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Abstract. We study the problem of determining the largest d of a non-Denniston maximal arc
of degree 2¢ generated by a {p, 1}-map in PG(2,2") via a recent construction of Mathon [9].
On one hand, we show that there are {p, 1}-maps that generate non-Denniston maximal arcs
of degree 20"t1)/2 where m > 5 is odd. Together with Mathon’s result [9] in the m even case,
this shows that there are always { p, 1 }-maps generating non-Denniston maximal arcs of degree
2L0m+2)/2} in PG(2,2"). On the other hand, we prove that the largest degree of a non-Denniston
maximal arc in PG(2,2™) constructed using a {p, 1}-map is less than or equal to 2”73, We
conjecture that this largest degree is actually 2L07+2/2) when m > 9.
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1 Introduction

Let PG(2, ¢) be the Desarguesian projective plane of order ¢, ¢ a prime power. A set
of k points in PG(2, g) is called a (k,n)-arc if no n + 1 points of the set are collinear.
The number # is usually called the degree of the arc.

Let " be a (k,n)-arc in PG(2, ¢), and let P be a point in #. Then each of the g + 1
lines through P contains at most n — 1 points of .#. Therefore

k<l+(g+1)(n—1)=qgn+n—q.

A (k,n)-arc is said to be maximal if k = gn + n — ¢q. From the above argument, it is
easily seen that any line of PG(2, ¢) that contains a point of a maximal arc 2" must
contain exactly n points of that arc; that is

[ILNA|=0orn

for every line L of PG(2, ¢q). Therefore the degree n of a maximal (¢gn + n — g, n)-arc
must divide g.

The study of arcs of degree greater than two was started by Barlotti [2]. For
¢ = 2™, Denniston [3] constructed maximal (¢gn + n — ¢, n)-arcs in PG(2, ¢) for every
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n, n|q, n < q (see also [6, p. 304]). Thas [10], [11] also gave two other constructions
of maximal arcs of certain degrees in PG(2,2™), where m is even. For odd prime
powers ¢, Ball, Blokhuis and Mazzocca [1] proved that maximal arcs of degree n do
not exist in PG(2, ¢), when n < ¢. Recently Mathon [9] gave a new construction of
maximal arcs in PG(2,2") that generalizes the construction of Denniston. We give a
brief account of his construction.

Let % be the set of all conics

F,p;={(x,y,2) e PG(2,2")] ax? + xy+ py? 4+ 2z* = 0}

where o, 8 € IF;, and ax? + x + f is irreducible over IF,» (that is, Try. p2(0f) =1,
here Tryu), is the trace map from IFon to IFy). For 4,2" € Fom, 2 # A’ we define a
composition

Fopi®Fyp i = Faow pop it
where

, ak+d}

T for any a,a’ € Fyn.

a®a

A subset 7 of € is said to be closed under the composition @ if for any Fy, F» € &
with F; # F, we have F| @ F; € #. In [9] Mathon proved that the set of points of
all conics in a closed set of conics together with the common nucleus Fo = F, g0 =
(0,0,1) forms a maximal arc in PG(2,2""). When all conics in a closed set of conics
come from a single pencil of conics, Mathon’s construction gives rise to Denniston
maximal arcs. In general, Mathon showed that closed sets of conics can be obtained
by using linearized polynomials over IF,». Specifically, Mathon proved the following
theorem.

Theorem 1.1 ([9, Theorem 2.5)). Let p(x) = 3. aix® =" and q(x) = S0, bix* !
be polynomials with coefficients in Fon. For an additive subgroup A of order 2¢ in Fam
let F = {Fy),q0),. 14 € A\{0}} = € be a set of conics with common nucleus Fy. If
Trymjn(p(A)q(A)) =1 for every i e A\{O}, then the set of points on all conics in F
together with Fy forms a maximal (2" — 2™ + 24 24 .arc " in PG(2,2™). If both
p(x), q(x) have d < 2, then A" is a Denniston arc.

Hamilton [4] gave the following test for when the arc " in Theorem 1.1 is a
Denniston arc.

