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Complex geometry of generalized annuli

Chiara de Fabritiis
(Communicated by G. Gentili)

Abstract. We study the complex geometry of a class of domains in C" which generalize the
annuli in @, i.e., which are quotients of the unit ball B" of C" for the action of a group gen-
erated by a hyperbolic element of AutB”. In particular, we prove that the degree of holomor-
phic maps between two such domains is bounded by a constant which depends on the “radii”
of the domains only and we give some results on the existence of complex geodesics for the
Kobayashi distance in these domains.
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1 Introduction

The aim of this paper is to study the complex geometry of a class of domains in
C" which are quotients of the unit ball B” = C" for the action of a group gen-
erated by a hyperbolic element of AutBB” (see Section 2 for definitions). Since
the annuli in C are obtained as quotients of the unit disk A= {¢eC: |{]| < 1}
for the action of a group generated by a hyperbolic element of AutA, the
domains we study can be seen as a generalization of annuli to several complex
variables.

In Section 2 we give some definitions we need in the sequel of the paper and we
recall some statements concerning this class of domains, which were introduced in
[3]- In Section 3 we generalize to several complex variables a result which is due to
Schiffer in the one-dimensional case: the degree of a holomorphic map between
two annuli is bounded by a constant which depends on the moduli of the annuli
only.

In Section 4 we study the geometry of extremal mappings and complex geodesics
for the Kobayashi distance in this class of domains. In particular we prove that there
always exists an extremal mapping through two given points of a “generalized annu-
lus” and we give several results on existence and non-existence of complex geodesics
according to the “radius” of the domain and to other parameters which classify these
domains.
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2 Preliminaries and statements

We denote the unit ball for the Euclidean metric in €" by B”; the following result is
well known.

Theorem 2.1. Any holomorphic automorphism y of B" can be extended holomorphically
to a neighborhood of the closure of B"; if y has no fixed points in B", then its extension
has either one or two fixed points in 0B".

From now on we shall denote by the same symbol a holomorphic automorphism of
B" and its extension to the closure of B”.

Definition 2.2. Let y € AutB": if y has at least one fixed point in B”, then y is said to
be elliptic; if y has no fixed points in B” and has one fixed point in JIB”, it is said to be
parabolic; if y has no fixed points in IB” and has two fixed points in JBB”, it is said to
be hyperbolic.

To generalize the construction of annuli to several complex variables, we will focus
our attention to the action of hyperbolic elements on B". First of all, we recall a
result which is due to de Fabritiis and Gentili (see [5]).

Proposition 2.3. Let y be a hyperbolic element in AutB”; then there exist T € R* and
0, ...,0, € R such that y is conjugate to

zycosh T +sinh T et2z, ez,
Yo iz RN

z1sinh T +coshT zysinh T +cosh T’ "' zysinh T + cosh T

In the sequel it will be useful to consider the problem on the Siegel half-space H" =
{we@"| 3w > |wa|* 4 -+ + |w,|?} which is biholomorphic to B”" via the Cayley
transform % (see e.g. Rudin [7] or Abate [1]), so we also give the form of hyperbolic
elements in AutH”.

Corollary 2.4. Let pe AutlH” be hyperbolic; then there exist i e RT\{1} and
0z, ...,0, € R such that u is conjugate to

Goypyo b =y wi (APwy, hezy, . denz,), (2.2)

where ) =eT.

This result enables us to consider the quotients of IB” (resp. IH") for the action of the
group I' (M) generated by a hyperbolic element y € Aut B” (u € AutIH"). Since the
quotients H"/ M, and H"/M, are biholomorphic iff M; and M, are conjugate in
AutH"”, then it is enough to consider the case of a group generated by an element
of the form (2.2). As we are interested in the group M generated by g, rather than
in the element g, itself, we can always suppose that A > 1, that is 7 > 0. Let
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In:H' — R x (0,7) be a branch of the logarithm, set »=1/InA=1/T and con-
sider the holomorphic map pr : H" — C" given by

pr(w) _ (eibnlnwl , e—b(lnA—O—i(-)z)lnufl/ZWz . e—b(lnﬁ-i(ﬁn)ln wl/zwn). (23)

In [3] and [4] the following result is proved:
Theorem 2.5. Let u, be given by (2.2) and M be the group generated by u,. Then the

map pr : H" — C" given by (2.3) factors on H" /M giving a biholomorphism between
H"/M and the bounded domain

Q@r,04,...,0,) = {ée(E”

L2 0 (TS
r<\§1|<1,§|@| &1 <sm(T ,

where r = e /Mm% = ¢ /T ¢ (0,1), 0,,...,0, € R. In particular B"/M is a Stein
manifold which is biholomorphic to a bounded domain in C".

As a consequence of the previous theorem, the domains Q(r, 65, ..., 0,) can be seen
as a generalization to several complex variables of the annuli, which are the quotients
of the unit disk A = B! for the action of the groups generated by hyperbolic auto-
morphisms of A. In fact Q(r) = {£ e C|r < |{] < 1} is an annulus in € and for this
reason we shall often call these domains “generalized annuli”.

To simplify notation, when no confusion can arise we only write Q instead of

Q(r,6,...,6,). Of course, via the Cayley transform we can also study the problem
on BB": in this case the covering will be given by (IB" N Q) where y = pro 4.

Remark 2.6. Notice that the domain Q(r,0,...,0,) retracts by deformation on the
annulus Q(r), in particular it is doubly connected.

From now on, we shall denote by Q; the domain Q(r,6,,...,0, ) = C™ and by Q,
the domain Q(r2, 32, ..., 9,,) = €™; in order to simplify the notation, the symbol #
will stand for Hol(Q;,Q,) = {f : Q@ — Q,| f holomorphic}. For all f € #, we will
denote the degree of f by d(f).

