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Abstract. Until the 1990’s the only known finite linear spaces admitting line-transitive, point-
imprimitive groups of automorphisms were Desarguesian projective planes and two linear
spaces with 91 points and line size 6. In 1992 a new family of 467 such spaces was constructed,
all having 729 points and line size 8. These were shown to be the only linear spaces attaining an
upper bound of Delandtsheer and Doyen on the number of points. Projective planes, and the
linear spaces just mentioned on 91 or 729 points, are the only known examples of such spaces,
and in all cases the line-transitive group has a non-trivial normal subgroup intransitive on
points. The orbits of this normal subgroup form a partition of the point set called a normal
point-partition. We give a systematic analysis of finite line-transitive linear spaces with normal
point-partitions. As well as the usual parameters of linear spaces there are extra parameters
connected with the normal point-partition that a¤ect the structure of the linear space. Using
this analysis we characterise the line-transitive linear spaces for which the values of various
of these parameters are small. In particular we obtain a classification of all imprimitive line-
transitive linear spaces that ‘nearly attain’ the Delandtsheer–Doyen upper bound.
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group.
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1 Introduction

A finite linear space D ¼ ðP;LÞ consists of a finite set P of points, together with a
set L of distinguished subsets of P, called lines, such that any two points lie on
exactly one line, and each line contains at least two points. The automorphism group

AutD of D is the subgroup of all permutations of P which leave L invariant. We
shall be concerned with finite linear spaces D for which AutD acts transitively on L,
that is, D is line-transitive. In particular, for such linear spaces, the lines have a con-
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stant size, k say, and so the linear space is a 2-ðv; k; 1Þ block design, where v ¼ jPj.
We assume throughout the paper that D has more than one line, that is k < v.

It is well-known that in a 2-ðv; k; 1Þ design line-transitivity forces point-transitivity
and that the two transitivities imply each other in finite projective planes. Over the
last 30 years, various su‰cient conditions for point-primitivity of linear spaces have
been studied, with the hope that ‘‘most’’ line-transitive linear spaces would prove to
be point-primitive. Dembowski, in his book ‘‘Finite Geometries’’ [11], asked whether
a line-primitive collineation group of a finite projective plane is necessarily point-
primitive, and it took almost 20 years until this question was answered in the a‰r-
mative by Kantor [14], using the classification of primitive permutation groups of
odd degree (and hence relying on the finite simple group classification). However the
question of whether line-primitivity implies point-primitivity for finite linear spaces is
still open. Similar problems have been raised in more general contexts, for example,
for incidence structures whose incidence matrices have maximal rank (see [19]). Hig-
man and McLaughlin [13] proved that (point, line)-flag transitivity also implies point-
primitivity in a 2-ðv; k; 1Þ design.

However line-transitivity alone does not imply point-primitivity for 2-ðv; k; 1Þ de-
signs, and in this paper we shall study imprimitive pairs ðD;GÞ, where D is a 2-ðv; k; 1Þ
design admitting a line-transitive but point-imprimitive subgroup G of AutD. Thus G
leaves invariant a partition C of the point set with classes of size c, where 1 < c < v,
in the sense that for g A G and a class C A C the image Cg ¼ fag j a A Cg is also a
class of C. Examples of imprimitive pairs are provided by the Desarguesian projec-
tive planes on a non-prime number of points, taking the group G to be a cyclic Singer
group. The only other known imprimitive pairs involve two 2-ð91; 6; 1Þ designs found
by Mills [16] and Colbourn & Colbourn [8], and 467 examples (up to isomorphism)
which are 2-ð729; 8; 1Þ designs (see [17]). The line-transitive 2-ð91; 6; 1Þ designs were
studied in [3]; the second one was named after McCalla by its discoverer Colbourn
(Charlie Colbourn, private communication). In all these examples v and k are co-
prime, and we are tempted to conjecture that this may be true in general.

Delandtsheer and Doyen [10] proved that the number of imprimitive pairs is
bounded above by a function of the line size k, by showing that vc k

2

� �
� 1

� �2
.

The 467 examples constructed in [17] were proved in [2] and [18] to be the only
imprimitive pairs for which v attains this upper bound, and they were found in the
course of investigating this extreme case. The methodology involved a detailed group
theoretic analysis to identify the possibilities for AutD, followed by a sophisticated
computer search for the designs. The success of this classification demonstrated the
importance of understanding the structure of line-transitive automorphism groups of
such designs.

The aims of this paper are two-fold. Firstly we investigate some combinatorial con-
sequences of having two structures on the point set left invariant by the automor-
phism group, namely the set of lines and the point-partition. Secondly we study the
structure of the line-transitive, point-imprimitive automorphism group. This enables
us to characterise line-transitive linear spaces for which various of these parameters
are small, see Theorem 1.2. Throughout the paper we will assume that the following
hypothesis and notation hold.

Anne Delandtsheer, Alice C. Niemeyer and Cheryl E. Praeger470



Hypothesis 1. ðD;GÞ is an imprimitive pair, that is, D ¼ ðP;LÞ is a 2-ðv; k; 1Þ design
with point-set P and line-set L, and GcAutD is transitive on L and is imprimitive
on P, leaving invariant a non-trivial point-partition C, where C non-trivial means
that both d ¼ jCj > 1 and the class size c ¼ jCj > 1, for C A C. We assume that D is
non-trivial in the sense that 3c kc v� 3. By [10], the parameters c; d have the fol-
lowing form

c ¼
k
2

� �
� x

y
and d ¼

k
2

� �
� y

x
; ð1Þ

where x; y are positive integers called the Delandtsheer–Doyen parameters. The
integer x is the number of inner pairs on a line L A L, that is, the number of
unordered pairs of L which lie in the same class of C. We denote the class of C con-
taining a point a by CðaÞ.