Theorem 1.2 ([4, Theorem 2.1]). Let p(x) and q(x) be the same polynomials as given
in Theorem 1.1, let A be an additive subgroup of size 29 in Won, and let A" be the
maximal arc obtained in Theorem 1.1. Then A" is of Denniston type if and only if for
all 2,2" € A\{0}, A # A", both (p(A) +p(i") /(A + 2") and (q(A) + q(A))) /(A + A') are
constant.
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Mathon posed several problems at the end of his paper [9]. The third problem he
posed is: What is the largest d of a non-Denniston maximal arc of degree 2¢ gen-
erated by a {p, ¢}-map in PG(2,2™) via Theorem 1.1? When m is even, Mathon [9]
showed that there exists a non-Denniston maximal arc of degree 2”/%*! generated by
a {p,1}-map in PG(2,2"™). When m is odd, Hamilton [4] showed that there exists
a non-Denniston maximal arc of degree 8 generated by a {p, 1}-map in PG(2,2™),
where m > 5. In this paper, we concentrate on the following restricted version of
Mathon’s problem: What is the largest d of a non-Denniston maximal arc of degree
24 generated by a {p, 1}-map in PG(2,2™) via Theorem 1.1? In Section 2, we show
that there are {p,1}-maps that generate non-Denniston maximal arcs of degree
20m+D/2 where m > 5 is odd. Together with Mathon’s result [9, Theorem 3.2] in the
m even case, this shows that there are always { p, 1 }-maps generating non-Denniston
maximal arcs of degree 2L"+2)/2] in PG(2,2"). In Section 3 we prove that if a maxi-
mal arc generated by a {p,1}-map via Theorem 1.1 has degree 2"~ or 22 and
m =7, then it is a Denniston maximal arc. Hence when m > 7, the largest degree of
a non-Denniston maximal arc constructed using a {p, 1}-map via Theorem 1.1 is less
than or equal to 2”73, We conjecture that when m > 9, this largest degree is actually
2Lm+2)/2] and provide some evidence for this conjecture.

2 Maximal arcs in PG(2,2™), m odd

In this section m is always an odd positive integer, and y always denotes an element
of IFyn with Trym»(y) = 1. To simplify notation, from now on, we will use Tr in place
of Trym, if there is no confusion. We start with the following lemma.

Lemma 2.1. Let S, = {x e Fan |Tr(yx+ x3) = 0}. Then there exists a choice of
y € Faw such that S, contains an Fa-subspace A with dim(A) ="+,

Proof. Let Q,(x) = Tr(yx + x%) and let V' = IFyn. The map Q,: V — IF, is a qua-
dratic form on V over IF,. The corresponding bilinear form B is given by B(x, y) =
0,(x +y) = 0y(x) — 0y(¥) = Tr(x’y + xp?), hence

RadV ={xe V|B(x,y) =0 foreach y e I}
= {xe V|Tr(x’y + xy*) = 0 foreach y e V'}
={xeV|Tr(y(x*+/x)) =0foreachye V}
={xeV|x*=Vx}.

Since m is odd, we conclude that Rad V' = IF,. Note that in characteristic 2, the
quadratic form Q,(x) is not necessarily zero on Rad V. Therefore we define

Vo ={xeRad V| Q,(x) =0}.

This is an IF,-space of dimension equal to dim(Rad V') or dim(Rad V) — 1. Since
Tr(y) =1, we have 75 = Rad V' =TF,. Hence rank(Q,) =m — 1 is even and Q, is
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either hyperbolic or elliptic. It is always possible to choose y € Fou, with Tr(y) = 1,
such that Q, is hyperbolic on V'/V;. (This can be seen from the weight distribution
of the dual of the double-error-correcting BCH code, see 8, p. 451]). With this choice
of y, the maximum dimension of a subspace of V/V; on which Q, vanishes is ’"2] .
Let U be such a subspace and let A = U L V4. Then dim(A4) = m+l and Q,(x) van-

ishes on A, hence 4 < §,. This completes the proof. O

Now let y € IFo» be chosen such that Tr(y) = 1 and S, = {x € [Fau | Tr(px + x?) =
0} contains an IF,-subspace A of IFy» of dimension ”’+l . Let p(x) =1+ yx + x>,
Then we have the following corollary of Theorem 1.1.

Theorem 2.2. The set of points on the conics F = {F,;1,,| A€ A\{0}} together with
the common nucleus Fy forms a maximal arc A" in PG( 2’”) of degree 2" V)/2 When
m =5, the maximal arc A" is non-Denniston.

Proof. Let p(2) = 1+ pA+ 2>, with the choice of y as above, and let 4 be the ()-
dimensional IF,-subspace in S, given by Lemma 2.1. Then we have Tr(p(4)) =
Tr(1) = 1 for every 2 € A\{0}. By Theorem 1.1, the first part of the theorem follows.