Definition 2.7. Let f,g € #. We say that f and g are homotopic if there exists a con-
tinuous map F : [0, 1] x Q; — Q, such that

(i) £(0,) =1, F(1,) =g;
(i) F(t,-) e A forall t€0,1].

Of course, the fact of being homotopic is an equivalence relation on #; we shall
denote the homotopy class of f" € # by [f].

At last, if D is a domain in C", we shall denote by kp(-,-) the Kobayashi distance
on D and by kp(-,-) the Kobayashi metric on D (for a comprehensive reference on
this topic see [1] or [6]).
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3 Holomorphic maps between generalized annuli

In this section we generalize the estimate of the degree of a holomorphic map between
two annuli which is due to Schiffer (see [8]) in the one-dimensional case.

Theorem 3.1. If f € Hol(Q(r1),Q(r2)), then |d(f)| < [Inry/Inr]. Moreover, if equal-
ity holds there exists 0 € R such that for all £ € Q(r;)

_fere ) ipagr) > o,
&)= {rzef(’fd(f) ifd(f) <0.

Let Q) = Q(r1,0,,...,0,) = C" and Q, = Q(r1,9,,...,%,) = €™ be two general-
ized annuli; since the fundamental group of both Q; and Q;, is isomorphic to Z, we
can define the degree d(f) € Z of a holomorphic map f € # by choosing genera-
tors & of 71 (€) represented by w;(1) = (/Fe*™,0,...,0) for j=1,2 and setting
fo(an) = d(f)a.

Theorem 3.2. If f € A, then |d(f)| < [lnry/Inr].

Proof. Let S, = {w e €"| 3w, € (0,7),Ie" > |wa|* + - - + |w,|*}; it is easily verified
that the map E: S, 2w — (e, w,...,w,) € H" is a biholomorphism.

Then we can consider the coverings (S, kA Q) for j = 1,2, where the maps ¢; and
¢» are given by

QI(W) _ (elblnwl , e—bl(ln/q—o—[f)g)wl/ZWZ’ o ,e_b‘(m““H”I)”"/2w,11 ),

q2(W) _ (eibznw] esz(ln/12+i92)1171/2W2 esz(ln).ﬁif)nz)w]/Z
)

Wn,),

ey

with b; = —qln r;/n* and In A; = 1/b;. The group of deck-transformations of the cov-
erings (S, = Q) is generated by v; = E-lo giokE:S, — S, given by

vi(w) = (wi 4 2In Ay, Ae®wa, ... enw,),

Vz(W) = (Wl + 21In 4y, }vzei‘gz wWa, ... 71261-‘9”2 an),
respectively. Since the domain S, is simply connected, there exists a continuous map
S Sy — Sy, such that gy o /= f o ¢q; the maps ¢; and ¢ being local biholomor-
phisms, we immediately obtain that f is holomorphic. Interpreting the degree of f

via the isomorphism between the fundamental groups of €; and the groups of deck-
transformations of the coverings, we obtain the following equality

fovlzv;(f)of; (3.1

the comparison between (3.1) and the contracting property of the Kobayashi dis-
tance will yield the conclusion. Let us consider the points w® = (in/2,0,...,0) and
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wl =y (W) = (2In Ay +in/2,0,...,0) € S,,; if kp denotes the Kobayashi distance
on D, we have the following chain of inequalities

k /17 (f( ) f~( )) < kS"l (Wo,wl) = k]H"l (E(WO),E(MII))
= k(i /“ll) Ini = —7z2/1nr17

where the second equality is due to the fact that E(w°), E(w') e H! x {0} which is a
holomorphic retract of H”. Since

ks, (F(W0), fw1)) = ks, (FO0°), F(m () = ks, (F (), s (F(w))),

considering the projection on the first component and denoting f;(w°) by ¢, the
above inequality and the contracting property of the Kobayashi distance yield

ks, (¢ ¢+ 2d(f) In ) < ks, (F(°),vi (F(wh))) < —a*/Inry.

Via the biholomorphism E : S; — H', we can evaluate kg, (c, ¢ + 2d(f) In /,) obtain-
ing

ks, (c, ¢+ 2d(f)In ) = kgpi (e, 229y > —a2|d(f)|/Inrs;
as rp < 1, this implies |d(f)| < Inry/Inr;. O

This means that the ratio of the logarithms of “inner radii” (that is, the generaliza-
tion of the ratio of the moduli) bounds the degree of holomorphic maps between gen-
eralized annuli. The following proposition gives an even deeper interest to the above
theorem, since it tells us that the degree is a complete homotopy invariant.

Proposition 3.3. Let f,g € A. Then d(f) = d(g) if and only if [f] = |g], that is if and
only if f and g are homotopic.

Proof. The “if” part is obvious. In order to prove the converse implication, we write
f=U,.-., fu,)and g = (g1, ..., gn,); using the retraction by deformation of 3, onto
Q(ry) x {0} given by p(1, &) = (&1, 1&,, ..., 1&,), it is easily seen that we can limit our-
selves to the case n, = 1.