Our first aim is to investigate some of the rich combinatorial structure on the
point set P generated by interactions between the lines of L and the classes of C. We
define in Section 2 several parameters which help to measure these line-class inter-
actions. The generic name we give to these parameters is intersection parameters, and
we prove two technical propositions about them. These results are then used in Sec-
tion 3 to obtain upper bounds on the sizes of the line-class intersections in terms of
c and x. For small c, or small x, it is possible to determine all possibilities for the set
I0 of non-zero line-class intersection sizes. In Tables 2 and 3 we give this information
for cc 12 and xc 6 respectively. The values taken by the intersection parameters
in the known examples of line-transitive, point-imprimitive linear spaces, apart from
projective planes, are a small subset of these possible values and are recorded in
Table 4. In particular, in all the known examples that are not projective planes, the
Delandtsheer–Doyen parameter x is at most 2, and these tables of possibilities raise
the still open question as to whether there may be further imprimitive pairs ðD;GÞ
corresponding to some of the other entries.

Question 1. Are there imprimitive pairs ðD;GÞ corresponding to any of the parameter
values in Table 3 other than the parameter values in Table 4?

The elementary arguments in Sections 2 and 3 show that minfc; dgd 3 and that if
either c ¼ 3 or d ¼ 3, then D must be a projective plane (see Corollary 2.2 and Cor-
ollary 2.5). However we do not even know if there exists an imprimitive pair with
class size c ¼ 4 or with d ¼ 4 classes. For such an example one of the Delandtsheer–
Doyen parameters must equal 1, and it follows from [4, Lemma 8] that if c ¼ 4 then
k; v must satisfy k ¼ 8hþ 2, v ¼ 4ð24h2 þ 9hþ 1Þ for some positive integer h.

Question 2. Is there an imprimitive pair ðD;GÞ for which minfc; dg ¼ 4?

Our inability to answer this question using elementary methods is rather dis-
appointing, but more group-theoretic methods can provide extra information. A
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recent result of Camina and the third author [7] implies that, for an imprimitive pair
ðD;GÞ, if every non-trivial normal subgroup of G is transitive on the points of D,
that is, if G is quasiprimitive on P, then G is almost simple, that is T cGcAutðTÞ
for some non-abelian simple group T. This suggests that it may be useful to consider
separately those imprimitive pairs ðD;GÞ for which G is quasiprimitive on points,
from those for which G is not quasiprimitive on points. Apart possibly from pro-
jective planes, there are no known imprimitive pairs ðD;GÞ for which G is point-
quasiprimitive, and we have chosen to focus in this paper on the case where G is not
point-quasiprimitive. Nevertheless, the question of existence of imprimitive pairs with
a point-quasiprimitive group is of great interest and importance. It has recently been
shown in [5] that no imprimitive pairs exist in the case where G is quasiprimitive and
is a finite alternating or symmetric group.

Question 3. Does there exist an imprimitive pair ðD;GÞ, with D not a projective
plane, for which G is point-quasiprimitive (and hence is almost simple)?

For any transitive group action, the set of orbits of a normal subgroup is an
invariant partition of the point set. Such invariant partitions for the action of a group
G are called G-normal partitions, and it follows from the definition of quasiprimitivity
that a permutation group G on a set P is quasiprimitive if and only if the only G-
normal partitions are the trivial partitions (that is, the partition consisting of single-
tons, and the partition consisting of the single class P). If ðD;GÞ is an imprimitive
pair with G not quasiprimitive on P, then we may take C to be a non-trivial G-
normal partition of P. It turns out that much stronger information can be obtained
in this case than in the general case. In Section 4 we begin an investigation of
the structure of line-transitive groups which preserve a non-trivial normal point-
partition. If the partition C in Hypothesis 1 is the set of point orbits of a normal
subgroup K of G, then by [6, Theorem 1] we know that K acts faithfully on each of
the classes of C. Since K is normal in G and G is line-transitive, all K-orbits in L have
the same length, say bK . In Proposition 4.1 we make a few observations about bK ,
depending on both the form of the set I0 of non-zero line-class intersection numbers
(as defined in Section 2), and the relationships between the permutation groups KC

induced on the classes C A C. Our results are strongest in the special case where
I0 ¼ f1; 2g. These are given in Theorem 1.1 which is proved after Proposition 4.1. We
note that, for all the known line-transitive, point-imprimitive linear spaces apart from
projective planes, the set I0 has this form (see Table 4). Also, I0 must be f1; 2g if
xc 2 (see Table 3).

Theorem 1.1. Let ðD;GÞ be an imprimitive pair satisfying Hypothesis 1 with C the set

of K-orbits and K the kernel of G on C. Suppose also that I0 ¼ f1; 2g. Then c is odd, all
K-orbits on lines have length c, and Ka ða A PÞ is an elementary abelian 2-group with

all point orbits of length at most 2. Also, every minimal normal subgroup of G con-

tained in K is elementary abelian of odd order dividing c.

Most of the arguments used in the proof have an elementary combinatorial and
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group theoretic basis. However, for the last assertion we need to use the classification
by Walter [20] of the finite simple groups with abelian Sylow 2-subgroups. We derive
several consequences of this result in the cases where either c or x is small in Theorem
1.2 below, the proof of which follows from Lemma 4.2.

Theorem 1.2. Let ðD;GÞ be an imprimitive pair satisfying Hypothesis 1 with C the set

of K-orbits and K the kernel of G on C. Then the following all hold.

(a) If cc 6 then either c ¼ 5, K ¼ Z5 and I0 ¼ f1; 2g, or c ¼ 3 and D is a projective

plane.

(b) If xc 2, then either K is elementary abelian of order c ¼ pa, for some odd prime p

and ad 1, or D satisfies line 1 or 2 of Table 1.

(c) If x ¼ 1 then c ¼ pa for some odd prime p and integer ad 1, and yd ðc� 3Þ=2 if

p > 3, or yd ðc� 9Þ=18 if p ¼ 3.

Remark 1.3. (1) In Theorem 1.2(a), if D is not a projective plane then it follows from
Proposition 2.4(vi) that D has 2v ¼ 10d lines with d odd, and x ¼ 1, y ¼ ðd � 1Þ=4.
No examples are known.

(2) The case x ¼ 1 in Part (b) was proved in [18, Theorem 1.1].

Theorem 1.2 enables us to obtain a complete classification in the case where x ¼ 1,
yc 2. This is a generalisation of the classification in [18] for the case x ¼ y ¼ 1 in
the case where there is a normal point partition. The proof given below involved
an exhaustive computer search and we are grateful to Anton Betten for carrying out
this search.