When m > 5, the maximal arc ¢ is non-Denniston. This can be seen as follows.
For 2,4 € A\{0}, (p(A) +p(2'))/(h+2') =y+ >+ A1 + 2. When |4| > 8, this
expression cannot be constant when A, 4’, 2 # A/, run through 4\{0}. Therefore by
Theorem 1.2, the arc ¢ is not of Denniston type. |

Theorem 2.2 together with Mathon’s result ([9, Theorem 3.2]) in the m even case
shows that there are always {p, 1}-maps generating non-Denniston maximal arcs of
degree 2L0"+2)/2] in PG(2,2"), when m > 5.

3 Some upper bounds on the degree of non-Denniston maximal arcs
from {p,1}-maps
We start this section by making some remarks about Theorem 1.1. In Theorem 1.1,
Mathon restricted the degrees of the polynomials p(4), ¢(4) to be less than or equal
to 29-1 — 1, where the subspace 4 — IFo» involved has size 2¢. We will show that
there is no loss of generality in doing so.

Proposition 3.1. Let f(x) = 32"y aix?' ! € Fan|x], and let A be an FFa-subspace in TFom
of size 24, where d < m — 1. Then there exists a polynomial fi(x) = S bix?' " e
Fou[x] such that f(A) = fi(4) for every A € A\{0}.

Proof. Let A(x) =[],.4(x — 2). This is a degree 2¢ linearized polynomial in Fpn [x]
(see [7, p. 110], also [8, p. 119]), that is,

A(x) = ¥ et epx,

where ¢; € IFyn. Let a(x) = x4 + ¢4 1x97! 4 - + ¢o. The polynomials 4(x) and a(x)
are called 2-associates of each other (see [7, p. 115]). Let f(x) = G(x)/x, where G(x) =
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S tax®, and let g(x) = 307" aix’ be the 2-associate of G(x). Using the division
algorithm, we write

g(x) = k(x)a(x) + r(x), (3.1

where degr(x) < dega(x) =d. Let K(x) and R(x) be the 2-associates of k(x) and
r(x) respectively. Turning (3.1) into linearized 2-associates, and noting that the 2-
associate of k(x)a(x) is K(A(x)), the composition of 4(x) with K(x) (cf. [7, p. 115],
Lemma 3.59), we get

G(x) = K(A(x)) + R(x), (3.2)

with deg R(x) < 297! With f;(x) = R(x)/x, we see from (3.2) that f(4) = £i(4) for
every 4 € A\{0}. O

We note that if one does not restrict the degree of the polynomials p(x), g(x) to be
less than or equal to 297! — 1 (where 2¢ = |4|), Theorem 1.1 still holds, but then it
sometimes leads to Denniston maximal arcs, which, at first sight, may not look like
Denniston. We give a couple of examples of this situation below. So by restricting the
degrees of the polynomials p(x), g(x) to be less than or equal to 2¢~! — 1 in Theo-
rem 1.1, not only is there no loss of generality (by Proposition 3.1), but also some
“trivial”” examples are avoided.

Example 3.2. Let p(x) = a +M € IFyn[x], where Tr(ag) = 1. Let 4 =
{x € Fym | Tr(x) = 0}. Then we have Tr(p(4)) =1 for every A€ A\{0}. This p(x)
indeed gives rise to a maximal arc of degree 2”~! in PG(2,2™) by Mathon’s con-
struction. But the maximal arc in this example is of Denniston type by Theorem 1.2
since for every 4 € A\{0}, we have p(1) = ap, a constant.

Example 3.3. Let p(x) = 37  a;x2~! € IFan[x], where Tr(ao) = 1. We may choose
ai,as, ... a1 € Fan such that A4 = {} € Fon | a1 /* Tl a2 = 0}
has dimenswn m — 2 over IF,. Then we have Tr(p(4)) = 1 for every 1 € A\{0}. This
p(x) gives rise to a maximal arc of degree 2”2 in PG(2,2") by Mathon’s construc-
tion. But the maximal arc in this example is again of Denniston type by Theorem 1.2
since for every A € A\{0}, p(4) = ap, a constant.

Next we prove that when m > 5 the largest d of a non-Denniston maximal arc of
degree 27 generated by a {p, 1}-map via Theorem 1.1 is less than m — 1.

Theorem 3.4. Let A be an additive subgroup of size 2"~ in Fym, where m = 5.
Let p(x)=>3." Bza x> Ve Foulx]. If Tr(p(2)) =1 for all ie A\{0}, then a; =
as =+ = ay_o =0, thus p(x) is linear and the maximal arc obtained via Theorem 1.1
is of Denniston type.

