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Divisors on real curves
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Abstract. Let X be a smooth projective curve over R. In the first part, we study e¤ective divi-
sors on X with totally real or totally complex support. We give some numerical conditions for
a linear system to contain such a divisor. In the second part, we describe the special linear sys-
tems on a real hyperelliptic curve and prove a new Cli¤ord inequality for such curves. Finally,
we study the existence of complete linear systems of small degrees and dimension r on a real
curve.
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Introduction

In this note, a real algebraic curve X is a smooth proper geometrically integral scheme
over R of dimension 1. A closed point P of X will be called a real point if the residue
field at P is R, and a non-real point if the residue field at P is C. The set of real
points, X ðRÞ, will always be assumed to be non-empty. It decomposes into finitely
many connected components, whose number will be denoted by s. By Harnack’s the-
orem we know that 1c sc gþ 1, where g is the genus of X . A curve with gþ 1� k

real connected components is called an ðM � kÞ-curve.
The group DivðXÞ of divisors on X is the free abelian group generated by the closed

points of X . Let D A DivðX Þ be an e¤ective divisor. We may write D ¼ Dr þDc, in
a unique way, such that Dr and Dc are e¤ective and with real, respectively non-real,
support. We call Dr (resp. Dc) the real (resp. non-real) part of D. In the sequel, we
will say that D is totally real (resp. non-real), if D ¼ Dr (resp. D ¼ Dc).

By RðX Þ, we denote the function field of X . Let PicðXÞ denote the Picard group
of X , which is the quotient of DivðX Þ by the subgroup of principal divisors, i.e.
divisors of elements in RðXÞ. Since a principal divisor has an even degree on each
connected component of X ðRÞ ([4] Lemma 4.1), we may introduce the following
invariants of X :
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(i) NðX Þ, the smallest integer nd 1 such that any divisor of degree n is linearly
equivalent to a totally real e¤ective divisor (by [11] Theorem 2.7, we know that
NðX Þ is finite),

(ii) MðXÞ, the smallest integer md 1 such that any divisor D of degree 2m such that
the degree of D on each connected component of X ðRÞ is even, is linearly equiva-
lent to a totally non-real e¤ective divisor. If such an integer does not exist, then
MðXÞ ¼ þy.

The principal goal of the paper is to bound the previous invariants in terms of g and
s. The problem for NðXÞ was raised by Scheiderer in [11].

We briefly describe the structure of the paper. In Section 2, we show that

gcMðXÞc 2g:

Moreover, if X is a real rational curve or a real elliptic curve, then MðXÞ ¼ 1. Using
this, we also prove that if X JPn

R, nd 2, is a non-degenerate linearly normal curve
of degree d with no pseudo-line in X ðRÞ (see the Section 2 for the corresponding
definitions), and if X satisfies one of the two following conditions

(i) X is rational or elliptic,

(ii) gd 2 and dd 4g,

then XðRÞ is a‰ne in Pn
R, i.e. there exists a real hyperplane H such that HðRÞV

X ðRÞ ¼ q.
In Section 3, we extend a result proved in [6] for M-curves, to ðM � 1Þ-curve:

NðX Þc 2g� 1:

Under the assumption of a conjecture of Huisman [9] on unramified curves, we fur-
ther extend this result to ðM � 2Þ-curves, the bound being slightly di¤erent.

In the last section of the paper, we give a large family of curves for which the invari-
ant N is explicitely calculated. For these computations, we use the results established
in Sections 4 and 5.

In Section 4, we prove a stronger version of the Cli¤ord inequality for real hyper-
elliptic curves, which sharpen Huisman’s general result for real curves [8]: if X is a
real hyperelliptic curve such that s0 2 and D A DivðXÞ is an e¤ective and special
divisor of degree d, then

dimjDjc 1

2
ðd � dðDÞÞ;

with dðDÞ the number of connected components C of XðRÞ such that the degree of
the restriction of D to C is odd.

Section 5 deals with the existence of complete linear systems of degree d and dimen-
sion rd 1 on X .

The author wishes to express his thanks to D. Naie and J. van Hamel for several
helpful comments concerning the paper. I also thank J. Huisman for bringing my
attention to his work on real algebraic curves.
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1 Preliminaries

We recall here some classical concepts and more notations that we will be using
throughout this paper.

Let X be a real curve. We will denote by XC the base extension of X to C. The
group DivðXCÞ of divisors on XC is the free abelian group on the closed points of XC.
The Galois group GalðC=RÞ acts on the complex variety XC and also on DivðXCÞ.
We will always indicate this action by a bar. If P is a non-real point of X , identifying
DivðXÞ and DivðXCÞGalðC=RÞ, then P ¼ QþQ with Q a closed point of XC.

If D is a divisor on X or XC, we will denote by ½D� its class in the Picard group, and
by OðDÞ its associated invertible sheaf. The dimension of the space of global sections
of this sheaf will be denoted by lðDÞ for D on X , and by lCðDÞ for D on XC.

We will always denote by C1; . . . ;Cs the connected components of XðRÞ. Let
D A DivðXÞ, and denote by degCi

ðDÞ the degree of the restriction of D to Ci. Fol-
lowing [4], we will denote by c the surjective morphism

PicðXÞ ! ðZ=2Þs;

½D� 7! ð. . . ; degCi
ðDÞmod 2; . . .Þ;

and we will write dðDÞ for the number of connected components C of XðRÞ such
that degCðDÞ is odd. The connected components of PicdðXÞ, the subgroup of divi-
sor classes of PicðXÞ of degree d, correspond to the fibres of the restriction of c to
PicdðXÞ. Let u ¼ ðu1; . . . ; usÞ A ðZ=2Þs, we will denote by Uðd; u1; . . . ; usÞ ¼ Uðd; uÞ
the connected component of PicdðXÞ that corresponds to c�1ðuÞ. Obviously,
Uðd; u1; . . . ; usÞ0q if and only if

Ps
i¼1 ui 1 d mod 2. We will also denote the co-

ordinates of u ¼ ðu1; . . . ; usÞ A ðZ=2Þs by ciðuÞ ¼ ui.
Let J be the Jacobian of X . It is well known that Pic0ðXÞ can be identified with

JðRÞ since X ðRÞ0q. We will denote by JðRÞ0 the connected component of the
identity of JðRÞ. Then JðRÞ0 ¼ Uð0; 0; . . . ; 0Þ ([11] Lemma 2.6).

We now reformulate the definition of the invariants N and M.

Definition 1.1. (i) NðX Þ is the smallest integer nd 1 such that for any real point P,
and for any a A JðRÞ, there exist P1; . . . ;Pn A XðRÞ, such that a ¼

Pn
i¼1½Pi � P�, and

(ii) MðXÞ is the smallest integer md 1, such that for any real closed point P, and
for any a A JðRÞ0, there exist non-real pointsQ1; . . . ;Qm such that a ¼

Pm
i¼1½Qi � 2P�.

If such an integer does not exist, then MðXÞ ¼ þy.

2 Divisors with a complex support

In this section, we bound the invariant MðX Þ from above and from below, and give a
geometric consequence.

The following proposition justifies the definition of the invariant M.

Proposition 2.1. Let P be a real point of X and a A JðRÞ0. There is an integer md 1
and non-real points Q1; . . . ;Qm such that a ¼

Pm
i¼1½Qi � 2P�.