Setting d = d(f) = d(g), we then have

1 of :
27UJ\/‘S1 051 (617 7"'70)/f(51707"'70)d£1

1

2mL_S] 3z, (¢1,0,...,0)/9(&1,0,...,0)d& =

Let g, : Q; — € be given by (&) = &1 (&) and (&) = & 7g(&); it is easily veri-
fied that
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1
27 J\/—Sl 551

_ ! N -
727Tl‘|\ Slaé](él’ a70)/l//(51,0,,0)d5170

(617 7"'7())/(0(51707"'10)6151

Consider the maps ¢,,V, : 71(Q;) — 7;(C*); the above equality implies that both
these maps are trivial and therefore ¢,y can be lifted to continuous maps
@, : Q — € such that expo @ = ¢ and exp oy = . Since exp : € — C* is a local
biholomorphism and both ¢ and  are holomorphic, the two maps ¢ and  are
holomorphlc Then we have found holomorphic maps go,w Q) — C such that
£(&) = E8e? and g(¢) = %Y@ for all & e Q. Now set

H(1,&) = &l ePOH(O-0(0),
obviously H is continuous, and the map H(¢, -) is holomorphic for all 7 € [0, 1]; more-
over H(0,-) = f and H(1,-) = g, so we are left to verify that H([0, 1] x Q;) < Q(r,).
Fix £ € Q; and consider the map

B:[0,1] 51— |H(t,&)| = |£0MOTREE-0E) ¢ R,

the map £ is monotonic and we have r, < |f(&)] = p(0) < 1, < |g(&)| =p(1) < 1
Thus r < |H(1,&)| = p(t) < 1 for all 1€[0,1]; so H([0,1] x Q) = Q(r2) and this
concludes the proof of the assertion, since H is the required homotopy between the
maps f and g. ]

As a consequence of the proof of Proposition 3.3 we obtain the following

Corollaryd3 4. Let f € A, then there exists a holomorphic map u : Q; — C such that
fi(é) =& N for all & € Q.

Moreover, gathering Theorem 3.2 and Proposition 3.3, we obtain that, if the “hole”
in Q; is smaller than the “hole” in Q,, any holomorphic map from Q; to Q, is homo-
topic to a constant map.

Corollary 3.5. Let f € A; if r1 < rp then f is homotopic to a constant.

Now we turn to the study of the homotopy classes #; = {f e # |d(f)=d}. If
|d| <Inry/Inr; the following remark and proposition ensure that the family J#; is
very “ample”.

Remark 3.6. For all /" € #, there exists a holomorphic map f:Q; — H™ such that
pr, o f = f. Vice versa, for all holomorphic map f : Q; — H™, the map pr,o f
belongs to 5.

Proof. Since H™ is simply connected, the existence of a continuous f : Q; — H™
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such that pr, o f = f is equivalent to the triviality of the map f; (that is to d(f) = 0).
As pr, is a local biholomorphism, the assertion follows. O

This simple remark classifies all elements of #; moreover the boundedness of Q;
ensures that there exists a huge family of holomorphic maps from Q; to H"”; in this
sense we can say that 4 is “big”.

Now let us consider the case when 0 < |d| < Inr,/Inr,. First of all, if n, > 2 we set
L=max{|%|/n|j=2,...,m}. If 0<d <Inr,/Inr;, choose C € R such that r; <
Cri <rf < C; if 0 < —d <Inry/Inry, choose C e R such that r, < Cry < 11! <
Cror{ < 1 and set

{min{(l —0)/2,(Crd —1rp)/2} ifd>0,
min{(Cr, — r2)/2,(1 — Crir)/2} if d <0,

min{sin(”ln(<l+,c>/2)>7sin (nln((c;~;1+r2)/2)>} if d >0,

Inr Inr,

min{sin(”ln«crﬁ”)/z)) sin(nln((HcrfrZ)/z))} if d <0.

Inr Inr,

Then we can describe an ample set of the elements belonging to #;:

Proposition 3.7. Let d € Z be such that 0 < |d| < Inry/Inry and C,0,L, K be as above.
For any 0 € R, any holomorphlcfunctwn g:Q —C such that ||o|| ., < ¢ and any holo-
morphic map h : Q; — €™ such that PRy ! |hi(& )|? < rEK for all f € Qy, the map

f:QIBfH{(c@egﬂua()h())egz, i d>0
(Crae™&! + (&), h(&)) € Qy, if d <0,

belongs to #;.

Proof. We shall perform the proof in the case d > 0, the case d < 0 can be obtained
from this by minor changes. First of all, let us prove that the map f belongs to .
Since it is obvious that f is a holomorphic map, we are left to prove that it maps Q
into Q. Let & € Qy; the choice of C and J implies that the first component of f sat-
isfies the following inequality

Ci C+1
n<SEn pe < S < (32)

which yields

zln((C+1)/2) - zln|f(&)] - nln((Crld +1)/2) o

0
< Inr, Inr, Inr,

The map sin : [0, 7] — R is concave and therefore the choice of K entails
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K< sin(w) (3.3)

In r

for all ¢ € Q. By (3.2) and (3.3) we then have

Y . (ml
Z‘ff( IPIA(E 9/n<”2LZ|h <K<sm<%;z(f)|)

J=2

and therefore f maps Q; to Q,. At last, we prove that d(f) = d, that is f € ;. Let
H :[0,1] x Q — €™ be given by H(t,&) = (Ce&l 4 ta(&), th(¢)). The map H is of
course continuous and by the above reasoning we have H([0,1] x ©Q;) = Q,; more-
over H(1,-) = f and H(0,&) = (Ce™&¢ 0, ... ,0). Since the degree of H(0,-) is equal
to d, we are done. |

Now we consider the case when |d(f)| = Inr,/Inr; which of course can occur iff
Inr,/Inr; € N. The following results describe the maps f € #; when |d| =Inry/Inr:
the restriction of f to Q(r;) x {0} has to follow a prescribed pattern, while outside
this annulus the behaviour of f can be quite “free”.