Proof. Every hyperplane in IFy» can be written as {x € Fon | Tr(ax) = 0} for some
nonzero a € IF,». By making a change of variable in p(x), we may assume that 4 =
{x € IFon | Tr(x) = 0}. We consider two cases.
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Case 1: Tr(ag) =1. In this case, if Tr(p(4)) =1 for all i€ A\{0}, then
Tr(3X" > a2* ") = 0 for all 2 € A\{0}. Thus, (1 4+ Tr(x)) Tr(3." > a;ix? "), viewed
as a function from IF,» to itself| is identically zero. That is, in IF2m[x], we have

m—2

(I 4+ Tr(x)) -Tr(Z a,-xzi‘1> =0 (modx?" —x) (3.3)
i=1

Let #(x) = LHS of (3.3) = (1 + x +x2 4 - -+ x2" ) Tr(X "2 aix® ).

2M-2742

Claim: The coefficient of x in#(x)isal,_,+ai .. for3<r<m-2.

The m-bit binary representation of 2 — 2" + 2 is

1...10...010,
— N —

m—r=2 r=2>1

which contains two blocks of 1’s (separated by 0’s). (We will always number the bits
from right to left as 0,1,2,...,m — 1.) Note that the exponents of the summands
in 1+ Tr(x), written in m-bit binary representation, are 000...000, 000...001,
000...010,...,100...000, and the exponents of the summands in Tr(3 "% a;x2"1)
are cyclic shifts of

000...001,000...011,000...0111,000...01111,... and 00 11...11L.
\/R/z_/
2 m—

When we multiply 1+ Tr(x) with Tr(3",?a;x? '), there are two ways to obtain
x2"72*2 namely adding the exponent of a summand in 1 + Tr(x) to the exponent
of a summand in Tr(>.",? a;x*"~") with or without carry.

Suppose that we are in the latter case. The exponent from 1 + Tr(x) must be 2

while the exponent from Tr(3"/% a;x* ") is a shift of 27" — 1.

1...10...010=0...010+1...10...0
—— ——— ——

m—r>=2 m—r>=2 r
Thus, this case contributes the coefficient a2 .
Now suppose that we are in the former case. Since bit-1 of 2" —2"+2 is 1
while bit-0 is 0, the exponent 2” —2" +2 must be obtained as 2° added to
(2m—27) + (2! = 2%:

1...10...010=0...01+1...10...01,
—— ~——

m—r=2 m—r=2

so this case contributes the coefficient a2 The claim now follows. In particular,

m—r+1-

by (3.3), we find that a, = a3 = - - = a,, .
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8
m—3*

Claim: The coefficient of x>"~* in #(x) is a* , +a* ;+a
Clearly the exponent (2" —4) = 11...100 can be obtained by
11...100 =00...000 4 11...100

This contributes the coefficient a? ,.
Also the exponent 2” — 4 can be obtained by adding a non-zero exponent in
1 + Tr(x) to an exponent from Tr(3.",%a;x2"~"). Suppose that when adding the

exponents, there is no carry. We have two ways to obtain 2 — 4, namely,

11...100=10...0+011...100,
11...100=0...0100+ 11...1000.

This contributes the coefficient a},_; + a®_5. Finally we note that there is no way of
getting 2" — 4 as a sum of exponents inducing a carry. Thus, the coefficient of x2"~*
in #(x) is as claimed. This implies @,,_3 = 0, which yields @ = a3 =--- = a,,_» = 0.
Hence p(1) = a¢ + a1 4.

Case 2: Tr(ap) =0. We have Tr(3X" a2¥ 1y =1 for all ie A\{0}. Hence
(1+Tr(x)) - (1 4+Tr(3X" % a;x® 1)), viewed as a function from IFa. to itself, is the
characteristic function of the subset {0} of IF,». Therefore,

(1+Tr(x)) + (1 +Tr(x)) .Tr< mz_zaixzil> =1-x""1 (modx*" —x) (3.4)
i=1

Note that the binary representation of the exponent of x*>"~!is 111...1 (m ones
altogether), while in the left hand side of (3.4), the binary representation of the
exponent of any term in the product (I +Tr(x)) - Tr(327 % a;x* ") cannot have
more than 1 + (m — 2) = m — 1 ones. So (3.4) cannot hold. Thus, this case does not

occur. This completes our proof. O

Remarks. (1) Theorem 3.4 is not true when m = 4. In PG(2, 16), there exists a degree
8 non-Denniston maximal arc (cf. Section 4.1 of [9]).