Theorem 1.4. Let ðD;GÞ be an imprimitive pair satisfying Hypothesis 1 with C the set

of K-orbits and K the kernel of G on C. If x ¼ 1 and yc 2 then D satisfies line 3 or 4
of Table 1.

Proof of Theorem 1.4. By Lemma 4.2, either D satisfies line 3 or 4 of Table 1 as
claimed, or there is one further possibility, namely ðx; y; c; d; kÞ ¼ ð1; 2; 27; 53; 11Þ,
the group G has a point-regular normal subgroup R ¼ Z53 � Z3

3 , and G has a line-
regular normal subgroup R � Z13 of index dividing 4. (A permutation group is called
regular if it is transitive and the only element fixing a point is the identity.) More-
over a subgroup of order 13 acts non-trivially on each of the Sylow subgroups of

Table 1. Results for Theorems 1.2 and 1.4

x y c d k Comments

1 3 3 7 5 D ¼ PGð2; 4Þ, K ¼ S3, G ¼ K �H, where H ¼ Z7 or Z7 � Z3

2 1 13 7 6 Colbourn design, K ¼ D26, G ¼ Z91 � Ze, where e ¼ 6 or 12.
1 1 27 27 8 N 2OP2 designs [17]
1 2 7 13 6 Colbourn and Mills designs [8], [16]
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R. An exhaustive computer search similar to that described in [1] was conducted
for line-transitive 2-ð1431; 11; 1Þ designs admitting a line-regular group of the form
ðZ53 � Z3

3 Þ � Z13. The search showed that no such designs exist.

2 Intersection parameters

In this section we introduce several parameters to describe the interaction between
the lines of D and the partition C. We refer to these parameters generically as the
intersection parameters for D;G;C. We denote the number of lines of D by b. For a
given point a, the remaining points Pnfag are partitioned into disjoint sets of size
k � 1 by the lines through a. Thus the number r of lines through each point is
ðv� 1Þ=ðk � 1Þ. Counting incident point-line pairs we have bk ¼ vr. These equations,
together with the well-known Fisher Inequality, namely bd v, are the basic relations
between the parameters for any 2-ðv; k; 1Þ design.

We derive further equations related to the G-invariant partition C. Note that since
r divides v� 1, we have gcdðr; vÞ ¼ 1. For an integer n we call nðrÞ ¼ gcdðn; rÞ and
nðvÞ ¼ gcdðn; vÞ the r-part and v-part of n, respectively. For a line L and a class C

we call kL;C :¼ jLVCj the line-class intersection number for C and L and, for
0c ic k, we say that C and L are i-incident if kL;C ¼ i. The number of classes that
are i-incident with some line L is

dL; i ¼ di ¼ jfC A C j kL;C ¼ igj:

As G is line-transitive this number is independent of L, and hence is denoted di.
Similarly the number of lines that are i-incident to some class C is

bC; i ¼ bi ¼ jfL A L j kL;C ¼ igj:

As G is transitive on C this number also is independent of C. Let I be the set of line-
class intersection numbers, that is,

I :¼ fkL;C jL A L;C A Cg ð2Þ

and let I0 ¼ Inf0g be the set of all non-zero line-class intersection numbers. Our
starting point is the following result which follows implicitly from the proof of Hig-
man and McLaughlin in [13] (see also [9]).

Proposition 2.1 (Higman and McLaughlin). For an imprimitive pair ðD;GÞ, there are

at least two distinct non-zero line-class intersection numbers, that is jI0jd 2.

This proposition has several useful corollaries.

Corollary 2.2. If ðD;GÞ is an imprimitive pair, then

(a) a class does not contain a line;

(b) a line does not contain a class;

(c) the class size cd 3.
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Proof. If a line is contained in a class, then I0 ¼ fkg, which contradicts Proposition
2.1. Hence (a) holds. If some line contains a class of C, then every line contains a
class of C since G is line-transitive. However each class of C is contained in at most
one line as D is a linear space. Hence bc jCj ¼ d < v, which is a contradiction. In
particular, this means that c0 2.

We extend the meaning of i-incidence for lines and classes, by defining a point a
and a line L to be i-incident if a A L and kL;CðaÞ ¼ i, where CðaÞ is the class of C
containing a. The number of points that are i-incident to some line L can be com-
puted as

i � di ¼ jfa A P j a A L; kL;CðaÞ ¼ igj:

The number of lines that are i-incident to the point a is called the i-degree of a and is
denoted by ra; i. As G is transitive on P and preserves i-incidence, the number ra; i is
independent of a and is usually denoted ri. Thus

ra; i ¼ ri ¼ jfL A L j a A L; kL;CðaÞ ¼ igj;

and by convention, r0 ¼ 0.
The line-size k and the total number of lines b ¼ vr=k can be factorised into their v

and r parts as follows:

kðrÞ ¼ gcdðk; rÞ ¼ gcdðk; v� 1Þ; kðvÞ ¼ gcdðk; vÞ;

bðrÞ ¼ gcdðb; rÞ ¼ gcdðb; v� 1Þ; bðvÞ ¼ gcdðb; vÞ:

Then, since bk ¼ vr and gcdðv; rÞ ¼ 1,

k ¼ kðvÞkðrÞ and b ¼ bðvÞbðrÞ: ð3Þ

Using again gcdðv; rÞ ¼ 1, we deduce from vr ¼ bk ¼ bðvÞbðrÞkðvÞkðrÞ that

v ¼ kðvÞbðvÞ and r ¼ kðrÞbðrÞ: ð4Þ

Next we record some information about the configuration induced on a class C by
i-incidence, where i A I , id 2. Recall that such an i exists by Proposition 2.1.

Proposition 2.3. Let ðD;GÞ be an imprimitive pair. Let C A C, and for 0c ic k, let
SðiÞ ¼ fC VL jL A L; jC VLj ¼ ig (SðiÞ may be empty). Then

(i) b � di ¼ d � bi and i � bi ¼ c � ri, and hence bdii ¼ vri.