Theorem 3.8. Let f e #; where |d|=Inry/Inr;. Then there exist 0 e R and
p € Hol(Qy, €) such that plo,, .01 = 0, ;—g/ |Q(r1)><{0} =0forall j=2,...,n and

eEder@ if d >0
_Je ) 3.4
Ni(9) {el%éi{em if d <0. .

Proof. Since we are interested in the behaviour of f; only and Q, retracts by deforma-
tion onto Q(ry) x {0}, it is enough to consider the case n, = 1. Moreover we shall
perform the proof only in the case d > 0, the case d < 0 being obtained from this by
a few minor changes.

By Corollary 3.4 we can find a holomorphic map u : Q; — C such that

f(&) =¢&fe . (3.5)

Let us consider the map 7:Q(r;) & — f(£,0,...,0) € Q(r); since Q(ry) is a
deformation retract of Q| the degree of 7 is equal to d. As S} = R x (0, z) is simply
connected and ¢, : S| — Q(r,) is a local biholomorphism, there exists a holomorphic
lifting 7 of 7o ¢, that is a holomorphic map 7 :.S; — S; such that g 07 =710¢.
Interpreting the degree of 7 via the action of the group of deck-transformations yields
Tov; =v§ o7, thatis

T(z+2Ink) =17(z) +2dIn

for all z € S). Taking z = in/2 and using the equality dIn A, = In A; we obtain

5<§+21n11):%<%>+21n11. (3.6)
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Transferring the problem on H!, we obtain as a consequence of the Schwarz lemma
that 7 is an automorphism of S; of the form 7 : z — z + x for a suitable x € R.

In fact, let o =Eo7oE-':H! — H!' and set 7(in/2) = x + iy. Since a(i) =
exp(x + iy) and o(iA]) = Af exp(x + ip), by the contracting property of the Kobaya-
shi distance we obtain

o

kyyi (0(i), (i27)) = tanh™!
\//1? +1—227cos2y

<kyp (i,47) = In Ay

Now the fact that tanh is increasing yield
=1 Ap—1
S 2
\//lf+1721fcos2y A+l

and hence cos2y = —1, that is y = /2. Moreover the equality at one point of the
Kobayashi distance yields, by the Schwarz lemma, that ¢ is an automorphism of
H'; since o(i) = ie* and a(il]) = ie*)], we have a(w) = ew for all w e H!, that is
7(z) = z + x for a suitable x € R. Then there exists ¢ € R such that 7(¢) = e‘(}fd for
all ¢ € Q(r) and we have proved that f(&,0,...,0) = ¢&? for all & € Q(ry). Com-
paring this equality with (3.5) we infer that u is a holomorphic map which takes
values in i0 4 27iZ on Q(ry) x {0} and hence, setting p(&) = u(&) — u(y/71,0,...,0),

we obtain that p(&;,0,.. o ) =0 for all & € Q(r).
In order to prove that =2 3 ‘Q (%0} = =0 for all j=2,...,n, it is enough to con-
sider the map Q(ry,0;) 2 (il,éj) f(&1,0,...,0,¢,0,. ()) € Q(ry) and hence we

can limit ourselves to the case n; = 2.

Since for any & € Q(r;) and any R < r‘f)z‘/zn(sin(nlnﬁl |/Inr))"? the set {&} x Ag
is contained in Q;, we can find holomorphic maps a; : Q(r;) — € and a, : Q; — C
such that p(&) = a1(&))& + ax(€)E3. Our last assumption is therefore equivalent to
a; =0. As f maps Q; in Q(r;), using the form of f we have that for all £ € Q; the
following inequality holds:

Inr, —dIn|é;| < Rp(&) < —d1n|&y]. (3.7)
Fix & eQ(r) and for any 0 <e< sm(nln|él\/lnr1) denote by R the number

‘0"/2”(sm(nln|§] |/lnr)) — 5)) . Then for all & € Ag the point & = (&), &,) belongs
to Q). Now let us set p = R/2; then we have

plar(E) <p max a1 (&) + ax(&)é| = p max a1 (&) + a2(8)&| = max [p(é)-

&l<p &Hl= [&2]=p

The Borel-Carathéodory theorem and (3.7) imply that

R
max |p(&)| < ——— max Rp(¢) = 2 max fp(¢) < —2dIn|&)),
[&2l=p R—pial= |2l=p
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and therefore |a;(£))] < —4rf‘02‘/2”dln|§?|(sin(nln|f?|/lnr1) —¢)"V% the arbitrari-
ness of ¢ yields that for all &) € Q(r;) the following inequality holds

—4r, "))
V/sin(xn]é}|/Inr)

It is easily seen that the right hand term of (3.8) goes to 0 when |&)| — 1~ yielding
lim‘é?‘_)r|a1(é?)| = 0. The same reasoning can be performed for |&)| — r; also in
this case we obtain that limlé?‘_‘,,r\al(f?ﬂ = 0. Then we can invoke the maximum
modulus principle and we are done. O

jar (7)) <

. (3.8)

Now we consider the behaviour of the last n, — 1 components of f on the annulus
Q(r) x {0}.

Proposition 3.9. Let f e #; where |d| =Inry/Inry; then fi(£,0,...,0) =0 for all
& eQ(n)andall j=2,...,n.

Proof. First of all note that it is enough to prove the assertion for n; = 1 and n, = 2;
in fact for any j € {2,...,ny} consider the map

g:Q(r1) 3¢ — (f1(£1,0,...,0), £i(&1,0,...,0)) € Q(r2, §);

it is obvious that /" and g have the same degree, thus we can limit ourselves to study
the case n; = 1, n; = 2. Moreover, as in the previous theorem, we perform the proof
for d > 0 only, leaving the proof of the case d < 0 to the reader.