(2) It is interesting to note that when m > 5 a non-Denniston maximal arc of degree
2m=1 (i.e., the dual of a hyperoval) in PG(2,2") can be obtained from {p, ¢}-maps
via Theorem 1.1, with g(x) # 1. See [9, p. 362] for an example in PG(2, 32). Theorem
3.4 shows that this cannot be achieved if m > 5 and ¢(x) is restricted to be 1.

The ideas in the proof of Theorem 3.4 can be further used to prove the following
theorem. The proof contains more complicated computations.

Theorem 3.5. Let A be an additive subgroup of size 2m=2 in TFym, where
m=7. Let p(x) =" aix? " € Fan[x]. If Tr(p(A)) =1 for all e A\{0} then
a=ay=---=dayu_3 =0, thus p(x) is linear and the maximal arc obtained via Theo-
rem 1.1 is of Denniston type.
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Proof. Since 4 has dimension m — 2 over IF,, we may assume that 4 = {x € Fan
Tr(x) =0 and Tr(ux) =0} for some p e IF}, with x4 # 1. Again we consider two
cases.

Case 1: Tr(ap) = 1. Then

m—3

(14 Tr(x))(1 + Tr(ux)) Tr< > a,-x2’1> 0 (moda® — )
i=1

(3.5)

m—3

(1 + Tr(x) + Tr(ux) + Tr(x) Tr(ux)) ~Tr< Zaixzf_1> =0 (modx?" —x)
=1

Let r(x) denote the LHS of (3.5), s(x) =1+ Tr(x) + Tr(pux) + Tr(x) Tr(ux), and
t(x) = Tr(3"; a;x*~1). The exponent of each term in r(x) is a sum of the exponent
of a summand in s(x) and the exponent of some summand in #(x). Similar to the
proof of Theorem 3.4, exponents of the summands in #(x) are 2/ — 1, 1 <i<m — 3,
and their cyclic shifts. Exponents from s(x) are 0; 2°; and 27 + 2/, i # j. The terms x°,
x¥, and x¥*2 (i # j) in s(x) have coefficients 1, 14 u2 + 2", and p* + u?,
respectively.

2m_1>_2m—2_2m—4 .

Claim: The coefficient of x! in r(x) is

m—1 m=3 m—4 m—1 m=3
a,i_3 (1+ w2+ )+ am—4(/‘2 + 4 )

azm—l (luzm—S + 'uzm—S)

Zm—l 2m—4
m—4 +u )

+ am-3(p

The binary representation of the exponent of any term in r(x) cannot have more
than 2 + (m — 3) = m — 1 ones. The binary expansion of (2" — 1) — 272 —2m~4 is
101011 ... 1. This involves m — 2 ones, so it can be obtained as a sum of two expo-
nents (one from s(x), the other from #(x)) without carry or with exactly one carry.
Assume that we are in the former case. There are only three ways to obtain (2™ — 1) —
2m=2 _2m=4 namely,

101011...1 =001000...0+ 100011 ...1
=101000...0+000011...1
= 001010...0+ 100001 ...1.

These contribute the coefficient (1 -+ 2" + 2" a5 + (1" + 12" Nama+
(12" 4 ¥ Va2, for x"D-2"72"" iy p(x). (Here we used the assumption
that m > 7. If m = 5, the coefficient of the term x2'+2**! in r(x) is not the same
as in our claim. The reason is that, for example, 10101 = 00100 + 10001 leads to
another possibility, namely 00100 comes from afx* in #(x), and 10001 comes from

(12" 4 p2)x2"+2" in s(x). This cannot happen if m = 7.)
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Now assume that a carry had been induced. The last carry-over must have occurred
either at bit-(m — 3) or bit-(m — 1). The latter case cannot occur.

10101...1=10010...0+0001...1.

This contributes the coefficient (42" + 2" *)a,,_s. This proves the claim. By (3.5),
we have

m—1 m-3 m—4 m—1 m-3
a§1_3 (I+ T )+ am%(ﬂz + 1 )

m—1 m=3 m—5 m—1 m—4
tay (1 ) +am (W 17T =0 (3.6)

. . m_1y_am—1_nom-4 .
Claim: The coefficient of x(2"~-1)-2""-2"" ig

om=2 2m—3)

m=2 m—4
am,4(,u +u ? + luz )

+ amf3(//‘
The binary expansion of (2" — 1) —2"~1 —2m=% i5 011011 ...1. Suppose it is
obtained as a sum of exponents from s(x) and #(x) without carry. Then

01101...1=0110...0400001...1

which contributes (2" + 2" )am_4. (Here again we have used the assumption that
m = 7. If m = 6, the coefficient of the term x2*+2"+2*1 in r(x) is not the same as in our
claim. The reason is that 011011 = 011000 + 000011 leads to another possibility,
namely 011000 comes from a$x2*+2" in #(x), and 000011 comes from (u?’ + u?)x>"+2
in s(x). This cannot happen if m > 7.)