(ii) b 0
i :¼

cdi

kðvÞ
¼ bi

bðrÞ
and r 0i :¼

idi

kðvÞ
¼ ri

bðrÞ
are integers; moreover, cr 0i ¼ ib 0

i .

(iii) If i A I and id 2, then ðC;SðiÞÞ is a 1-design admitting GC acting point-

transitively, with bi blocks, c points, block size i, and ri blocks on each point.
Moreover,
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(a) ri d 2, and if ri ¼ 2 then i ¼ 2 and D is a projective plane;
(b) cd riði � 1Þ þ 1, with equality if and only if I0 ¼ f1; ig, which in turn holds if

and only if ðC;SðiÞÞ is a 2-ðc; i; 1Þ-design.

Proof. Counting the number of i-incident class-line pairs ðC;LÞ in two ways yields
b � di ¼ d � bi. For a fixed class C counting the number of i-incident point-line pairs
ða;LÞ with a A C yields the second equality of (i). Then using the first equality we
have bdii ¼ dbii ¼ dcri ¼ vri.

Using Part (i), we have bðrÞdi ¼ ðb=bðvÞÞ � ðdbi=bÞ ¼ ðdbiÞ=bðvÞ ¼ ðvbiÞ=ðbðvÞcÞ ¼
ðkðvÞbiÞ=c. Hence bðrÞcdi ¼ kðvÞbi, and as gcdðkðvÞ; bðrÞÞ ¼ 1, it follows that b 0

i :¼
cdi=k

ðvÞ ¼ bi=b
ðrÞ is an integer. By Part (i), bðvÞbðrÞdii ¼ bðvÞkðvÞri and so bðrÞdii ¼ kðvÞri.

Since gcdðkðvÞ; bðrÞÞ ¼ 1, it follows that r 0i :¼ idi=k
ðvÞ ¼ ri=b

ðrÞ is an integer. By defini-
tion, cr 0i ¼ ib 0

i . Thus (ii) is proved.
Now suppose that i A I and id 2. The fact that ðC;SðiÞÞ is a 1-design follows from

the discussion preceding the proposition. Let L A L be such that S :¼ C VL A SðiÞ.
If ri ¼ 1 then S is a block of imprimitivity for GC in C, and hence S is also a block of
imprimitivity for G in P, contradicting Corollary 2.2(b). Hence ri d 2. Suppose next
that ri ¼ 2. Then by Part (i), bi ¼ 2c=ic c. Since L is the unique line containing S,
GS fixes L setwise, and hence GS cGL so b ¼ jG : GLjc jG : GSj ¼ djGC : GSjc
dbi c dc ¼ vc b. Hence b ¼ v, and so D is a projective plane. Also we must have
bi ¼ c, so i ¼ 2 by (i). Thus (iii)(a) is proved.

Let a A C. We count incident point-line pairs ðb;LÞ for which b A Cnfag. As
two points determine a line there are c� 1 choices for b and 1 choice for L. On the
other hand, for each hd 1, there are rh choices for lines that contain a and meet C in
h� 1 other points. Hence c� 1 ¼

P
h rhðh� 1Þ. It follows that cd riði � 1Þ þ 1 with

equality if and only if I J f0; 1; ig. This holds if and only if any line intersecting a
class C in at least two points has exactly i points in C, or equivalently D induces the
structure of a 2-ðc; i; 1Þ-design on C.

In the course of the proof above, we proved the equality c� 1 ¼
P

h rhðh� 1Þ. We
state this formally below, together with other equalities obtained by averaging over
the set I. Recall that by convention r0 ¼ 0.

Proposition 2.4. Let ðD;GÞ be an imprimitive pair satisfying Hypothesis 1.

(i) k ¼
Pk

i¼0 idi ¼
P

C AC kL;C , for L A L, and d ¼
Pk

i¼0 di;

(ii) r ¼
Pk

i¼0 ri and b ¼
Pk

i¼0 bi;

(iii) r � c ¼
P

i A I bii ¼
P

L AL kL;C , for C A C;

(iv) c� 1 ¼
P

i A I riði � 1Þ;

(v) x ¼
P

i A I
i
2

� �
di ¼

P
i A I

ði�1Þ
2

r 0i k
ðvÞ ¼ ðc�1ÞkðvÞ

2bðrÞ
, with r 0i as in Proposition 2.3.

(vi) ðd � 1Þx ¼ ðc� 1Þy, c� 1 ¼ 2xb=v and d � 1 ¼ 2yb=v.

Proof. The equalities in (i) and (ii) follow from the definitions of the di, kL;C , ri and
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bi. We obtain (iii) by counting incident point-line pairs ða;LÞ for a A C. The equality
in (iv) was proved in the proof of Proposition 2.3. For (v), the number x of inner
pairs on a line is

P
i A I

i
2

� �
di, which, by Proposition 2.3(ii) is

P
i A I r

0
i k

ðvÞði � 1Þ=2 ¼P
i A I ði � 1Þri

� �
kðvÞ=2bðrÞ, and by (iv) this equals ðc� 1ÞkðvÞ=2bðrÞ. From Hypothesis 1

we have

ðd � 1Þx ¼
k
2

� �
� y

x
� 1

 !
x ¼ k

2

� �
� y� x ¼ ðc� 1Þyd c� 1;

which is the first equality in (vi). Since kðvÞ=bðrÞ ¼ v=b, the second part of (vi) follows
from (v). The third part is then immediate.

We can use these relationships between the parameters to obtain a lower bound on
the number d of classes and on their size c, and in particular to prove that both c and
d are at least 3.

Corollary 2.5. Let ðD;GÞ be an imprimitive pair satisfying Hypothesis 1. Then c and d

are both at least 1þ 2b=v. In particular, cd 3, dd 3, and if c ¼ 3 or d ¼ 3 then D is a

projective plane.

Proof. The first inequalities follow from Proposition 2.4(vi) and the fact that x and y

are positive integers. The other assertions are then consequences of Fisher’s Inequal-
ity, namely bd v with equality if and only if D is a projective plane.

