r) is non-negative.

Now, we state the principal result of this section.

Theorem 5.4. Let X be a real curve and let r be an integer such that 1 <r <g— 1.
Then

(i) pr(X,r) < prlg,r) <g+r—1,and
(i) pe(X,r) < pr(X,7) < 2pe(X, 1) — 2.

Proof. For (i), let D € Div(X) be an effective divisor of degree g — 1 — r. Choosing D
general, we have /(D) = 1. Then the residual divisor K — D € Div(X) and satisfies
/(K—D)=1—-(g—1—-r)+g—1=r—+1, and we get the first assertion.

As for (ii), clearly p¢(X,r) < pr(X,r), since for any divisor D € Div(X) we have
/(D) = {¢(D). It remains to show that

p]R(X,V) <2:0(I3(‘X7r)_2r'

Let d = pe(X,r) and let D e Div(X¢) be an effective divisor of degree d such
that dimg|D| =r. Let Py,..., P, be real points of X. We also denote by P, ..., P,
the corresponding closed points of X¢. We may choose Pj,...,P, such that
{(Py+---+ P)=1and {¢(D— P, —---— P,) = 1. Moreover, we may assume that
D = D" + D’, where:

1) D" is an effective divisor of degree u satisfying D” = D", and having Py,..., P, in
its support.

2) D'is an effective divisor such that there is no nonzero effective divisor <D’ invari-
ant by the complex conjugation.

If D' =0, then D e Div(X) and pg(X,r) = pr(X,r). So, assume D’ # 0 and let
[ =dim|D”|. If r =1, then |D| has a base point, but then X¢ has a complete g;
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with k£ < d, _hence a contradiction. It follows that » > /. Since X is a real curve,
dim¢|D” 4+ D’| = r. We may find suitable nonzero effective divisors Dy, ..., D/, such
that

1) D'=Dy+---+D,_,, and

2) lte(D"+D{+---+D))=le(D")+ii=1,....r—1I

Let {1,fi,...,f,} be a base of H’Xe,O(D"+D') and gi,...,9, 1€
H°(X¢, O(D" + D)) such that

1) g1 € H(X¢, O(D" + D}))\H’(X¢, O(D")), and

2) gi€ H*(Xe, O(D" + Dy + -+ + D)\nH"(X¢, O(D" + Dj + -+ + D)),
2,...,r—1

~.

Claim. {¢(D" + D'+ D') = 2r+ 1 — I. More precisely, we show, by induction on
i, that 1,1,...,f,91,-..,9; are linearly independent in the vector space
H(X¢,O(D" +Dj+---+ D} +D"),ie lo(D"+Dj+-+ D/ +D)=r+1+i.

Fori=1,1,f,...,/, g1 € H (X¢,O(D" + D} + D)) and 1, f1, ..., f, are linearly
independent. If g; were a linear combination of 1, fi,..., f,, then g; would be a
global section of (D" + D') and also div..(g;) < D" + D’. By the construction of
g1, div,(g1) < D" + Dj. Since D' and Dj have distinct supports, we would have
divy, (¢91) < D”. This is a contradiction.

Assume now that 1, fi,..., fr,91,-..,¢9i1 (r—1>i> 1) are linearly independent
and that g; would be a linear combination of 1, f,..., f;,g1,---,¢i1. Arguing as
in the case i = 1, the pole divisor of g; would be <D” + D'+ D|+---+ D/_,. By
the construction of g;, and since D’ and D! have distinct supports, we would obtain
divy,(9;)) < D" + D] +---+ D!_,, contradicting the fact that g; ¢ H°(X¢, O(D" +
D{+---+ D/_,)). This ends the proof of the claim.

Since D"+ D'+ D' is invariant by the complex conjugation, we get
((D"4+D'+D'")=(c(D"+D' +D')>2r+1—1. Let P[,..., P/, be suitable real
points. Then /(D" +D'+D'—P/—---—P/_,)=r+1, and X has at least one
complete g5, ,_,.,. To get the second assertion of the theorem, it is sufficient to
prove that r < u — /. Since dim¢|P; + -+ P,|=0and D" = P, + --- + P, + E, with
E € Div(X) an effective divisor of degree u — r, we get / = dimg|P; + -+ + P, + E| <
u—r. O

Let us mention some consequences of Theorem 5.4.