If (2™ — 1) —2m! —2m=*% is obtained as a sum of exponents from s(x) and #(x)
with a carry, the last carry-over must occur at bit-(m — 2) or bit-0.

01101...1=01010...00+00011...11.

This contributes the coefficient (42" + 1*"*)a,u_3. Therefore the claim is proved,
and by (3.5), we have

m=2 m—3 m-2 m—4
ama(l?" 417 ) = a1+ ). (3.7)

C[aim_ arznul—}l (1 + ﬂzm—} + 'uzm—ét) + aﬁ;i:: ('uzm—IG + 'uzm—S) _ 0.
The claim is equivalent to

pm=2

m-2 m-3 m—4
ams(L+ 2" + 12" ) + ama( +u2" ) =0.

Consider the expression

m=2

E = (ans(1+ 12" + 1) + a7+ N2 + i)
m—2 2711—3

m-2 m—3
= Clm—}(ﬂz + U ) + am73(,u2 + ,uz )2

m=2 m—4 m-2 m—3
+ am—4(,u2 —l—/JZ )(qu —|—,u2 )-
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Using (3.7), we have

m=2 m=3 m—1 m=2 m=2 m—4
E=ay (" +12") + ana(l® 1)+ ams (P +12)?
=0.

Since x # 0,1 we have (u2" + u2"") # 0 and our claim follows. In particular,
by (3.6) it implies @, (> +12"") = ap3(12"" + 1), Adding this to (3.7)
we get

2m—l + luzm—z) 2m—l + luzm—z).

am—4(,u = am—3(/’l

Hence a,,_4 = a,,_3. Substituting a,,_4 in (3.7) by a,,,—3, we have a,,_3 = 0.
Claim: Let m —4 > k > 2. If a; = 0 for all m — 3 > j > k then a; = 0.

We will use a similar argument to that in (3.7). To this end we consider the
coefficient of x@“~D+2"742"7 i 4(x). The binary expansion of its exponent is
0110...01...1. This includes 2+ k ones. All a; with j >k are zero. The sum
of an exponent from 1+ Tr(x)+ Tr(ux) + Tr(x) Tr(xx) and an exponent from
Tr(3F ,aix*'~") has at most 2 + k ones. Since k > 2 there is only one way to obtain
(2F —1) #2772 42773 namely,

0110...01...1=0110...04+0...01...1.
—— ——

k>2 k>2

It follows that (2"~ + u2" )ar = 0. Hence a; = 0.

Since a,,;,_3 = a,,_4 = 0 we find that a3 = - - - = a,,_4 = a,,_3 = 0 by induction.
Claim: ar = 0.
Consider the coefficients of x>**7 and x**7. Since for all j > 2 we have ¢, = 0
there are only two ways to obtain each exponent.

0...0010111 =0...0010100 4 0...0000011
=0...0010001 4+ 0...0000110
0...0100111 =0...0100100 4 0...0000011
=0...0100001 +0...0000110.

Hence the coefficient of x2*+7 is (u* 4 u'®)ay 4+ (u+ u'®)a? and the coefficient of
2T is (ut 4 p??)ay + (u + p??)a?. Adding both values we find

a (@' + 1) + a3 (u'® + 1) = 0.

Thus, a5 is either 0 or 1. Now look at the coefficient of x!°. There are only three ways
of obtaining 15 as a sum with the exponents we can use.
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0...01111=0...01100+40...00011
=0...01001 +0...00110
=0...00011+0...01100.
Hence (u* + u®)ar + (u+ p®)a? + (u+ p2)a3 = 0. If ay = 1 then p? + u* = 0 which

is a contradiction. Thus, a, = 0.
It follows that @, = - - - = a,,,_3 = 0.