Refinement of the intersection parameters to orbit parameters. Let ðD;GÞ be an
imprimitive pair as in Hypothesis 1. Then there is an equivalence relation on L� C
such that two pairs ðL;CÞ; ðL 0;C 0Þ A L� C are equivalent whenever jLVCj ¼
jL 0 VC 0j. The partition of L� C determined by this equivalence relation has equi-
valence classes indexed by the set I of line-class intersection numbers defined in (2).
Moreover the group G fixes each equivalence class setwise, and so this partition is
refined by the partition of L� C into G-orbits. For each i A I let Oði;1Þ;Oði;2Þ; . . .
denote the G-orbits on i-incident line-class pairs, and let IH I �N0 denote the set
of indices ði; jÞ indexing all G-orbits in L� C. For a line L and a class C we let
hL;C :¼ ði; jÞ if and only if ðL;CÞ A Oði; jÞ and we say that C and L are ði; jÞ-incident
if hL;C ¼ ði; jÞ. Hence I ¼ fhL;C jL A L;C A Cg and we can generalize the above
definitions of di, bi and ri to dði; jÞ, bði; jÞ and rði; jÞ, so that

X
j

dði; jÞ ¼ di;
X
j

bði; jÞ ¼ bi;
X
j

rði; jÞ ¼ ri:

It is then straightforward to refine Propositions 2.3 and 2.4 using these orbit
parameters.

We finish this section by examining the orbit lengths of a point stabiliser in its
actions on lines and on the partition C. The results below strengthen Proposition 2.3.
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We denote by GC the permutation group induced by G on the partition C. We note
that part of this result can be found in [15, Proposition 3.3 and Corollary 3.2].

Proposition 2.6. Let ðD;GÞ be an imprimitive pair satisfying Hypothesis 1, and let

a A P. Then the parameter bðrÞ divides the length of

(a) every Ga-orbit on the set of lines through a;

(b) every Ga-orbit on Pnfag, and in particular on CðaÞnfag; and

(c) every Ga-orbit on CnfCðaÞg, and hence also every GC-orbit on CnfCg.

Proof. Suppose that a lies on the line L, and let a be the length of the Ga-orbit con-
taining L in L. Then va ¼ jG : Gaj � jGa : Ga;Lj ¼ jG : Ga;Lj is divisible by jG : GLj ¼
b. Since bðrÞ divides b and is coprime to v, it follows that bðrÞ divides a. Thus Part (a) is
proved.

Let G be a Ga-orbit in Pnfag. The lines through a induce a partition of G. Any two
lines in the same Ga-orbit intersect G in the same number of points, so jGj is divisible
by the length of the Ga-orbit of any line through a intersecting G. Thus by Part (a),
bðrÞ divides jGj. This holds in particular for the Ga-orbits on CðaÞnfag, so Part (b) is
proved.

Let D be a Ga-invariant subset of CnfCðaÞg, let e ¼ jDj, and let PD be the union of
the classes of C that are contained in D. We claim that bðrÞ divides e. Note that Part
(c) follows from this claim. Let LD be the subset of L consisting of lines containing
a and intersecting some class in D non-trivially. Since D is Ga-invariant, so also LD is
Ga-invariant. Let L1; . . . ;Lt be the Ga-orbits in LD. By Part (a), each jLij is divisible
by bðrÞ. For each i, choose Li A Li. Note that, for each b A PD, the unique line con-
taining a and b lies in LD. Counting the number of pairs ðb;LÞ where b A PD, L A LD,
and b A L, we find

ec ¼
Xt

i¼1

jLij � jLi VPDj:

Since bðrÞ divides each jLij, it follows that bðrÞ divides ec, and since v ¼ cd is coprime
to bðrÞ we conclude that bðrÞ divides e.

3 Bounds on line-class intersection numbers

Let D;G;C be as in Hypothesis 1, and let I be the set of line-class intersection num-
bers. Set

imax ¼ maxfi j i A Ig: ð5Þ

By Corollary 2.2, imax is strictly less than the class size c. The equalities of Proposi-
tion 2.4 allow us to reduce this upper bound to approximately

ffiffiffi
c

p
.
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Lemma 3.1. imax <
ffiffiffi
c

p
þ 1=2, and imax <

ffiffiffiffiffiffi
2x

p
þ 1.

Proof. By Proposition 2.4(iv) and Proposition 2.3,

c� 1 ¼
X
i A I

riði � 1Þ ¼ b

v

X
i A I

diiði � 1Þd imaxðimax � 1Þ;

and the first inequality follows. By Proposition 2.4(v), 2xd imaxðimax � 1Þ, and we
obtain the second inequality.

This result suggests that it may be possible to obtain a limited number of feasible
sets of intersection parameters if either or both of c and x are bounded. Such infor-
mation may lead to the discovery of new block-transitive, point-imprimitive linear
spaces, and thereby lead to a better understanding of such linear spaces. Accordingly
we determine the possibilities for I and the parameters di for small values of c and x.
We note that upper bounds on x alone do not imply upper bounds for c.

Lemma 3.2. For cc 12, the possibilities for I0, c, x and the di are given in Table 2. For
xc 6 the possibilities for I0, x and the di are given in Table 3.

Proof. By Proposition 2.1, jI0jd 2. By Propositions 2.3(i) and 2.4(iv) and (v),

c� 1 ¼
X
i A I

riði � 1Þ ¼ b

v

X
i A I

diiði � 1Þ ¼ 2bx

v
:

Also, by Lemma 3.1, imax <
ffiffiffi
c

p
þ 1=2 and imax <

ffiffiffiffiffiffi
2x

p
þ 1. These inequalities imply

that, for cc 12, we have imax c 3, and also for xc 6 we have imax c 4.