Corollary 5.5. Let X be a real hyperelliptic curve and r be an integer such that 1 <
r<g-—1. Then pr(X,r) =2r.

Proof. Since pg(X,r) = 2r, using the first inequality of the theorem, the result fol-
lows. O

Corollary 5.6. Let X be a real curve of genus g which is not hyperelliptic, and r
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be an integer such that 1 <r < g—1. Then pr(X,r) > 2r. In particular, we have
PR (37 1) =3.

Proof. The proof is clear by Clifford’s inequality and by the existence of real non-
hyperelliptic curves of genus 3. O

Corollary 5.7. Let X be a real curve. Then the map ¢, : (S?X)(R) — Pic?(X) is not
injective.

Proof. If D € Div(X) of degree d satisfies /(D) = 2, then the fiber of ¢, at [D] is one
dimensional and the map ¢, is not injective. Theorem 5.4 asserts the existence of a
g, on X, hence we get the result. O

Remark 5.8. In Theorem 5.4, we get two upper bounds for pR, one of them depend-
ing on pg, but not the other. It is interesting to compare these two bounds. The
invariant p¢ is given by the Theorems 1.1 p. 206, 1.5 p. 214, in [1]. For X a general
curve of genusgand 1 <r<g—1:

_ _ |9
p([‘,(X7r)_g+r |:}’+1:|

(7 +1] is the integral part of % 7). We thus obtain

pr(X,r) < mln{g—i—r—l 2g — 2[ +J}

Assume% e IN. We see that 2g — 2'+1 =g+r—1lifr=1o0orr=g¢g—1, and that
29 — 2)+1 > g+ r—1if not. Hence pR(g,r) < g+ r— 1 is the best upper bound we
may find at this moment. As we have seen for hyperelliptic curves, the second
inequality of Theorem 5.4 gives a smaller upper bound for pp (X, r) only when X is
a special curve.

5.2 Complete linear systems of dimension 1 on real curves. The following theorem is
a refinement of Theorem 5.4 in dimension 1.

Proposmon 5.9. Let X be a real curve of genus g = 2. If X¢ has exactly an odd number
Ofgp¢ X, 1) thenp]R(X71) pC(X71)

Proof. We have pp(X,1) = 2 since X is not rational. Let d = pg(X, 1). Assume that
X¢ has exactly 2n+ 1 distinct g;,, neN. Let D}, i=1,...,2n+ 1, some effective
divisors on X¢ such that the linear systems |D!| are the 2n + 1 distinct g}. We may
clearly assume that, for every i, D] = P + D;, with P a closed point of X¢ satisfying
P = P and with D; € Div(X¢) an effective divisor of degree d — 1. Since X is real, the
linear systems |D]| are also g). Consequently, there exists k € {1,...,2n+ 1} such
that |D/| = |D/|, since an involution acting on a finite set with an odd number of
elements has a fixed point. Hence P + Dy, is linearly equivalent to P + Dy. Conse-
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quently, either Dy = Dy and we have the claim, or |Dy| is a g}lfl, but then d is not
minimal. O

Corollary 5.10. Let X be a general real curve of genus 6. Then pg(X,1) =
p]R(Xv 1) =4.

Proof. Since X¢ has five g (see [3] p. 299), the proof follows from the above propo-
sition. O

5.3 A real Brill-Noether number. In the context, a natural question one can ask
is about the existence of a real curve X of genus g > 2 with pr(X,1) =¢. Such an
existence, for any g > 2, would show that pr(g,1) = g.