Divisors on real curves 341



Proof. Let P be a real closed point of X and a A JðRÞ0. Since JðRÞ0 is a divisible
group, there is b A JðRÞ0 such that 2b ¼ a. By Riemann–Roch, the map

jd : ðSdXÞðRÞ ! PicdðXÞ

is surjective for dd g, where SdX denotes the symmetric d-fold product of X over
R. Hence there exists D an e¤ective divisor of degree g such that b þ ½gP� ¼ ½D�. By
Riemann–Roch, there is an integer k such that the divisor kP is very ample as a
complex divisor, and also as a real divisor, since kP A DivðX Þ. Hence Dþ kP is also
very ample.

Let c denote the embedding of X in Pk
R associated to the linear system jDþ kPj.

Let S be the quadric hypersurface of Pk
R with equation x2

0 þ � � � þ x2
k ¼ 0. Thus

2Dþ 2kP is linearly equivalent to the e¤ective divisor D 0 of degree 2ðgþ kÞ obtained
by intersecting S and X . Since SðRÞ ¼ q, D 0 is totally non-real. Hence a ¼ ½D 0� �
½2ðgþ kÞP�, and the result follows. r

The method of the previous proof allows us to give an upper bound for MðX Þ in
terms of g. The following theorem gives a better result.

Theorem 2.2. Let X be a curve of positive genus. We have MðX Þc 2g.

Proof. Let P be a real point of X and V ¼ X ðCÞnXðRÞ, where XðCÞ denote the set
of closed points of XC. XðRÞ is seen as a subset of X ðCÞ. By Riemann–Roch, the
map XðCÞg ! PicgðXCÞ is surjective. Moreover, the map SgX ! J is well known to
be a birational morphism of complete varieties. The image U of the map

V g ! JðCÞ; ðQ1; . . . ;QgÞ 7!
Xg

i¼1

½Qi � P�;

contains therefore an open dense subset of JðCÞ. Thus U þU ¼ JðCÞ. The image of
the norm map N : JðCÞ ! JðRÞ; a 7! aþ a, is JðRÞ0 (see [11]). So NðUÞ þNðUÞ ¼
JðRÞ0, and MðX Þc 2g. r

Since any two divisors with the same degree on a rational real curve are linearly
equivalent, we trivially get the following proposition:

Proposition 2.3. Let X be a real rational curve, then MðXÞ ¼ 1.

For real elliptic curves, the result of Theorem 2.2 can be improved.

Theorem 2.4. Let X be a real elliptic curve, then MðXÞ ¼ 1.

Proof. Let P be a real point of X and a A JðRÞ0. Arguing as in the proof of Propo-
sition 2.1, there is b A JðRÞ0 such that 2b ¼ a and b þ ½P� ¼ ½P0�, with P0 a real point.
Then
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a ¼ ½2P0� � ½2P�:

The linear system j3P0j gives a closed immersion X JP2
R. Using Riemann–Roch

and after linear changes of coordinates, we obtain a closed immersion j : X ! P2
R

such that the image is the curve

y2 ¼ ðx� aÞRðxÞ;

with a A R and RðxÞ A R½x� a monic and separable polynomial of degree 2. The point
P0 goes to the point at infinity ð0 : 1 : 0Þ on the y-axis (see [5] Proposition 4.6, p. 319).
If we project from P0 onto the x-axis, we get a finite morphism f : X ! P1

R of degree
2, sending P0 toy, and being ramified at least at one more real point of P1

R, besides
y. In fact, f may be defined using the linear system j2P0j. Since f is ramified with
order 2 at y, then locally on one side of y the fiber over P1

RðRÞ is totally real and
on the other side the fiber is totally non-real. In particular, there exists l A P1

RðRÞ
such that f �1ðlÞ ¼ fQg, with Q a non-real point of X . Then ½2P0� ¼ ½Q� and a ¼
½Q� � ½2P�. r

For a given complete linear system of degree su‰ciently big, an upper bound exists
for the least degree of the real part of divisors in the linear system.

Corollary 2.5. For any complete linear system jDj with degðDÞd 4gþ dðDÞ if gd 2,
degðDÞd 2þ dðDÞ if g A f0; 1g, there exists D 0 A jDj such that the real part of D 0 has
degree dðDÞ.

Proof. We give the proof only for the case gd 2. Let P1; . . . ;PdðDÞ be some real points
belonging to the connected components of X ðRÞ where the degree of D is odd, and
such that no two of them belong to the same connected component of XðRÞ. We set
d ¼ degðDÞ. We remark that d � d is necessarily even. By Theorem 2.2, D�

PdðDÞ
i¼1 Pi

is linearly equivalent to a totally non-real e¤ective divisor and the proof is done. r

We give a lower bound for the invariant MðX Þ.

Proposition 2.6. Assume gd 2. Then MðXÞd g.

Proof. Let P A XðRÞ and consider the divisor D 0 ¼ K � P, where K denotes the ca-
nonical divisor. Choose P 0 0P A X ðRÞ belonging to the same connected component
of XðRÞ as P. Since X is not rational, using the fact that lðP� P 0Þ ¼ 0, it follows
that

lðD 0 þ P 0Þ ¼ g� 1 ¼ lðD 0Þ:

Hence P 0 is a base point of the linear system jD 0 þ P 0j. Since D 0 þ P 0 has degree
2g� 2 and has an even degree on each connected component of X ðRÞ (see [9] Prop-
osition 2.1), we easily see that MðXÞ > g� 1. r
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We give now a geometric consequence of the previous results. Let X JPn
R be a

non-degenerate real curve, i.e. X is not contained in a real hyperplane of Pn
R. We will

say that X ðRÞ is a‰ne in Pn
R if there exists a real hyperplane H such that HðRÞV

X ðRÞ ¼ q. In this case X ðRÞ is a real algebraic subvariety of An
RðRÞ ¼ Rn in the

sense of [2]. Since the real hypersurface S of Pn
R with equation x2

0 þ � � � þ x2
n ¼ 0 has

no real points, XðRÞ is always contained in an a‰ne open subset of Pn
R. More pre-

cisely the image of XðRÞ by the 2-uple embedding is a‰ne in P1=2ðnþ1Þðnþ2Þ�1
R . We

may wonder if XðRÞ is already a‰ne in Pn
R. Recall that X is linearly normal if the

restriction map

H 0ðPn
R;Oð1ÞÞ ! H 0ðX ;Oð1ÞÞ

is surjective. Let C be a connected component of XðRÞ. The component C is called a
pseudo-line if the canonical class of C is nontrivial in H1ðPn

RðRÞ;Z=2Þ. Equivalently,
C is a pseudo-line if and only if for each real hyperplane H, HðRÞ intersects C in
an odd number of points, when counted with multiplicities (see [9]). So a necessary
condition for XðRÞ to be a‰ne in Pn

R is that XðRÞ has no pseudo-line.

Proposition 2.7. Let X JPn
R, nd 2, be a non-degenerate linearly normal curve of

degree d such that XðRÞ has no pseudo-line. If X satisfies one of the two following

conditions

(i) X is rational or elliptic,

(ii) gd 2 and dd 4g,

then XðRÞ is a‰ne in Pn
R.