Theorem 3.8 tells us that | £;(&)| = |¢]%; since / maps Q(r|) into Q(r, %) we have
that for all & € Q(ry) the following inequality holds

LAEPIEY™ = AEPIAE)]Y™ < sin(zln]fi(£)]/Inrz) = sin(zIn|¢] /Inry),
that is
AE < €] sin(zIn|¢| /Inry) (3.9)

for all & e Q(r). Taking the limit of the right hand side both for |£] — 1~ and
|¢| — r{ we obtain that
lim | /5(¢)]* = Jim. A&7 =0;

|¢]—rf

the maximum modulus principle yields the conclusion. O

The big difference in J#; between the one-dimensional and the multi-dimensional case
arises just when |d| = Inr,/Inr;. In the one-dimensional case # is a one-dimensional
topological space which is isomorphic to S!, while in the multidimensional case it
contains an open set in an infinite-dimensional Fréchet space. In fact, provided
ny + ny = 3, the following proposition gives a “large’ family of maps belonging to
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H#; where d = Inr,/Inr; (and of course the same can be done, mutatis mutandis, for
d= —lnrz/lnrl).

Since the domain Q(r, 6s, .. ., 0,,) is biholomorphic to Q(r, 6> + 2=/, ..., 0, + 27l)
for all / € Z (see [4] for a proof), in order to simplify computations we can suppose
that ; <Oforall j=2,...,nand §; >0 forall j =2,... 5. Now set

—r1 In(1+K -1
ot I+ K/ = 1)
n d
For any 0 € R, g € Hol(Qy,C) for j,k=2,...,n and hy € Hol(Q,C) for j =
27 EEYOT k = 27 ..., hp, set T(é) = erflk:Z f/éko—jk(é)

Theorem 3.10. If

1 TR (m - 1)K, =K}
o < Ky, and h < — L (3.10
j;zw i (E)] < Ki j; e (& w10

then the map

f‘:Ql 35'_)( leéd ar(c Zéj ]2 Zé] ]nv >€QZ

belongs to #y where d = Inr,/Inr;.

Proof. By definition the map f is obviously holomorphic. Now we prove that / maps
Q into Q,; after that a simple remark will show that the degree of f is equal to d and
therefore f belongs to ;. First of all, we give two estimates of = which will be useful
in the sequel. By the definition of 7 we have [7(¢)| < 27, |&&iain(&)|; since Ok < 0
for k=2,...,ny, then we obtain |&;| < 1 for all £ € Q; and for k =2,...,n;, and
therefore

A<D lon(O) < Ki (3.11)
Jik=2
for all & € Q. Moreover for all £ € Q; the following bound on 7 also holds

e ( >l ) (3l < Ko (ié_,w)z

jk=2 k=2 =

ni
(m — K, Z|g/ < (m — DK, Z 1&21E %

Jj=2

< (m — 1)K, sin<”1n51|>. (3.12)

nrp

Let us notice that f1(£) can be written as e’pffl + ei(’éfq(«f), where
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1
g(&) = e 1 =y &)

|
>0 1!

Now we estimate ¢(¢): by (3.11) and (3.12) we obtain

! -1
|q<f)|<z‘d’§f)‘ <dr(f)|<2(dl<;!) )

>0 >0
@dK)™"\ . (mln|¢|
< d(l’ll — l)Kl (lz Il sim W
>0
. (mn|&| . (mIn|&|
< _ dK, T 1y _ mTinjerly
< (m —1)(e 1)sm< T ) Ksm( I

As for any & € Q; we have |£;| < 1, the following inequalities yield

|£1d—Ksin(%> <140 < |51|"+Ksin<’”n—|51|). (3.13)

Inr Inr,

Now consider the functions ®, ¥ : [r}, 1] — R given by

1 1
d(f) =t — Ksin mnt , W(1) =1t? 4+ Ksin Tt ;
Inr Inr

it is easily seen that ®(r;) = W (r|) = rp, that ®(1) = ¥(1) = 1 and that both of them
are increasing (in fact their derivatives on [ry, 1] are always positive due to the choice
of K). Then (3.13) implies that r, < |f1(&)] < 1 for all £ € Q.

In order to prove that f maps Q; to Q,, we have to check the second condition,

namely that 3", ‘fj(f)|2‘fl(f)|9j/” < sin (%;ZM) for all £ € Q. The definition of f
and the relation dInr; = Inr, entail

d ,dt(¢)
Sin nln‘ﬁ(é” :Sin T[ln‘éle |
Inr, Inry
= sin 7lnic,| cos me(c) + cos mlnjc)| sin (<)
1nr1 1nr1 11’17‘1 lnr1
2 2
> in(F0) (| WO ),
Inr 2In" Inr
by (3.11) and (3.12) we obtain that

sin(m) > sin(%> (1 K = UK]). (3.14)

In ry In r a 21112 r In r
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Since 9 is non-negative for k = 2,...,n,, then for all £ € Q; we have |f; (f)|‘(’]"/7Z <1
for k =2,...,n,, therefore the second inequality in (3.10) yields that for all & € Q;
the following chain of inequalities holds

n

3 AEPIAEM < ka S (@)
=

k=2 k=21 j=

Z(f]é, ><,Zz |h,-k<f)|2)
< (Z al”) (3 m@r)

k=2

_ )
< sin<”lln|él|> <1 Lrm = DK K ); (3.15)

nry Inr 21n%r

together with (3.14) this ensures that f(Q;) is contained in Q,.
Now consider the map

H:[O,l}leafH<’0§d dre(¢ ngjﬂ zsz“nz >e¢"2;

since for any ¢ € [0, 1] the inequalities contained in (3.10) are both satisfied, we obtain
that H maps [0, 1] x Q, into €,. Moreover H(¢,-) is holomorphic for any 7 € [0, 1],
and H(1,-) = f, while it is easily seen that H(0,-) has degree d and therefore
deg(f) = d, which concludes the proof. O

Even if in the general case the bounds given by (3.10) can be non-optimal, there is at
least one case in which they are optimal. If Q; = Q(r;,0) and Q, = Q(r,,0) then the
following corollary holds.