Case 2: Tr(ag) = 0. Then Tr(>/" > a;42~1) = 1 for all 2 € 4\{0}. Hence if we view
m—3 _
(1 4 Tr(x) + Tr(ux) 4+ Tr(x) Tr(ux)) - (1 + Tr( > a,-x2’1>>
Py

as a function from IF,n to itself| it is the characteristic function of the subset {0} of
IF,m. Therefore,

(1 4+ Tr(x) + Tr(ux) + Tr(x) Tr(ux)) + (1 4+ Tr(x) + Tr(ux) + Tr(x) Tr(ux))
.Tr(mia,-xzil> =1-x""1 (modx*" —x). (3.8)

Note that the binary representation of the exponent of x>"~! is 111...1 (m ones
altogether), while in the left hand side of (3.8), the binary representation of the
exponent of any term in the product

m=3
(14 Tr(x) + Tr(ux) + Tr(x) Tr(ux)) - Tr(z a,»xzi1>
i=1

cannot have more than 2 + (m — 3) = m — 1 ones. So (3.8) cannot hold. Thus, this
case does not occur. This completes our proof. O

Combining Theorem 3.4 and Theorem 3.5 with the constructive result in Section 2
and Theorem 3.2 in [9], we find that when m > 7, the largest d of a non-Denniston
maximal arc of degree 2¢ in PG(2,2") generated by a {p, 1}-map via Theorem 1.1
satisfies

m+2
2

—J <d<m-3.

We have the following conjecture.

Conjecture 3.6. When m > 9, the largest d of a non-Denniston maximal arc of degree
24 in PG(2,2™) generated by a {p,1}-map via Theorem 1.1 is L%J
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In order to prove the above conjecture, it suffices to prove the following. Let A
be an additive subgroup in IFon of size 29, where m > 9, p(x) =ao +ajx+ -+
ag1x*" e Fanx]. If d = ["22] + 1, Tr(p(2)) = 1 for every 4 e A\{0}, then a, =
a3 =---=ay_1 = 0. So far we can only prove some partial results in this direction.

Theorem 3.7. Let A be an additive subgroup in Fyn of size 2¢, where d < m — 1, and
let p(x) =ao+aix + - + ag_ox2" "7V € Fanx], with ag_> # 0. If Tr(p(3)) =1 for
every A € A\{0}, then d < %

Proof. Assume to the contrary that d > mT”; we will show that a;_, = 0. Assume that
the defining equation for A4 is

(1 + Tr(:ulx))(l + Tr(iuZX)) ce (1 + Tr(lumfdx)) = 1)

where y; € IFom, i=1,2,...,m —d, are linearly independent over IF,. We consider
two cases:

Case 1: Tr(ap) = 1. Then
(1 4+ Tr())(1+ Tr(y)) ... (1 + Tr(t, )

-2
-Tr(z a,-x211> =0 (modx®" —x). (3.9)
p

. . 20 nd=3 4 nd=1~d .. 2.
Claim: The coefficient of x!+2+2 - +27+27 429442 g

szz 2m—3 211,]
( Z 'uo'(l) 'uo‘(Z) . 'luo'(m—d)>ad—27

TESy-a

where S,,_4 i1s the symmetric group on m — d letters.

22+u.+2d73+21171+2cl+m+2m—2

The exponent of x!*2*+ has m-bit binary representation

011...1011...1.
—— —
m—d d-2
Since d > ’”2”, we see that d —2 > m — d, there is only one way to get the term
222203420 4 2 g2 when multiplying (1 4 Tr(g;x))(1 4+ Tr(uyx)). ..
(1 + Tr(g,_gx)) with Tr(3 7 ax 1), namely

011...1011...1=000...0011...14011...1000...0.
~d d-2 —d 1-2 —d -2

Therefore the claim follows. By (3.9), we see that
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( D ) ey M d))adZ:O- (3.10)

ce€Sn-a

Now set r = m — d. Then

211—]
2 m— 2 o m— 3
D Ko Mo Ham-a) (Zﬂa mH <:>> -

GES_d geS,
Note that

! Hy ooy

2 2 2

My Hy oo H

> ey Ha - = det L
UES 2= 1 2!’—1 or= 1

H H K

We will use A(yy, iy, - - -, 1,) to denote this last determinant. Since y;, i = 1,2, ...,
r, are linearly independent over IF,, we see that A(uy, uy, ..., u,) # 0 (cf. [7, p. 109]).
By (3.10), this shows that a;_, = 0.