If d <g and X is a real curve of genus g having a gd, then, adding (g — 1 — d)
general real points to this gd, we get a complete g _;- By [1] Corollary 4.5, p. 190,
the smgularmes of Wy_1=¢, (S 'X¢) are the complete g ‘ , with k& > 0, where
9, 1S9 X¢ — Pic?” "Xe); (P, Py1) = [Pi4- -+ Py 1} is the natural map.
By Riemann’s singularity theorem (see [1] p. 226), the singular part of the theta
divisor # = J(C) is a translation (by a theta-characteristic) of the singular part of
W,_1. Recall that a real curve always admits real theta-characteristics [4]. Hence we
may reformulate the previous question asking if there exist real curves of genus g > 2
with (IR) non-singular. We state the following conjecture:

Conjecture 1. Let g = 2 be an integer. There exists a real curve X of genus g such that
the singularities of the theta divisor 0 = J(C) are not real.

Proposition 5.11. The above conjecture holds for 2 < g < 4.

Proof. The conjecture holds trivially for genus 2 curves, and genus 3 curves since there
exist non-hyperelliptic real curves of genus 3.

Following Gross and Harris [4], we may show that the conjecture holds for genus 4
curves. Let X be a real trigonal curve (i.e. pe(X,1) < 3) of genus 4 which is non-
hyperelliptic. Its canonical model lies on a unique real quadric surface S = IP]‘;. For
a general X, S is smooth and then has two different rulings. For some X, these two
rulings are complex and switched by the complex conjugation. Then X¢ has only
two g1 induced by these two rulings and pe(X,1) = 3. By this, we conclude that
Pr(X, 1) =2pc(X,1) =2 =4 ]

Let g,r € N satisfying g > 2 and 1 < —1.Ifd - (9+r—1) =0, then Theo-
rem 5.4 says that any real curve of genus g has a complete g);. We may wonder if this
condition is optimal.

Conjecture 2. Let g =2 and 1 <r<g—1. The real Brill-Noether number is
prig,rd)=d—(g+r—1),ie ifd—(g+r—1) <0, then there exists a real curve
X of genus g such that X has no g}.

Remark that Conjecture 2 implies Conjecture 1.
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6 Linear systems with base points on real curves

This section is devoted to the problem of finding lower bounds for N. We prove that
this problem is related to the existence of special linear systems of dimension 1 and
small degree, i.e. the subject of the previous section.

Proposition 6.1. Let X be a real curve of genus g = 2. Assume that X has a complete
gl, withd < g—1andr>1. Then N(X) > 2g —d.

Proof. Let D € Div(X) be an effective divisor of degree d < g — 1 such that dim|D| =
r>=1. It is a special divisor. Let D’ € Div(X) be an effective divisor of degree
2g — 2 — d such that D + D' is the canonical divisor. Let Q be a non-real point of X
such that /(D — Q) = /(D) — 2. By Riemann—Roch,

(D'+Q)=29-2—-d+2—g+1+/((D-Q)=g—d+1+r—1=/(D").

Hence Q is a base point of |D’ 4+ Q| and consequently the divisor D’ 4+ Q of degree
2g —d is not linearly equivalent to a totally real effective divisor. Clearly N(X) >
29 —d. Ll

The existence of linear systems of small degree on real curves is studied in the pre-
vious section. One of the results, is that a real curve has always a complete g;, hence

Corollary 6.2. Let X be a real curve such that g = 2. Then N(X) = g+ 1.
From the previous section and Proposition 6.1, we obtain

Corollary 6.3. Let X be a real curve of genus g = 2. If 0 <= J(C) has a real singularity,
then N(X) > g + 2.

If X is hyperelliptic, by Lemma 4.2, X has also a gz1 and we may state the following
result (use Theorem 3.6):

Corollary 6.4. Let X be a real hyperelliptic curve of genus g = 2. Then N(X) = 2g — 1.
If furthermore X is an M-curve or an (M — 1)-curve, then N(X) = 2g — 1.

Remark 6.5. Since there exist real hyperelliptic M-curves of any genus, the previous
corollary gives a large family of curves for which the invariant N is explicitely cal-
culated.
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