Proof. A hyperplane section has even degree on each connected component of X ðRÞ
and its degreed 2MðXÞ. The results follows from Corollary 2.5 and the linear nor-
mality. r

Example 2.8. Let X be an elliptic quartic curve in P3
R with only one real connected

component. Then XðRÞ is a‰ne in P3
R since X satisfies the hypotheses of the prop-

osition: X is a complete intersection and d is even (use Bezout’s theorem).

Proposition 2.9. Let X JPn
R be a non-degenerate curve of degree dc 2n� 1 such that

X ðRÞ has no pseudo-line and g ¼ d � n. If nc dc nþ 1 or dc 4
3
n then XðRÞ is

a‰ne in Pn
R.

Proof. Let H be a hyperplane section of X . By Cli¤ord’s inequality and since
dc 2n� 1, H is non-special (see Section 4). By Riemann–Roch, g ¼ d � dimjHj.
Consequently dimjHj ¼ n and X is linearly normal. The proof follows now from
Proposition 2.7. r

Example 2.10. Let X be a smooth quartic curve in P2
R. Then X is the canonical
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model of a curve of genus 3. By [4], X has always odd theta-characteristics that are
in one-to-one correspondence with the real bitangent lines to X . Since the degree of
X is 4, a real bitangent line to X intersects the curve XC only at the two points of
tangency. If these two points are non-real and switched by the complex conjugation,
then X ðRÞ is a‰ne in P2

R. If the points are real, we may move the line to get a line
which does not intersect X ðRÞ, XðRÞ is again a‰ne in P2

R. Notice that the conclu-
sion cannot be deduced from Proposition 2.7.

3 Divisors with real support

This section is dedicated to the study of the invariant NðX Þ. We clearly have

Proposition 3.1. If X is a real rational curve or a real elliptic curve, then

NðXÞ ¼ 1:

Hence, in the remainder of this section we will assume that g > 1, and use the invari-
ant e defined by:

e ¼
1
2
ðg� sÞ if g� s even;

1
2
ðg� sþ 1Þ if g� s odd:

(

Let us state the principal result of this section:

Theorem 3.2. Any complete linear system of degreeds� 1þ g contains a divisor whose

non-real part has degreec 2e.

Proof. Let D be a divisor of degree dd s� 1þ g. We will prove that D is linearly
equivalent to an e¤ective divisor, whose non-real part has degreec 2e.

Let P be a real point and a ¼ ½D� dP� A JðRÞ. We fix R1; . . . ;Rg�2e in g� 2e
distinct components among C1; . . . ;Cs. To simplify the proof, we set Ri A Ci. Let us

denote b ¼ aþ
Pg�2e

i¼1 ½P� Ri�. Consider the restriction to Pic0ðXÞ of the morphism c

defined in Section 1, then it clearly induces an isomorphism JðRÞ=JðRÞ0 F ðZ=2Þs�1.
Hence there exist Pg�2eþ1; . . . ;Pg�2eþs�1 A X ðRÞ such that

b ¼
Xs�1

j¼1

½Pg�2eþj � P� þ b0;

with b0 A JðRÞ0.
By Riemann–Roch, the natural map ðSgXÞðRÞ ! PicgðX Þ is surjective, SdX

denoting the symmetric d-fold product of X over R. Moreover if ½D 0� ¼ ½D 00� in
PicdðXÞ, then degCi

ðD 0Þ1 degCi
ðD 00Þ mod 2 for i ¼ 1; . . . ; s. Let u A ðZ=2Þs such that

ciðuÞ ¼ 1 for i ¼ 1; . . . ; g� 2e and cg�2eþ1ðuÞ ¼ 0. Consequently, if ½D 0� A Uðg; uÞ,
then D 0 is linearly equivalent to the e¤ective divisor
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Xg�2e

i¼1

Pi þ
Xe

i¼1

Qi;

where

1) Pi A Ci, 1c ic g� 2e and,

2) Qi is either a non-real point or a sum of two real points contained in the same
connected component of XðRÞ, i ¼ 1; . . . ; e.

The translation by �½
Pg�2e

i¼1 Ri� � 2e½P� is a bijection between Uðg; uÞ and JðRÞ0 ¼
Uð0; 0; . . . ; 0Þ, hence

b0 þ
Xg�2e

i¼1

Ri

" #
þ 2e½P� ¼

Xg�2e

i¼1

½Pi� þ
Xe

i¼1

½Qi�:

Finally,

a ¼
Xs�1þg�2e

i¼1

½Pi � P� þ
Xe

i¼1

½Qi � 2P�

and the proof is done. r

The above theorem allows to give an upper bound for M-curves or ðM � 1Þ-curves.

Corollary 3.3. Let X be an M-curve or an ðM � 1Þ-curve. Then

NðX Þc s� 1þ g:

In [6], it is shown that NðX Þc 2g� 1 for M-curves. Following the method used
in [6], we will now show that the result of Theorem 3.2 may be improved in the case
s1 gþ 1 mod 2.

Let sd 2. By Theorem 3.2, we already know that for every complete linear system
jDj of degree ds� 1þ g, there exists D 0 A jDj such that the non-real part of D 0 has
degreec 2e. We would like to extend the result to linear systems of degree gþ d,
0c dc s� 2, under certain conditions on the invariant d.

Proposition 3.4. Assume degðDÞ ¼ gþ d for d A f0; . . . ; s� 2g. If dðDÞd s� d �
1
2 ð1� ð�1Þs�gÞ, then there exists D 0 A jDj such that the non-real part of D 0 has

degreec 2e.

Proof. The proof depends on the parity of s� g.
First, assume that s� g is odd. For i ¼ 1; . . . ; s, let ui A ðZ=2Þs such that cjðuiÞ ¼

1� di; j (d is Kronecker’s symbol). By Riemann–Roch, any divisor in Uðg; uiÞ is lin-
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early equivalent to an e¤ective divisor whose non-real part has degreec 2e. We
translate D by �D 00, with D 00 a totally real e¤ective divisor of degree d such that
½D�D 00� A Uðg; uiÞ for a i. We have dðDÞ ¼ gþ d mod 2. Hence there exists k A Z
such that dðDÞ þ 2k ¼ gþ d. Moreover gþ d ¼ s� d � 1 mod 2, hence gþ d ¼
s� d � 1þ 2r, with r A Z. By a closer look at these identities, we see that k and r are
non-negative. Consequently

dðDÞ ¼ 2ðr� kÞ þ s� d � 1: ð1Þ

By the hypothesis dðDÞd s� d � 1. Hence l ¼ r� kd 0 and by (1),

ðs� dðDÞ � 1Þ þ 2l ¼ d: ð2Þ

We remark that s� dðDÞ corresponds to the number of connected components C of
X ðRÞ where degCðDÞ is even. If s0 dðDÞ, then we choose a component Ci such that
degCi

ðDÞ is even, and by (2), we take as D 00 a divisor that cuts out schematically a
point on the components Cj 0Ci where degCj

ðDÞ is even, and a point with multi-
plicity 2l on Ci. Then ½D�D 00� A Uðg; uiÞ. If s ¼ dðDÞ, then d ¼ 2l � 1 is odd, and
we take D 00 ¼ dP1, with P1 A C1. Again ½D�D 00� A Uðg; u1Þ.