Corollary 3.11. For any 0 € R and h € Hol(Qy, A) the map
f:Qia & (¢, Hh(E) e @

belongs to Ay where d =Inry/Inry. Vice versa, for any map [ in Ay of the form
(&) = (fi(&)), (&) there exist 8 € R and h e Hol(Q,A) such that the equality

F(&) = (e E,h(E)) holds for all & € Q.

Proof. Since the sufficiency of the condition can be obtained by direct computation as
in the proof of the previous theorem, we are left to prove its necessity. By Theorem
3.8 there exists 6 € R such that f1(£;,0) = e"’él ; as f1 does not depend on &, we have
that fi(¢) = e"’él for any & e Q. By Proposition 3.9 there exists a holomorphic
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function 4 : Q; — € such that f5(&) = &h(€). Since f(Q)) = Q, we obtain that for

all &£ e
i =d
|E:h(E)]? < sin (M> — sin (ﬂln_ifll)

In r In r

If &0 = (&9,£9) € Q; choose & > 0 such that |€9|* < sin(zIn|¢?|/Inr)) — & and set R =
(sin(zIn|&Y|/Inry) — e)l/ 2 then the following chain of inequalities holds

HE) < max (&), &) = max (&, &) = R max |6(E0, &)

[&I<R [&2]=R

:max|¢2|:R|f2(é?,fz)|2 - sin(zIn|éY| /In )
sin(zn|é?|/Inr) —e  sin(zIn|E|/Inr) —¢

Letting & go to 0 we obtain that [2(¢°)| < 1 and then we are done. O

4 Complex geodesics for generalized annuli

In this section we prove some results on complex geodesics in generalized annuli.

Definition 4.1. Given &,{ € D an extremal map ¢ through ¢ and { is a holomor-
phic map ¢ : A — D for which there exist 7,5 € A such that ¢(7) = ¢, ¢(s) = and
kp(&,0) = ka(t,s). A complex geodesic for the domain D is a holomorphic isometry
¢ : A — D with respect to the Kobayashi distance of A and D (that is, a holomorphic
map which is extremal through any point of its image).

Analogous definitions can be given replacing the Kobayashi distance with the
Kobayashi metric: in this case we speak of an infinitesimal extremal map and of an
infinitesimal complex geodesic. Recall that for any &, ¢ e Q and for any zq € y~'(¢),
wo € x~1({) we have

ka(&,0) = inf {kp (z0.%) : w e 1 (O)} = inf{km (20,7 (w0)) : j€ Z};  (4.1)

this equality yields both the existence of extremal maps through any couple of points
in generalized annuli and a characterization of complex geodesics which will be use-
ful in order to solve some problems concerning existence of complex geodesics in Q.

Remark 4.2. For any &, { € Q there exists an extremal map through & and (.

Proof. Consider the covering (B” EX Q): since B" is complete hyperbolic we can
choose z,weB" such that y(z)=¢&, x(w)={ and kq(& () =kp(z,w). Let
¢ : A — IB" be a complex geodesic through z and w (¢ does exist since B" is a strictly
convex bounded domain in €") and set 9 = y o ¢. Setting t = ¢~ '(z) and s = ¢~ (w),
it is easily seen that ¢ is an extremal map through & and (. O
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Proposition 4.3. Let ¢ : A — B" be a complex geodesic in B"; then the holomorphic
map ¢ =y o ¢:A— Qisacomplex geodesic in Q iff

Jew (1), 9(s)) = inf {ky (1), 75(¢(s))) : j € Z} (4.2)

for any t,s € A. Vice versa, if ¢ is a complex geodesic in Q then any lifting ¢ of ¢ to B"
is a complex geodesic in B" for which (4.2) holds for any t,s € A.

Proof. If ¢ : A — B" is a complex geodesic for which (4.2) holds for any ¢,s € A, then
(4.1) and (4.2) imply that ka(z,s) = ka(x o @(t),x o ¢(s)) for all 7,5 € A and therefore
@ = y o @is a complex geodesic in Q.

Vice versa, if ¢ : A — Q is a complex geodesic, then ka(z,s) = ka(p(f), ¢(s)) holds
for any ¢, s € A. Fix 59 € A, choose ag € B" such that y(ag) = ¢(sp) and let g : A — B"
be the lifting of ¢ through ay, i.e. the unique holomorphic map from A to B" such
that ¢ = y o ¢ and ¢(sy) = ap. Since the Kobayashi distance is contracted by holo-
morphic maps, we then have

ka(t,5) = ka(p(1), ¢(s)) = ka(x 0 9(1), x 0 9(s)) < kw (9(1), 9(5)) < ka(2,5)

and therefore equality holds at each ¢, s € A. Equation (4.1) implies that (4.2) holds
for any 7,5 € A and this concludes the proof. O

It is well known that there exist no complex geodesics in the annuli Q(r): this state-
ment can be generalized to any couple of points belonging to Q(r) x {0} < Q.