Table 2. Intersection parameters for 3c cc 12

I0 c di b=v x

f1; 2g 3c cc 12 1c d2 c ðc� 1Þ=2 ðc� 1Þ=2d2 d2
f1; 3g 7c cc 12 d3 ¼ 1 ðc� 1Þ=6 3

f2; 3g or f1; 2; 3g 9c cc 12 1c d2 c ðc� 7Þ=2, d3 ¼ 1 ðc� 1Þ=ð2d2 þ 6Þ d2 þ 3

Table 3. Intersection parameters for 1c xc 6

I0 di b=v x

f1; 2g 1c d2 c 6 ðc� 1Þ=2d2 d2
f1; 3g d3 ¼ 1 or 2 ðc� 1Þ=6d3 3d3
f1; 4g d4 ¼ 1 ðc� 1Þ=12 6

f2; 3g or f1; 2; 3g 1c d2 c 3, d3 ¼ 1 ðc� 1Þ=2ðd2 þ 3Þ d2 þ 3
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If I0 ¼ f1; 2g, then the number x of inner pairs is d2, and the displayed equations
above give c� 1 ¼ ðb=vÞ � 2d2 d 2d2, and hence the first line of Table 2 holds if
cc 12, and the first line of Table 3 holds if xc 6. If 3c cc 6, then imax ¼ 2, and
hence I0 ¼ f1; 2g, and we have the required result.

Thus we may assume that cd 7 and that imax d 3, that is, I0 0 f1; 2g. If
I0 ¼ f1; 3g, then x ¼ 3d3, and c� 1 ¼ ðb=vÞ � 6d3 d 6d3. Hence the second line of
Table 3 holds if xc 6. If 7c cc 12, then imax ¼ 3, and c� 1 ¼ ðb=vÞð2d2 þ 6d3Þd
2d2 þ 6d3 d 2d2 þ 6, so either d2 ¼ 0, d3 ¼ 1 and I0 ¼ f1; 3g, or we have 1c d2 c

ðc� 7Þ=2, d3 ¼ 1 and cd 9. Hence if c ¼ 7 or 8 then the second line of Table 2 holds.
In summary, if either 7c cc 8 or I0 ¼ f1; 3g, then we have required result. If 9c
cc 12 and I0 0 f1; 2g and f1; 3g, then I0 ¼ f2; 3g or f1; 2; 3g, and the third line of
Table 2 holds.

Thus we may assume that xc 6 and I0 0 f1; 2g and f1; 3g. Since imax <
ffiffiffiffiffiffi
2x

p
þ 1,

we have 3c imax c 4 and 2x ¼
P

diiði � 1Þ. If imax ¼ 4, this implies that I0 ¼ f1; 4g
and d4 ¼ 1, so x ¼ 6; also c� 1 ¼ ðb=vÞ

P
diiði � 1Þ ¼ 12b=v, so the third line of

Table 3 holds. Thus we may assume that imax ¼ 3. Then 12d 2x ¼ 2d2 þ 6d3 and
both d2 and d3 are non-zero, so d3 ¼ 1 and d2 ¼ x� 3 is 1, 2 or 3. Finally c� 1 ¼
ðb=vÞ

P
diiði � 1Þ ¼ ðb=vÞð2d2 þ 6Þ, and hence the fourth line of Table 3 holds.

Comparable information about all the known line-transitive, point imprimitive
linear spaces, apart from projective planes, is contained in Table 4. In both of the 2-
ð91; 6; 1Þ designs there are two non-trivial invariant partitions, as in lines 1 and 2
of Table 4. For most of the N 2OP2 designs there is a unique non-trivial invariant
partition, but for a few of these designs there are two such partitions, and for two of
these designs there are 28 such partitions corresponding to the 28 parallel classes of
lines in the a‰ne plane AGð2; 27Þ. For all of the partitions corresponding to the
N 2OP2 designs, the intersection parameters are as in line 3 of Table 4.

4 Normal partitions

Now we assume that ðD;GÞ is an imprimitive pair satisfying Hypothesis 1 such that
G has a non-trivial normal subgroup K which is intransitive on points. We further
assume that C is the set of K-orbits in P, and that K is the subgroup consisting of all
elements of G which fix every class of C setwise, that is, K is the kernel of the action
of G on C. By [6, Theorem 1], K acts faithfully on each class of C, that is, for each
C A C, the permutation group KC induced by K on C is isomorphic to K. Since K is
normal in G and G is line-transitive, it follows that all K-orbits in L have the same

Table 4. Intersection parameters for known examples

I0 c d x ¼ d2 y b=v k Comments

f1; 2g 7 13 1 2 3 6 Colbourn and Mills designs [8], [16]
f1; 2g 13 7 2 1 3 6 Colbourn and Mills designs [8], [16]
f1; 2g 27 27 1 1 13 8 N 2OP2 designs [17]
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length, say bK . We begin by making a few simple observations about bK , depending
on both the form of the set I of line-class intersection numbers, and the relationships
between the various permutation groups KC , C A C.

Proposition 4.1. Let ðD;GÞ be an imprimitive pair satisfying Hypothesis 1 with C the

set of K-orbits and K the kernel of G on C. Let I0 be the set of non-zero line-class

intersection numbers, and let bK be the length of the K-orbits on lines.

(a) Then bK divides c.

(b) If 1 A I0, then bK ¼ c, where c is odd, and KL ¼ Ka for any point a and any line L

such that LVCðaÞ ¼ fag.

Proof. Let a; b be distinct points in P, let L denote the unique line containing a and b,
and let C 0 A CnfCðaÞg. Then Kab cKL and hence bK ¼ jK : KLj divides jK : Kabj ¼
jK : Kaj jKa : Kabj ¼ cjKa : Kabj. Thus bK divides c times the length of every Ka-
orbit in Pnfag. Since Ka leaves CðaÞnfag invariant it follows that bK divides
cjCðaÞnfagj ¼ cðc� 1Þ, and since Ka leaves C 0 invariant it follows that bK divides
cjC 0j ¼ c2. Hence bK divides gcdðcðc� 1Þ; c2Þ ¼ c.

Suppose that 1 A I0. Let a A P and L A L be such that LVCðaÞ ¼ fag. Then
KL cKa, and hence c ¼ jK : Kaj divides bK ¼ jK : KLj. By Part (a) it follows that
bK ¼ c and hence KL ¼ Ka. Now let b A CðaÞnfag and let L 0 be the line containing
a and b. Then Kfa;bg cKL 0 , and hence c ¼ bK ¼ jK : KL 0 j divides jK : Kfa;bgj. Thus c
divides the length of every K-orbit on unordered pairs from a class C A C, and so c

divides cðc� 1Þ=2. It follows that c is odd.