Second, assume that s� g is even.
The situation is simpler since we know that any divisor in Uðg; uÞ, with u ¼

ð1; . . . ; 1Þ A ðZ=2Þs, is linearly equivalent to an e¤ective divisor whose non-real part
has degreec 2e. So we translate D by �D 00 with D 00 a totally real e¤ective divisor of
degree d, such that ½D�D 00� A Uðg; uÞ. By the same arguments as before,

dðDÞ ¼ 2ðr� kÞ þ s� d; ð3Þ

for some non-negative integers r and k. If we assume that dðDÞd s� d, then l ¼
r� kd 0, and by (3),

ðs� dðDÞÞ þ 2l ¼ d: ð4Þ

Again s� dðDÞ corresponds to the number of connected components C of X ðRÞ
where degCðDÞ is even. For D 00, we take the sum of any real point with multiplicity
2l, with a divisor whose support consists of a unique point in each of the component
C of X ðRÞ, where degCðDÞ is even. r

Corollary 3.5. Assume s� g is odd and sd 2. Any complete linear system of degree

ds� 2þ g contains a divisor whose non-real part has degreec 2e.

Proof. Using the previous proposition, we only have to prove that if D is a divisor of
degree gþ s� 2, then dðDÞd 1. If dðDÞ ¼ 0, then gþ s� 2 must be even, contra-
dicting the hypotheses. r

Let us state a nice consequence of the previous results:
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Theorem 3.6. Let X be an M-curve or an ðM � 1Þ-curve. Then NðXÞc 2g� 1.

Equivalently, the theorem says that, for an M-curve or an ðM � 1Þ-curve, the natural
map X ðRÞ2g�1 ! Pic2g�1ðXÞ is surjective.

(M C 2)-curves and unramified real curves in odd-dimensional projective spaces. Let X
be real curve and D A DivðXÞ. For D ¼

P
niPi �

P
mjQj, with ni and mj positive,

and the sum taken over distinct closed points of X , we define Dred ¼
P

Pi �
P

Qj.
We also define the weight of D to be the natural number wðDÞ ¼ degðD�DredÞ. If
X JPn

R, nd1, is non-degenerate, we say that X is unramified if for each hyperplane
H of Pn

R, we have wðH � XÞc n� 1.
The corresponding notion of an unramified complex algebraic curve in complex

projective space is well understood. Indeed, any unramified complex algebraic curve
is a rational normal curve and conversely [3]. Over R, the situation is di¤erent and
Huisman has given the following conjecture (see [9] Conjecture 3.6):

Conjecture. Let nd 3 be an odd integer and X JPn
R be a non-degenerate real alge-

braic curve of positive genus. If X is unramified, then X is an M-curve.

We relate this conjecture and the invariant N studied in this paper.

Theorem 3.7. Let X be an ðM � 2Þ-curve. Assuming the above conjecture, we get:

(i) NðX Þc 3g� 1, if g is even, and

(ii) NðX Þc 3g, if g is odd.

Proof. Let P A XðRÞ and a A JðRÞ. Recall that s ¼ g� 1 and that C1; . . . ;Cg�1 denote
the connected components of XðRÞ. We may assume that P A C1.

Assume g is even. Let D ¼ P2 þ � � � þ Pg�1 þQ be an e¤ective divisor with Pi A Ci

for i ¼ 2; . . . ; g� 1, and Q be a non-real point. In fact ½D� A Uðg; 0; 1; . . . ; 1Þ. Let
D 0 ¼ Dþ ðgþ 1ÞP. Then D 0 is very ample and the linear system jD 0j allows us to

embed X in Pgþ1
R . Using the above conjecture, X is not unramified. Consequently

there is an hyperplane H of Pgþ1
R such that H � X ¼

Pr
i¼1 niRi þ

P t
j¼1 mjQj, where

the sum is taken over distinct points. The Ri are real points and the Qj are non-real
points. Moreover,

Xr

i¼1

ni þ 2
Xt

j¼1

mj ¼ 2gþ 1 ð5Þ

and

wðH � X Þ ¼
Xr

i¼1

ðni � 1Þ þ 2
Xt

j¼1

ðmj � 1Þd gþ 1: ð6Þ

Jean-Philippe Monnier348



Since degCi
ðD 0Þ is odd for i ¼ 1; . . . ; s, each connected component of XðRÞ is a

pseudo-line. It follows that

wðH � X Þ ¼ degððH � X Þ � ðH � X ÞredÞc ð2gþ 1Þ � ðg� 1Þ ¼ gþ 2: ð7Þ

Using (5), (6) and (7), we get gþ 2d�ðrþ 2tÞ þ 2gþ 1d gþ 1 and

gd ðrþ 2tÞd g� 1:

Since rd g� 1, we have t ¼ 0 and D 0 is linearly equivalent to a totally real e¤ective
divisor. By Theorem 3.2, there are 2g� 4 points P1; . . . ;P2g�4 A XðRÞ and Q a non-
real point or a sum of two real points contained in the same connected component of
X ðRÞ, such that

a ¼
� X2g�4

i¼1

½Pi � P�
�
þ ð½Q� � ½2P�Þ:

Moreover, looking at the proof of Theorem 3.2, we may choose Pi A Ci for
i ¼ 2; . . . ; g� 1. Writing a ¼ aþ ðgþ 1Þ½P� � ðgþ 1Þ½P�, the statement follows from
the above construction.

If we assume that g is odd, the proof is similar but for D 0 ¼ Dþ ðgþ 2ÞP
here. r

Assuming the above conjecture, we may also obtain a more general result.

Proposition 3.8. Let X be a real curve such that sc g� 1. Any complete linear sys-

tem of degree dsþ 2gþ 1
2
ð1� ð�1ÞgÞ contains a divisor whose non-real part has

degreec 2e� 2.

The above method allows us to have a description of a linear system with one non-
real point less. Unfortunately this method is rigid; a repetition of this method does
not give a description of a linear system with only real points.

4 Cli¤ord’s inequality and linear systems on real hyperelliptic curves

In this section, we study the family of special linear systems on real algebraic curves.
Let D A DivðXÞ and K be the canonical divisor. If lðK �DÞ > 0, D is said to be
special. If not, D is said to be non-special. By Riemann–Roch, if degðDÞ > 2g� 2
then D is non-special. The classical Cli¤ord inequality states that the dimension of a
nonempty special complete linear system on a curve is bounded by half of its degree
(see [5] Theorem 5.4, p. 343). We now recall the Cli¤ord inequality for real curves
given by Huisman ([8] Theorem 3.1).

Theorem 4.1. Let D A DivðX Þ be an e¤ective divisor of degree d. The following state-

ments hold.
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(i) If d þ dðDÞ < 2s, then dimjDjc 1
2
ðd � dðDÞÞ.

(ii) If d þ dðDÞd 2s, then dimjDjc d � sþ 1.

A real hyperelliptic curve is a real curve X such that XC is hyperelliptic, i.e. XC
has a g12 (a linear system of dimension 1 and degree 2). As always, we assume that
X ðRÞ0q and moreover that gd 2.

Lemma 4.2. Let X be a real hyperelliptic curve. Then X has a unique g12 .