Proposition 4.4. For any &, {; € Q(r) with &, # (| there are no complex geodesics in Q
through £ = (£1,0,...,0) and { = ({1,0,...,0). For any &, € Q(r) and v € C there are
no infinitesimal complex geodesics in Q through & = (£1,0,...,0) with tangent vector
v = (v1,0,...,0).

Proof- We perform the proof in the case of complex geodesics, the case of infinites-
imal complex geodesics is analogous and is left to the reader.

Suppose ¢ is a complex geodesic through & and { and let ¢ be a lifting of ¢ to
B"; by Proposition 4.3 the map ¢ is a complex geodesic in IB”. The form of y implies
that y~'(Q(r) x {0}) = A x {0}, and hence @(A) intersects A x {0} in two distinct
points z = (z1,0,...,0) € y ' (¢) and w = (w1,0,...,0) € 1 ({). Since the image of a
complex geodesic in B” is an affine subset of B”, i.e. the intersection of B"” with an
affine line, we have ¢(A) = A x {0}, and therefore p(A) = y(¢(A)) = Q(r) x {0}. As
Q(r) x {0} is a holomorphic retract of Q, we obtain that the map

9: A2t o (1) e Q(r)
is a complex geodesic in Q(r) and this is a contradiction. O

As we already noticed, complex geodesics in Q are projections on Q of complex
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geodesics in IB” for which (4.2) holds for any ¢, s € A. To simplify computations,
which are very long in general, we will focus our attention on complex geodesics in
Q passing through the point Py = (1/7,0,...,0), i.e. complex geodesics in B” passing
through the origin. Up to holomorphic automorphisms of A we can therefore sup-
pose that ¢(0) = 0; then, since complex geodesics in IB” passing through the origin of
B" are given by maps of the form A > ¢+ tp for any p € 0B”, we are led to investi-
gate the following question, which is equivalent to the existence of a complex geode-
sic in Q passing through the point Py and with tangent vector dy,(p) at Py:
Does the equality

ka(s, t) = inf {kg: (y}(sp), tp) : j € Z} (4.3)

hold for any ¢, s € A?
Denote by <-,-)> the standard Hermitian product in C” and for any a € B"\{0}
define P,,Q, : C" — €" and s, € R by

_(gad
“laay”

Pu(2) Qu(z) =z~ Pu(2), sa=(1—|all*)"

and consider y, : B" — C" given by

a—Py(z) = 5,0Qu(2)
yu(z) - 1 _ <Z7a> N

Then y, is an involution in Aut B” which maps a to the origin and
L= (7)1 = (1= flal®) (1 = 21 = <z,a)] 72 (4.4)

holds for any z € B” (for a proof see [1] p. 152-153).

Let y,, be the involution defined above which maps #p to the origin; since tanh is
increasing, by developing computations and by (4.4) we obtain that (4.3) is equiva-
lent to

2 2
I l

L I e )] St )
L —as1> "~ L=<, pi(sp)dl> 1= <(sp), )]

for any t,s € A and any j € Z.

Setting ¢; = cosh(jT), s; =sinh(jT), p' = (pa,...,ps), W =diagle™,... "]
and developing computations, we obtain the following question which is again equi-
valent to the existence of a complex geodesic in Q passing through the point Py and
with tangent vector dy,(p) at Py:

Does

1= 8517 < e+ sm1 — <(egspr + 55, W (sp")), 0> (4.5)

hold for any ¢,s € A and any j € Z?
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A first, very simple algebraic remark again stresses the fact that p’ cannot be equal
to zero. In fact, if p’ = 0, taking s = —p; € A and ¢t = —s, by continuity (4.5) implies
2 < 2(¢j — ;) for all j € Z, which is impossible since T > 0.

Remark 4.5. Inequality (4.5) holds for any 7, s € A and any j € Z if and only if it holds
for any t,5 € 0A and any j € Z.

Proof. If j =0, it is obvious that (4.5) is an equality for any ¢,s € A and there is
nothing to prove. Now suppose that (4.5) holds for any ¢, s € JA and any j € Z. First
of all we prove that ¢; + spsp1 — <(c;sp1 + s;, W/(sp’)), tp> # 0 for all #,s € A and for
all j # 0. In fact, if ¢; + s;5p1 — {(¢jsp1 +s,, Wi(sp'),tpy = 0 for some 7,5 € A and
some j € Z\{0}, then we obtain that {y{(sp), tp) = 1, and therefore tp = y;(sp) and
lt| = |\y0(sp)|| =1 which implies #,5 € 0A. Then the fact that (4.5) holds for any
t,s € 0A gives 1 — s = 0, that is # = s. Since j # 0, the unique fixed points of y; are
+e;, and hence sp = +ey, that is p’ = 0, which is a contradiction to the previous
remark. So, for any j € Z\{0}, the holomorphic maps

1 —ts
hi: AxA>(t,5) — . — e C
’ (t:5) ¢j + spsp1 — (¢ispr + 55, Wi(sp')), ip)>

extend continuously to the boundary; if |/;(z,5)| <1 on the Shilov boundary of the

bidisk, then |/;(z,5)| < 1 for any #,5 € A and any j € Z\{0}; this implies (4.5) for any

t,s € A and any j € Z. The other implication is trivial by continuity. O
Then we are led to investigate on the following question: for which p € dIB” does

1= 3517 < le; + sysp1 — L(egspr + 53, WW(sp')), o> (4.6)

hold for any ¢, s € 0A and any j € Z?
To simplify notation, we denote by ¢; the quantity {p’, W/p’» and obtain