Our next task is to prove Theorem 1.1. We use the concept of permutational
equivalence defined as follows. Suppose that a group H acts on sets X ;Y . These
actions, and also the corresponding permutation groups HX ;HY , are said to be
permutationally isomorphic if there is a bijection c : X ! Y and an automorphism
j A AutðHÞ such that, for all a A X , h A H, we have ððaÞcÞðhÞj ¼ ðahÞc; if j ¼ 1 then
the actions and permutation groups are said to be permutationally equivalent or
simply equivalent.

Proof of Theorem 1.1. Let ðD;GÞ be an imprimitive pair satisfying Hypothesis 1 with
C the set of K-orbits and K the kernel of G on C, and suppose that I0 ¼ f1; 2g. Let
p ¼ fa; bgHC, and let LðpÞ be the line containing p. Then LðpÞVC ¼ p, and hence
Kp ¼ KLðpÞ. Then the Ka-orbit containing b has length jKa : Kabj ¼ jK : Kabj=c ¼
jKp : Kabjc 2. Thus all Ka-orbits in C have length 1 or 2 and hence Ka GKC

a is an
elementary abelian 2-group. Since c is odd, Ka must therefore fix a point in each class
of C, and hence the K-actions on the classes of C are all equivalent. Since for each
C 0 A C there exists a 0 A C 0 such that Ka ¼ Ka 0 , it follows that all Ka-orbits in C 0 have
length at most 2 also.

Suppose that N is a minimal normal subgroup of G contained in K. Then N ¼ T t

for some simple group T and some td 1. Suppose that T is a non-abelian simple
group. Then Na ¼ N VKa is an elementary abelian 2-group and all Na-orbits in
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P have length at most 2. Also, jN : Naj ¼ jNKa : Kaj divides jK : Kaj ¼ c, and
hence jN : Naj is odd. Thus Na is a Sylow 2-subgroup of N, and hence the Sylow 2-
subgroups of T are elementary abelian. By a result of Walter [20], T is one of
PSLð2; qÞ, q ¼ 2n d 4 or q1 3; 5 ðmod 8Þ, Janko’s first group J1, or ReeðqÞ0, q ¼
32aþ1 d 3. Since all Na-orbits in P have length at most 2, it follows that distinct
Sylow 2-subgroups of T intersect in a subgroup of index 2 of each. In the case of
PSLð2; qÞ, q ¼ 2n d 4, distinct Sylow 2-subgroups of T intersect trivially, which is a
contradiction. Similarly, in the other cases, a Sylow 2-subgroup S of T is contained in
a subgroup A4, 2� A5, or 2� PSLð2; qÞ (and hence in 2� A4), respectively, and it is
easy to verify that S intersects one of its conjugates in a subgroup of index 4. These
contradictions imply that T ¼ Zp for some prime p. Since NC is normal in the tran-
sitive group KC it follows that all N-orbits in C have the same size. In particular p

divides jCj ¼ c so p is odd and hence jNj is odd. Also, since Ka is a 2-group and K is
faithful on C, it follows that N VKa ¼ 1 so jNj divides c.

We complete this section by proving Theorem 1.2. This is achieved by proving the
following lemma which also deduces the extra information needed for Theorem 1.4.

Lemma 4.2. Let ðD;GÞ be an imprimitive pair satisfying Hypothesis 1 with C the set

of K-orbits and K the kernel of G on C. Then all the assertions of Theorem 1.2 hold.
Moreover, if x ¼ 1 and yc 2, then either D satisfies line 3 or 4 of Table 1, or

ðx; y; c; d; kÞ ¼ ð1; 2; 27; 53; 11Þ, the group G has a point-regular normal subgroup R ¼
Z53 � Z3

3 , G has a line-regular normal subgroup R � Z13 of index dividing 4, and a

subgroup of G of order 13 acts non-trivially on each of the Sylow subgroups of R.

Proof. First we prove Theorem 1.2. Suppose that either cc 6 or xc 2. Then (see
Tables 2 and 3) I0 ¼ f1; 2g, and hence, by Theorem 1.1, c is odd, and Ka ða A PÞ is
an elementary abelian 2-group which by [6, Theorem 1] acts faithfully on CðaÞ. First
we show that Theorem 1.2(a) follows from Theorem 1.2(b). Suppose that cc 6 and
that Theorem 1.2(b) is true. Then by Table 2, xc ðc� 1Þ=2 < 3 so xc 2. Since
cc 6, it follows from Theorem 1.2(b) that either D is PGð2; 4Þ, K ¼ S3 and c ¼ 3, or
else K ¼ Zc and c ¼ 3 or 5. If c ¼ 3 then D is a projective plane by Corollary 2.5.
Thus Theorem 1.2(a) follows.

Our next step is to prove Theorem 1.2(b). If x ¼ 1 then by [18, Theorem 1.1],
c ¼ pa for some odd prime p and integer ad 1 and either K ¼ Za

p or line 1 of Table
1 holds. Thus Theorem 1.2(b) holds if x ¼ 1. Suppose now that x ¼ 2, and let C A C
and a A C. First we prove that C is a minimal block of imprimitivity for G. If this
is not the case then there exists a proper subset BHC containing a such that B is
a block of imprimitivity for G and c0 ¼ jBjd 2. By (1), c0 ¼ k

2

� �
� x0

� �
=y0, for some

positive integers x0; y0. Since B is a block of imprimitivity for GC in C it follows that
c0 divides c ¼ k

2

� �
� 2

� �
=y, and hence

k
2

� �
� x0 divides cyy0 ¼ y0

k
2

� �
� 2

� �
: ð6Þ

Let C0 ¼ BG denote the point-partition generated by B. Then C0 is a refinement of C,
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so every pair of points lying in the same block of C0 is an inner pair for C. However,
since G is line-transitive, every line contains at least one inner pair of points which do
not lie in the same block of C0. Hence 1c x0 < x ¼ 2, so x0 ¼ 1, and hence k