Proof. By [5] Proposition 5.3, XC has a unique g12 . Let D be an e¤ective divisor of
degree 2 on XC satisfying jDj ¼ g12 . Since this unique g12 is also complete and X is

defined over R, we have jDj ¼ g12 . Let P A XðRÞ, we also denote by P the corre-
sponding closed point of XC. Since lCðD� PÞ > 0, we may assume that D ¼ PþQ

with Q a closed point of XC. Then ½PþQ� ¼ ½PþQ� in PicðXCÞ and Q ¼ Q, since
XC is not rational. Hence D ¼ D and since lðDÞ ¼ lCðDÞ, the proof is done. r

This g12 induces an involution, denoted by {, on the closed points of X . A real
hyperelliptic curve X is said to be respected by the involution (we will abbreviate by
r.b.i.), if for any real point P, P and {ðPÞ belong to the same real connected compo-
nent. Most real hyperelliptic curves are r.b.i.

Proposition 4.3. Let X be a real hyperelliptic curve such that X is not r:b:i. Then X is

given by the real polynomial equation y2 ¼ f ðxÞ, where f is a monic polynomial of

degree 2gþ 2, with g odd, and where f has no real roots. In particular, the number of

connected components of X ðRÞ is 2.

Proof. Using the g12 , we easily see that an a‰ne model of X is given by the real
equation y2 ¼ f ðxÞ, with degð f Þ ¼ 2gþ 2. Since X is not r.b.i., f cannot have a real
root. We may assume that f is monic since XðRÞ0q. If g is even, then s ¼ 1 ([4]
Proposition 6.3), contradicting the hypotheses. If g is odd, then X ðRÞ has 2 con-
nected components exchanged by {. r

We give now the Cli¤ord inequality for real hyperelliptic curves which are r.b.i.

Theorem 4.4. Let X be a real hyperelliptic curve that is r:b:i. and let D A DivðXÞ be an
e¤ective and special divisor of degree d. Then

dimjDjc 1

2
ðd � dðDÞÞ:

Proof. The classical Cli¤ord inequality allows us to assume that dðDÞd 1. We may
further assume that C1; . . . ;CdðDÞ are the connected components of X ðRÞ, where the
degree of D is odd. Let D 0 cD be the greatest e¤ective common subdivisor of D and

{ðDÞ with the property that jD 0
rj ¼

degðD 0
rÞ

2
g12 , D

0
r denoting the real part of D 0. Write
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D 00 ¼ D�D 0. Since X is r.b.i., then dðD 0Þ ¼ 0. So, there are real points P1; . . . ;PdðDÞ
such that P1 þ � � � þ PdðDÞ cD 00 and Pi A Ci, i ¼ 1; . . . ; dðDÞ. We remark that

a) d þ dðDÞc 2g� 2 since D is special ([9] Theorem 2.3),

b) {ðPiÞ B SuppðD 00Þ or Pi is a fixed point for { such that 2Pi is not a subdivisor of D 00,
i ¼ 1; . . . ; dðDÞ.

Let o be a global di¤erential form on X , such that divðoÞdD. Then divðoÞdDþ
{ðP1Þ þ � � � þ {ðPdðDÞÞ, since K ¼ ðg� 1Þg12 and d þ dðDÞc 2g� 2. Hence lðK �DÞ ¼
lðK � ðDþ {ðP1Þ þ � � � þ {ðPdðDÞÞÞÞ, and Dþ {ðP1Þ þ � � � þ {ðPdðDÞÞ is also special. By
Riemann–Roch,

dimjDj � dimjK � ðDþ {ðP1Þ þ � � � þ {ðPdðDÞÞÞj ¼ d � gþ 1; ð8Þ

and

dimjDþ {ðP1Þ þ � � � þ {ðPdðDÞÞj � dimjK � ðDþ {ðP1Þ þ � � � þ {ðPdðDÞÞÞj

¼ d þ dðDÞ � gþ 1: ð9Þ

Since Dþ {ðP1Þ þ � � � þ {ðPdðDÞÞ is e¤ective and special, by the classical Cli¤ord
inequality, we get

dimjDþ {ðP1Þ þ � � � þ {ðPdðDÞÞjc
1

2
ðd þ dðDÞÞ:

Replacing in (9), we have

dimjK � ðDþ {ðP1Þ þ � � � þ {ðPdðDÞÞÞjc
1

2
ðd þ dðDÞÞ � ðd þ dðDÞÞ þ g� 1

¼ g� 1� 1

2
ðd þ dðDÞÞ: ð10Þ

Finally, combining (8) and (10), we get

dimjDjc 1

2
ðd � dðDÞÞ: r

Theorem 4.5. Let X be a real hyperelliptic curves that is not r:b:i. and let D A DivðX Þ
be an e¤ective and special divisor of degree d. Then

dimjDjc 1

2
ðd � dðDÞÞ;

except when jDj ¼ rg12 , with 0 < r < g� 1 and r odd, in which case dimjDj ¼ r ¼ 1
2
d.
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Proof. We recall that under these hypotheses s ¼ 2. If dðDÞ ¼ 0, the classical Cli¤ord
inequality applies.

So let us assume dðDÞ ¼ 1. As in the previous proof, we write D ¼ D 0 þD 00, with
D 0 the greatest e¤ective common subdivisor of D and {ðDÞ, and D 00 e¤ective. Since
dðDÞ ¼ 1 and since the two connected components of XðRÞ are exchanged by {, we
easily see that there exists a real point P in the support of D 00. Repeating the proof of
the previous theorem, we get the result.

Now, if dðDÞ ¼ 2, then the above arguments give the proof, except when D is
invariant by {. In this case jDj ¼ rg12 , r is odd and dimjDj ¼ r. r

We give some applications of the previous theorems. We know that Castelnuevo’s
inequality is one of the consequences of the (complex) Cli¤ord inequality (see [3] cor-
ollary p. 251). Hence, we obtain a Castelnuevo inequality for real hyperelliptic curves.

Proposition 4.6. Let nd 2 be an integer and X JPn
R be a non-degenerate real hyper-

elliptic curve r:b:i. Let d be the degree of X and d be the number of pseudo-lines of X .
Assume d < 2nþ d. Then

gc d � n;

with equality holding if and only if X is linearly normal.

Proof. Let H be a hyperplane section of X . Then dimjHjd n > 1
2
ðd � dðHÞÞ by the

hypotheses. Theorem 4.4 says that H is non-special and by Riemann–Roch,

g ¼ d � dimjHjc d � n:

Clearly, the previous inequality becomes an equality if and only if the map
H 0ðPn

R;Oð1ÞÞ ,! H 0ðX ;Oð1ÞÞ is an isomorphism. r

Proposition 4.7. Let X be a real hyperelliptic curve r:b:i. Let D ¼ P1 þ � � � þ Pr,
0c rc g, such that P1; . . . ;Pr A X ðRÞ and such that no two of them belong to the

same connected component of XðRÞ. Then lðDÞ ¼ 1.

Remark 4.8. In the previous proposition, if X is any real algebraic curve and r ¼ s, by
Theorem 4.1, we can only say that lðDÞc 2.