11— is” < |¢; — is(¢j|pr|* + q5) + si(sp1 — 1)
setting { = s (which belongs to JA if both ¢ and s do) we get
11 =17 < ey + 5501 — el pi|* + g5+ 5591)

for all {,s € 0A and j e Z. A simple computation proves that the above inequality
holds for any {,s € 0A and j € Z if and only if

2 — — 2 2 —2
24 2|(¢ilpl” 4+ q; + 5i5p1) (¢ + 5;51) = 1 < |ej + s5p1]” + |ejlp1]™ + g5 + 5,31
for all s € 0A and j € Z. Setting G; = (,j/~|p1|2 + gq; we get

2+2|¢,G; — 1+ 55(¢; + G)3pr + 57 (5p1)°| < lej + s5p11” + Gy + s55p1 |
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for all s € dA and j € Z. Setting s = e~ {221 for x € IR and developing computa-
tions we get

2+2|¢,Gy — 1 +5;(¢) + Gy)| prle™ + 57 p1 ™|
<G +257pl” + G + 251 p1 [ R(e ™ (¢ + Gy)) (4.7)

forall xe R and j € Z.

To simplify computations, which are very heavy in the general case, we focus our
attention on two cases: when p; =0 and when W =1, ; (in this last case ¢; =
p',Wip'y=1—|p |2 is a real positive number which does not depend on ).

Case p; = 0. In this Case (4.7) becomes
2+ 2eq; — 1] < ¢ + gl (4.8)

for all j € Z (and it does not depend on x any more). The next two remarks show that
if the radius r is large enough there always exist “vertical” complex geodesics, while if
it is small in some cases there exist no “vertical” complex geodesics.

Remark 4.6. If r>exp(n®/In(3 —/8)), then for any 0,...,0,€R and any
p' € 0B,_,, there exists a complex geodesic in Q(r,0s,...,0,) passing through Py
with tangent vector dy,((0, p')) in Py.

Proof. First of all notice that the relation between r and 7 entails ¢; > 3. The above
reasoning implies that a complex geodesic through Py with tangent vector dy,((0, p’))
in Py exists iff (4.8) is satisfied for all j € Z. This inequality is surely satisfied if

2+2(glgl + 1) < ¢ + gyl

for any je Z\{0}; developing computations we obtain 4 < (¢; — |q_/|)2, that is
2< ¢~ gl Then 3 < ¢y < for any jeZ\{0} and |q;| <[|p'|> <1 yield the
conclusion. |

Remark 4.7. If r < exp(n?/In(3 — v/8)), then for any p’ € 0B, there exists no com-
plex geodesic in Q(r,7,...,n) passing through Py with tangent vector dy,((0, p’))
in Po.

Proof. As above the relation between r and T entails ¢; < 3; moreover W = —1,
and hence ¢; = {p’, Wp'> = —Hp’||2 = —1. A complex geodesic through P, with
tangent vector dy,((0, p’)) in Py exists iff (4.8) is satisfied for all j € Z; in particular
for j =1 it becomes ¢ —2¢; —3 > 0. As ¢; < 3, the last inequality is not satisfied
and this yields the conclusion. |
At last we bring forward a result which concerns ‘““vertical”” geodesics in the case
when W = I,_. In this case ¢; = {p’, W/p') = 1 and hence we have the following



Complex geometry of generalized annuli 451

Remark 4.8. For any re (0,1) and p’ € 0BB,_;, there exists a complex geodesic in
Q(r,0,...,0) passing through Py with tangent vector dy,((0, p')) in Py.

Proof. In this Case (4.8) becomes 2 + 2(¢; — 1) < + 1, that is 2¢; < c + 1 which is
obviously satisfied for any j € Z. O

This remark can also be seen as a consequence of the fact that Q(r,0,...,0) retracts
holomorphically (but not by deformation) on {& e Q(r,0,...,0) | & = /r} which is
biholomorphic to the unit ball in €"! and this ensures the existence of “vertical”
complex geodesics through Py.

Case W = I,_1. As we already noticed, in this case ¢q; = {p/, W/p'> =1 — |p1|2 isa
real pos1t1ve number which does not depend on j and therefore G; = ¢j|pi1|” +1—
| pl\ is also a real positive number. Using this property and setting

2 2
4;=¢G =1, Bi=sipll+G), G=siIpl’, Dj=c +25|p|*+ G,
(4.7) becomes
2|4je™™ + B; + Cje™| < D; + 2B;cosx — 2 (4.9)

for all xeR and jeZ. Developing computatlons setting L; = 4(B —44;C)),
M; = 4B;(D; — 2 — 24; — 2C;), N; = (D; —2)* — 4B} —4(C; - A) andt—cosx
We obtain thdt the above inequality is equlvalent to the system of equations

D;—2|Bj|—2>0, Lit*+ Mjt+N;>0 (4.10)

for all e [—1,1] and for all jeZ. A simple though long computation gives L; =
4p1Ps?((¢; — *(1 = |p1]?)* +4) > 0 for all j € Z; then (4.10) splits into two parts
(according to whether the vertex of the parabola 7 — L;> + M;t + N; belongs to the
interval [—1, 1] or not) and we can state the following

Theorem 4.9. Let G;, 4;, B;, C;, D;, L;j, M;, N; be as above and let p € 0B,,. There exists
a complex geodesic in Q(r,0,...,0) passing through Py with tangent vector dy,(p) in
Py if and only if D; —2|B;| —2 > 0 holds for any je Z and for the j e Z such that
|M;| < 2L; we have ]\/Ij2 < 4L;N; and for the jeZ such that |M;| = 2L; we have
|Mj| < L + N;.

This characterization could seem useless since it involves very complicated inequali-
ties but it can be easily handled by a program dealing with symbolic computation like
Mathematica or Maple.
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