2

� �
� x0

is relatively prime to k
2

� �
� 2. Therefore, by (6), k

2

� �
� x0 divides y0, but this means

that c0 c 1, which is a contradiction. Hence C is a minimal block of imprimitivity.
Thus the stabiliser GC of C A C induces a primitive group GC

C on C. It follows that
a minimal normal subgroup M of G contained in K must be transitive and faithful on
C. Then by Theorem 1.1 we deduce that c ¼ jMj ¼ pa for some odd prime p and
integer ad 1, M ¼ Za

p , K ¼ M � Ka ða A PÞ, and Ka is an elementary abelian 2-
group acting faithfully on C. If Ka ¼ 1 then K ¼ Za

p and Theorem 1.2(b) holds, so we

may assume that Ka 0 1. Arguing as in the proof of Theorem 1.1, the actions of K
on the blocks of C are permutationally equivalent. Thus Ka fixes the same number of
points in each block of C. Since KC is a normal subgroup of GC

C , the set of fixed
points of Ka in C is a block of imprimitivity for GC

C , and since GC
C is primitive it

follows that Ka fixes exactly one point of C. Thus Ka fixes exactly one point of each
block of C. The set F of fixed points of Ka is therefore a block of imprimitivity for G
of size d, and the G-invariant partition F ¼ F G it generates contains c blocks. The
integer y is the number of F-inner pairs of points on each line. Let fb; gg be an orbit
of Ka of length 2, and let L be the unique line containing fb; gg. Since Ka fixes fb; gg,
we have Ka cKL. By Theorem 1.1, jK : KLj ¼ c and hence Ka ¼ KL. Since Ka has
a unique fixed point in each block of C, it follows that L consists of x ¼ 2 orbits of
Ka of length 2, and k � 4 points of F, and by Proposition 2.1, k � 4d 1. These latter
k � 4 points all lie in the single block F A F, while each C-inner pair on L consists of
one point from each of two di¤erent F-blocks which are interchanged by Ka. Hence
y ¼ k�4

2

� �
þ d, where d ¼ 0 or 2. Now by (1) and Corollary 2.5,

k
2

� �
� 2 ¼ cyd 3y ¼ 3 k�4

2

� �
þ d

� �
d 3 k�4

2

� �
so kc 9. Thus 5c kc 9. Since y ¼ k�4

2

� �
þ d divides cy ¼ k

2

� �
� 2, and d ¼ 0 or 2,

we see from Table 5 that ðk; c; d; yÞ is either ð6; 13; 7; 1Þ or ð5; 4; 4; 2Þ. It follows from
[4] that the latter case cannot arise, and from [3] and [4] that in the former case D is
the design discovered by Colbourn and Colbourn, and for this design there is a group
G for which the subgroup Ka is cyclic of order 2. Thus line 2 of Table 1 holds, and
Theorem 1.2(b) is proved.

Now we deal with Theorem 1.2(c), so suppose that x ¼ 1. By Theorem 1.2(b),
c ¼ pa for some odd prime p and integer ad 1. We have c ¼ pa ¼ k

2

� �
� 1

� �
=y, so

2ypa ¼ k2 � k � 2 ¼ ðk � 2Þðk þ 1Þ. If p > 3, then, as gcdðk � 2; k þ 1Þ divides 3, pa

Table 5. Computations for the divisibility condition

k 9 8 7 6 5
k
2

� �
� 2 34 26 19 13 8

k�4
2

� �
10 6 3 1 0
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must divide either k � 2 or k þ 1. Hence pa c k þ 1 ¼ ðk � 2Þ þ 3 ¼ 2ypa=ðk þ 1Þþ
3c 2yþ 3, and so yd ðc� 3Þ=2. Similarly, if p ¼ 3 then 3a�1 divides one of k � 2
or k þ 1, and we obtain the required lower bound for y of Theorem 1.2(c). This
completes the proof of Theorem 1.2.

To finish the proof of Lemma 4.2, we suppose that x ¼ 1 and yc 2. Then the
inequalities of Theorem 1.2(c) alone show that c A f3; 5; 7; 9; 27g, and if c ¼ 7 then
y ¼ 2. Next the fact that k

2

� �
¼ 1þ cy implies that ðy; c; kÞ is one of ð1; 5; 4Þ, ð1; 9; 5Þ,

ð1; 27; 8Þ, ð2; 7; 6Þ, ð2; 27; 11Þ. It was shown in [17] and [18] that the first two triples do
not arise, and that in the case of the third triple, the examples are precisely the 467
examples constructed in [17] so line 3 of Table 1 holds. In the case of the fourth triple,
it was shown in [4, Theorem 1] that the only designs which arise here are the ones
of Mills and Colbourn so line 4 of Table 1 holds. So suppose we are in the last case.
By Theorem 1.2(b), K is elementary abelian of order c ¼ 27. Also d ¼ k

2

� �
� y ¼ 53,

and G=K acts faithfully and transitively on C of degree 53. Since 53 is prime, this
action of G=K is primitive, and by [12, Table B.4], the only primitive groups of
degree 53 are subgroups of AGLð1; 53Þ and the alternating and symmetric groups
A53 and S53. Since G is line-transitive and each line contains exactly x ¼ 1 inner
pair, it follows that the setwise stabiliser GC of a class C A C must be transitive on the
pairs of points from C. If G=K ¼ A53 or S53, then the group A53 would centralise
K, making it impossible for GC to induce a permutation group on C transitive on
unordered pairs. Hence G=KcAGLð1; 53Þ. Since jAutK j ¼ jGLð3; 3Þj is not divisi-
ble by 53, it follows that K is centralised by a subgroup of order 53, and hence G

has a normal subgroup RGZ53 � K , and G=RcZ52. The group R is transitive on C
and RC ¼ K is transitive on C, and it follows that R is regular on points. Since GC is
transitive on the 27� 13 unordered pairs from C it follows that G=R has order divisi-
ble by 13, and hence G has a normal subgroup N ¼ R � Z13 of index dividing 4. Now
N is transitive, and hence regular, on inner pairs, and hence N is regular on lines. We
note that a subgroup of GC of order 13 must act non-trivially on both Sylow sub-
groups of R. This completes the proof.
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