Let us set some more notations. For dd 0, let SdX denote the symmetric d-fold
product of X over R. We have a natural map jd : ðSdXÞðRÞ ! PicdðXÞ. Write
WdðRÞ ¼ ImðjdÞ for the real part of the subvariety Wd of PicdðXCÞ (see [1]), and
yðRÞJ JðRÞ for the real part of the theta divisor.

Proposition 4.9. Let X be a real hyperelliptic curve r:b:i. such that sd g� 1. If

u A ðZ=2Þs satisfies
Ps

i¼1 ciðuÞd g� 1, then Wg�1ðRÞVUðg� 1; uÞ does not contain

any singularity of Wg�1.
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Proof. If
Ps

i¼1 ciðuÞd g, then Wg�1ðRÞVUðg� 1; uÞ ¼ q. Let ½D� A Wg�1ðRÞV
Uðg� 1; uÞ, where u A ðZ=2Þs satisfies

Ps
i¼1 ciðuÞ ¼ g� 1. Then lðDÞ > 0 and we

may assume that D is e¤ective. By [1] Corollary 4.5, p. 190, the singular points of
Wg�1 correspond to the complete linear systems of dimension d1 and degree g� 1.
By Theorem 4.4, dimjDj ¼ 0, hence the result. r

We may extend the previous proposition in any degree.

Proposition 4.10. Let X be a real hyperelliptic curve r:b:i:, and let d be a non-negative

integercs. If u A ðZ=2Þs satisfies
Ps

i¼1 ciðuÞd d, then WdðRÞVUðd; uÞ does not con-
tain any singularity of Wd .

We prove a result similar to Theorem 3.1 in [7].

Proposition 4.11. Let X be a real hyperelliptic curve r:b:i: which is an ðM � 2Þ-curve.
Then C1 � � � � � Cg�1 is homeomorphic to the real part of the theta divisor contained in

the neutral component JðRÞ0 of the real part of the Jacobian.

Proof. By Proposition 4.9, C1 � � � � � Cg�1 is homeomorphic to the part of
Wg�1ðRÞ contained in Uðg� 1; 1; . . . ; 1Þ. We may easily find a theta-characteristic
k A Picg�1ðXÞ (i.e. 2k ¼ ½K �) such that k A Uðg� 1; 1; . . . ; 1Þ. By Riemann’s theorem
(see [1] p. 27), Wg�1 ¼ yþ k and the proof is straightforward. r

Remark 4.12. Most of the results of this section are also valid for any real algebraic
curve with sd g (see [8] and Theorem 4.1).

The following result states a remarkable property of some special linear systems.

Proposition 4.13. Let X be a real hyperelliptic curve r:b:i. Let D A DivðXÞ be a spe-

cial e¤ective divisor of degree d satisfying dimjDj ¼ 1
2
ðd � dðDÞÞ. Then jDj contains a

totally real divisor.

Proof. Firstly, we assume that dc g. A consequence of the geometric version of the
Riemann–Roch theorem is that any complete gr

d on XC is of the form

rg12 þ P1 þ � � � þ Pd�2r;

where no two of the Pi are conjugate under {. Hence the complete linear system jDj
on XC is of this form, with r ¼ 1

2 ðd � dðDÞÞ. Since D ¼ D, we have D 0 ¼ P1 þ � � � þ
Pd�2r A DivðXÞ. It follows that jDj is of the form

1

2
ðd � dðDÞÞg12 þD 0;

where D 0 is an e¤ective divisor of degree dðDÞ. Any divisor in g12 is linearly equivalent
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to Pþ {ðPÞ where P A XðRÞ. Since X is r.b.i., we have dðD 0Þ ¼ dðDÞ and D 0 is totally
real.

Secondly, let d > g. The residual divisor K �D is of degree 2g� 2� d < g� 2.
Since the degree of K is even on each connected component of X ðRÞ, K �D is also
special and satisfies dðK �DÞ ¼ dðDÞ. So, dimjK �Dj ¼ 1

2
ðd � dðDÞÞ � d þ g� 1 ¼

1
2
ð2g� 2� d � dðDÞÞ ¼ 1

2
ðdegðK �DÞ � dðK �DÞÞ. We may apply the first part of

the proof to K �D to obtain that

½K �D� ¼ 1

2
ð2g� 2� d � dðDÞÞðPþ {ðPÞÞ

� �
þ ½P1 þ � � � þ PdðDÞ�; ð11Þ

where P;P1; . . . ;PdðDÞ A X ðRÞ and no two of the Pi are conjugate under {. Since
jK j ¼ ðg� 1Þg12 , then ½K � ¼ ½ðg� 1ÞðPþ {ðPÞÞ�. From (11), we get

½D� ¼ 1

2
ðd þ dðDÞÞðPþ {ðPÞÞ

� �
� ½P1 þ � � � þ PdðDÞ�:

Then ½D� � ½{ðP1Þ þ � � � þ {ðPdðDÞÞ� ¼ ½12 ðd � dðDÞÞðPþ {ðPÞÞ� and the proof is done.
r

5 Existence of special linear systems of dimension r on real curves

Curves are classified by their genus. But we may further subdivide them according to
whether or not they possess complete gr

d , i.e. complete linear systems of degree d and
dimension rd 1, for various d and r. For complex curves, we may find numerous
results on this subject, it is a part of the Brill–Noether theory. This section deals with
these problems for real curves.

5.1 Complete linear systems of dimension r on real curves.

Definition 5.1. For X a real curve and r a positive integer, we set:

(i) rCðX ; rÞ ¼ inffd A N jXC has a complete gr
dg.

(ii) rRðX ; rÞ ¼ inffd A N jX has a complete gr
dg.

For gd 0 and r > 0, we set:

(iii) rCðg; rÞ ¼ supfrCðX ; rÞ jX is a curve of genus gg.

(iv) rRðg; rÞ ¼ supfrRðX ; rÞ jX is a curve of genus gg.

Remark 5.2. It is easy to check that the gr
rRðX ;rÞ and gr

rCðX ;rÞ are necessarily complete.

Using the Riemann–Roch formula, it is easy to show that rRð0; rÞ ¼ rCð0; rÞ ¼ r,
and that rRð1; rÞ ¼ rCð1; rÞ ¼ rþ 1. In the remainder of the section we will assume
that gd 2.
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Remarks 5.3. If r > g� 1, by the classical Cli¤ord inequality, a complete gr
d is non-

special and rRðX ; rÞ ¼ gþ r. From now on, we will also assume that rc g� 1 in
order to deal with special linear systems. By the classical Cli¤ord inequality, and
since there exist non-special linear systems of degree gþ r, we have

2rc rRðX ; rÞc gþ r:

Since the canonical divisor is invariant by the complex conjugation, by the previous
inequality, we have the equalities

rRðX ; g� 1Þ ¼ rRðg; g� 1Þ ¼ rCðX ; g� 1Þ ¼ rCðg; g� 1Þ ¼ 2g� 2:

From the classical theory of special linear systems (see [1] Theorem 1.1 p. 206, The-
orem 1.5 p. 214), we may see rCðg; rÞ as the smallest integer d such that the Brill–
Noether number rðg; r; dÞ ¼ g� ðrþ 1Þðg� d þ rÞ is non-negative.

Now, we state the principal result of this section.

Theorem 5.4. Let X be a real curve and let r be an integer such that 1c rc g� 1.
Then

(i) rRðX ; rÞc rRðg; rÞc gþ r� 1, and

(ii) rCðX ; rÞc rRðX ; rÞc 2rCðX ; rÞ � 2r.

Proof. For (i), let D A DivðX Þ be an e¤ective divisor of degree g� 1� r. Choosing D

general, we have lðDÞ ¼ 1. Then the residual divisor K �D A DivðXÞ and satisfies
lðK �DÞ ¼ 1� ðg� 1� rÞ þ g� 1 ¼ rþ 1, and we get the first assertion.

As for (ii), clearly rCðX ; rÞc rRðX ; rÞ, since for any divisor D A DivðXÞ we have
lðDÞ ¼ lCðDÞ. It remains to show that

rRðX ; rÞc 2rCðX ; rÞ � 2r:

Let d ¼ rCðX ; rÞ and let D A DivðXCÞ be an e¤ective divisor of degree d such
that dimCjDj ¼ r. Let P1; . . . ;Pr be real points of X . We also denote by P1; . . . ;Pr

the corresponding closed points of XC. We may choose P1; . . . ;Pr such that
lðP1 þ � � � þ PrÞ ¼ 1 and lCðD� P1 � � � � � PrÞ ¼ 1. Moreover, we may assume that
D ¼ D 00 þD 0, where:

1) D 00 is an e¤ective divisor of degree u satisfying D 00 ¼ D 00, and having P1; . . . ;Pr in
its support.

2) D 0 is an e¤ective divisor such that there is no nonzero e¤ective divisorcD 0 invari-
ant by the complex conjugation.

If D 0 ¼ 0, then D A DivðX Þ and rCðX ; rÞ ¼ rRðX ; rÞ. So, assume D 0 0 0 and let
l ¼ dimjD 00j. If r ¼ l, then jDj has a base point, but then XC has a complete gr

k
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with k < d, hence a contradiction. It follows that r > l. Since X is a real curve,
dimCjD 00 þD 0j ¼ r. We may find suitable nonzero e¤ective divisors D 0

1; . . . ;D
0
r�l such

that

1) D 0 ¼ D 0
1 þ � � � þD 0

r�l , and

2) lCðD 00 þD 0
1 þ � � � þD 0

i Þ ¼ lCðD 00Þ þ i, i ¼ 1; . . . ; r� l.

Let f1; f1; . . . ; frg be a base of H 0ðXC;OðD 00 þD 0ÞÞ and g1; . . . ; gr�l A
H 0ðXC;OðD 00 þD 0ÞÞ such that

1) g1 A H 0ðXC;OðD 00 þD 0
1ÞÞnH 0ðXC;OðD 00ÞÞ, and

2) gi A H 0ðXC;OðD 00 þD 0
1 þ � � � þD 0

i ÞÞnnH 0ðXC;OðD 00 þD 0
1 þ � � � þD 0

i�1ÞÞ, i ¼
2; . . . ; r� l.

Claim. lCðD 00 þD 0 þD 0Þd 2rþ 1� l. More precisely, we show, by induction on
i, that 1; f1; . . . ; fr; g1; . . . ; gi are linearly independent in the vector space
H 0ðXC;OðD 00 þD 0

1 þ � � � þD 0
i þD 0ÞÞ, i.e. lCðD 00 þD 0

1 þ � � � þD 0
i þD 0Þd rþ 1þ i.

For i ¼ 1, 1; f1; . . . ; fr, g1 A H 0ðXC;OðD 00 þD 0
1 þD 0ÞÞ and 1; f1; . . . ; fr are linearly

independent. If g1 were a linear combination of 1; f1; . . . ; fr, then g1 would be a
global section of OðD 00 þD 0Þ and also divyðg1ÞcD 00 þD 0. By the construction of
g1, divyðg1ÞcD 00 þD 0

1. Since D 0 and D 0
1 have distinct supports, we would have

divyðg1ÞcD 00. This is a contradiction.
Assume now that 1; f1; . . . ; fr; g1; . . . ; gi�1 (r� l > i > 1) are linearly independent

and that gi would be a linear combination of 1; f1; . . . ; fr; g1; . . . ; gi�1. Arguing as
in the case i ¼ 1, the pole divisor of gi would be cD 00 þD 0 þD 0

1 þ � � � þD 0
i�1. By

the construction of gi, and since D 0 and D 0
i have distinct supports, we would obtain

divyðgiÞcD 00 þD 0
1 þ � � � þD 0

i�1, contradicting the fact that gi B H 0ðXC;OðD 00 þ
D 0

1 þ � � � þD 0
i�1ÞÞ. This ends the proof of the claim.

Since D 00 þD 0 þD 0 is invariant by the complex conjugation, we get
lðD 00 þD 0 þD 0Þ ¼ lCðD 00 þD 0 þD 0Þd 2rþ 1� l. Let P 0

1; . . . ;P
0
r�l be suitable real

points. Then lðD 00 þD 0 þD 0 � P 0
1 � � � � � P 0

r�lÞd rþ 1, and X has at least one
complete gr

2d�u�rþl . To get the second assertion of the theorem, it is su‰cient to
prove that rc u� l. Since dimCjP1 þ � � � þ Prj ¼ 0 and D 00 ¼ P1 þ � � � þ Pr þ E, with
E A DivðXÞ an e¤ective divisor of degree u� r, we get l ¼ dimCjP1 þ � � � þ Pr þ Ejc
u� r. r

Let us mention some consequences of Theorem 5.4.

Corollary 5.5. Let X be a real hyperelliptic curve and r be an integer such that 1c
rc g� 1. Then rRðX ; rÞ ¼ 2r.

Proof. Since rCðX ; rÞ ¼ 2r, using the first inequality of the theorem, the result fol-
lows. r

Corollary 5.6. Let X be a real curve of genus g which is not hyperelliptic, and r
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be an integer such that 1c r < g� 1. Then rRðX ; rÞ > 2r. In particular, we have

rRð3; 1Þ ¼ 3.

Proof. The proof is clear by Cli¤ord’s inequality and by the existence of real non-
hyperelliptic curves of genus 3. r

Corollary 5.7. Let X be a real curve. Then the map jg : ðSgXÞðRÞ ! PicgðX Þ is not
injective.

Proof. If D A DivðX Þ of degree d satisfies lðDÞ ¼ 2, then the fiber of jd at ½D� is one
dimensional and the map jd is not injective. Theorem 5.4 asserts the existence of a
g1g on X , hence we get the result. r

Remark 5.8. In Theorem 5.4, we get two upper bounds for rR, one of them depend-
ing on rC, but not the other. It is interesting to compare these two bounds. The
invariant rC is given by the Theorems 1.1 p. 206, 1.5 p. 214, in [1]. For X a general
curve of genus g and 1c rc g� 1:

rCðX ; rÞ ¼ gþ r� g

rþ 1

� �
:

(½ g

rþ1
� is the integral part of g

rþ1
). We thus obtain

rRðX ; rÞcmin gþ r� 1; 2g� 2
g

rþ 1

� �� �
:

Assume
g

rþ1
A N. We see that 2g� 2

g

rþ1
¼ gþ r� 1 if r ¼ 1 or r ¼ g� 1, and that

2g� 2
g

rþ1
> gþ r� 1 if not. Hence rRðg; rÞc gþ r� 1 is the best upper bound we

may find at this moment. As we have seen for hyperelliptic curves, the second
inequality of Theorem 5.4 gives a smaller upper bound for rRðX ; rÞ only when X is
a special curve.

5.2 Complete linear systems of dimension 1 on real curves. The following theorem is
a refinement of Theorem 5.4 in dimension 1.

Proposition 5.9. Let X be a real curve of genus gd 2. If XC has exactly an odd number

of g1rCðX ;1Þ, then rRðX ; 1Þ ¼ rCðX ; 1Þ.

Proof. We have rCðX ; 1Þd 2 since X is not rational. Let d ¼ rCðX ; 1Þ. Assume that
XC has exactly 2nþ 1 distinct g1d , n A N. Let D 0

i , i ¼ 1; . . . ; 2nþ 1, some e¤ective
divisors on XC such that the linear systems jD 0

i j are the 2nþ 1 distinct g1d . We may
clearly assume that, for every i, D 0

i ¼ PþDi, with P a closed point of XC satisfying
P ¼ P and with Di A DivðXCÞ an e¤ective divisor of degree d � 1. Since X is real, the
linear systems jD 0

i j are also g1d . Consequently, there exists k A f1; . . . ; 2nþ 1g such
that jD 0

kj ¼ jD 0
kj, since an involution acting on a finite set with an odd number of

elements has a fixed point. Hence PþDk is linearly equivalent to PþDk. Conse-
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quently, either Dk ¼ Dk and we have the claim, or jDkj is a g1d�1, but then d is not
minimal. r

Corollary 5.10. Let X be a general real curve of genus 6. Then rCðX ; 1Þ ¼
rRðX ; 1Þ ¼ 4.

Proof. Since XC has five g14 (see [3] p. 299), the proof follows from the above propo-
sition. r

5.3 A real Brill–Noether number. In the context, a natural question one can ask
is about the existence of a real curve X of genus gd 2 with rRðX ; 1Þ ¼ g. Such an
existence, for any gd 2, would show that rRðg; 1Þ ¼ g.

If d < g and X is a real curve of genus g having a g1d , then, adding ðg� 1� dÞ
general real points to this g1d , we get a complete g1g�1. By [1] Corollary 4.5, p. 190,
the singularities of Wg�1 ¼ jg�1ðSg�1XCÞ are the complete gk

g�1 with k > 0, where
jg�1 : S

g�1XC ! Picg�1ðXCÞ; ðP1; . . . ;Pg�1Þ 7! ½P1 þ � � � þ Pg�1� is the natural map.
By Riemann’s singularity theorem (see [1] p. 226), the singular part of the theta
divisor yJ JðCÞ is a translation (by a theta-characteristic) of the singular part of
Wg�1. Recall that a real curve always admits real theta-characteristics [4]. Hence we
may reformulate the previous question asking if there exist real curves of genus gd 2
with yðRÞ non-singular. We state the following conjecture:

Conjecture 1. Let gd 2 be an integer. There exists a real curve X of genus g such that

the singularities of the theta divisor yJ JðCÞ are not real.

Proposition 5.11. The above conjecture holds for 2c gc 4.

Proof. The conjecture holds trivially for genus 2 curves, and genus 3 curves since there
exist non-hyperelliptic real curves of genus 3.

Following Gross and Harris [4], we may show that the conjecture holds for genus 4
curves. Let X be a real trigonal curve (i.e. rCðX ; 1Þc 3) of genus 4 which is non-
hyperelliptic. Its canonical model lies on a unique real quadric surface SJP3

R. For
a general X , S is smooth and then has two di¤erent rulings. For some X , these two
rulings are complex and switched by the complex conjugation. Then XC has only
two g13 induced by these two rulings and rCðX ; 1Þ ¼ 3. By this, we conclude that
rRðX ; 1Þ ¼ 2rCðX ; 1Þ � 2 ¼ 4. r

Let g; r A N satisfying gd 2 and 1c rc g� 1. If d � ðgþ r� 1Þd 0, then Theo-
rem 5.4 says that any real curve of genus g has a complete gr

d . We may wonder if this
condition is optimal.

Conjecture 2. Let gd 2 and 1c rc g� 1. The real Brill–Noether number is

rRðg; r; dÞ ¼ d � ðgþ r� 1Þ, i:e: if d � ðgþ r� 1Þ < 0, then there exists a real curve

X of genus g such that X has no gr
d .

Remark that Conjecture 2 implies Conjecture 1.
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6 Linear systems with base points on real curves

This section is devoted to the problem of finding lower bounds for N. We prove that
this problem is related to the existence of special linear systems of dimension 1 and
small degree, i.e. the subject of the previous section.

Proposition 6.1. Let X be a real curve of genus gd 2. Assume that X has a complete

gr
d , with dc g� 1 and rd 1. Then NðXÞ > 2g� d.

Proof. Let D A DivðXÞ be an e¤ective divisor of degree dc g� 1 such that dimjDj ¼
rd 1. It is a special divisor. Let D 0 A DivðX Þ be an e¤ective divisor of degree
2g� 2� d such that DþD 0 is the canonical divisor. Let Q be a non-real point of X
such that lðD�QÞ ¼ lðDÞ � 2. By Riemann–Roch,

lðD 0 þQÞ ¼ 2g� 2� d þ 2� gþ 1þ lðD�QÞ ¼ g� d þ 1þ r� 1 ¼ lðD 0Þ:

Hence Q is a base point of jD 0 þQj and consequently the divisor D 0 þQ of degree
2g� d is not linearly equivalent to a totally real e¤ective divisor. Clearly NðXÞ >
2g� d. r

The existence of linear systems of small degree on real curves is studied in the pre-
vious section. One of the results, is that a real curve has always a complete g1g , hence

Corollary 6.2. Let X be a real curve such that gd 2. Then NðXÞd gþ 1.

From the previous section and Proposition 6.1, we obtain

Corollary 6.3. Let X be a real curve of genus gd 2. If yJ JðCÞ has a real singularity,
then NðXÞd gþ 2.

If X is hyperelliptic, by Lemma 4.2, X has also a g12 and we may state the following
result (use Theorem 3.6):

Corollary 6.4. Let X be a real hyperelliptic curve of genus gd 2. Then NðXÞd 2g� 1.
If furthermore X is an M-curve or an ðM � 1Þ-curve, then NðXÞ ¼ 2g� 1.

Remark 6.5. Since there exist real hyperelliptic M-curves of any genus, the previous
corollary gives a large family of curves for which the invariant N is explicitely cal-
culated.
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MR 90b:14030 Zbl 0633.14016

Divisors on real curves 359

http://www.ams.org/mathscinet-getitem?mr=86h:14019
http://www.emis.de/MATH-item?0559.14017
http://www.ams.org/mathscinet-getitem?mr=90b:14030
http://www.emis.de/MATH-item?0633.14016


[3] P. Gri‰ths, J. Harris, Principles of algebraic geometry. Wiley-Interscience 1978.
MR 80b:14001 Zbl 0408.14001

[4] B. H. Gross, J. Harris, Real algebraic curves. Ann. Sci. École Norm. Sup. (4) 14 (1981),
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