Case 2: Tr(ag) = 0. As before, this case can be easily seen not to occur.
This completes the proof. O

In order to extend the result in Theorem 3.7, we need to introduce more notation.
Let uy, iy, ..., 1, be elements in IF,» that are linearly independent over IF,. Let 0 =
o) <oy <--- <o <m— 1 be integers. We define

T(on,00,...,0 Z /12” ﬂagz) ﬂﬁ(r)

geS,

Using the above notation, we have the following lemma.

Lemma 3.8. Let m > 9 be an odd integer, let r = T%’ and let t be an integer such that

3<r< % Then there exist 0 = oy < op < -+ < o, <m — 1 such that
(i) op <Km—1-3,
(i) T(or,00,...,0,) #0, and
(iii) the number of consecutive integers in the set {o, 0, ..., 0.} is less than or equal to

t—1.

We postpone the proof of this lemma to the appendix. With this lemma, we can
prove the following theorem.
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Theorem 3.9. Let m > 9 be an odd integer, let A be an additive subgroup in TFym of size
24 where d <m—1, and let p(x) = ao +aix + ax + -+ ax* ! e Fau[x], with
a; #0 and t < (d — ) If 3<t< ", and Tr(p(2)) =1 for every i € A\{0}, then
d<

S

Proof. Assume to the contrary that d > — ’”“ ; we will show that a, = 0. Without loss

of generality, assume that d = ’”*3 , and let r=m-—d="3 m=3 ~Assume that the defin-
ing equation for A4 is

(1+ Te(y ) (1 + Tr(up)) ... (1 4+ Tr(g,x)) = 1,

where y; € IFon, i =1,2,...,r, are linearly independent over IF,. As in the proof of
Theorem 3.7, we only need to consider the case where Tr(ag) = 1. Hence we have

(1 4+ Tr(uyx))(1 4+ Tr(pyx)) ... (1 + Tr(p,x) Tr(Za X2 _1> =0 (modx*" —x).
(3.11)
By Lemma 3.8, there exist 0 = o) < op < -+ < o, < m — 1 such that
(1) op <m—1t—3,
(i) T(o,o00,...,0) # 0, and

(iii) the number of consecutive integers in the set {ay, 2, ..., o} is less than or equal
tor— 1.

We will look at the coefficient of x!+2™2+++2+2" 22" +-42"""1 ip the left hand
side of (3.11). Note that the exponent of this monomial has the m-bit binary repre-
sentation

011...100...1...1...1,
—_—— L

t m—t—2

where at the o;th bit thereisa 1, foreachi =1,2,...,r
Since the number of consecutive integers in the set {oy, o, ..., 0.} is less than or
equal to ¢ — 1, there is only one way to get the term

K12 25 22 g
when multiplying
(1 + Tr(p))(1+ Tr(sx)) ... (14 Tr(ux)) with  Tr(SL ),
namely

011...100...1...1...1=000...000...1...1...1+011...1000...0.
—_—— —_ —_——

t m—t—2 t m—t—2 t m—t-2

Therefore, the coefficient of x!T22+-+27+2" 242" 4+-42"""1 iy the left hand side of
(3.11) is
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X3 X3 20r 2/71—1—1 2m—/—l
<Z o)) - .,uo,(,,)> a; =T(o,...,0)a; .

ges,

By (3.11), we see that T'(a,...,o)a>" " =0. Since T(a,...,0,) # 0, we have
a; = 0. This completes the proof. O

4 Appendix

In this appendix, we give a proof of Lemma 3.8. First, we introduce some nota-
tion. Let xi,...,x; be elements in IF,~ that are linearly independent over IF,. For any
integer i, we set v; = (x7{',...,x2"). We use v?’ to denote component-wise exponentia-
tion of v; by 2/. Hence v?’ = v;;;. Since x?" = x, for all /=1,2,...,r, we have
v, = vo. So in what follows, the indices of »; are to be read modulo m. Now condi-
tion (ii) of Lemma 3.8 is equivalent to the vectors

Ve ons Uy,

being linearly independent over [Fan, i.e.,

24 27
xl e xr

det| @ 1 |0
20 20
xl e xr

Let V' be the Fam-span of vg,...,v,_1. By [7, Lemma 3.51], dimg,, V' =r and
{vi, 011, ., Viyr—1} 1s an [Fom-basis of V for any 0 <i<m—r.

In the following, we will be considering subspaces of ¥ spanned by some vectors
in {vg,v1,...,0,-1}. To this end, we will use binary vectors to represent subsets of
{vo,...,0m_1}. Let w= (ug,u1,...,u;_1) be a vector with entries in {0, 1}. Then the
subset of {vg,v1,...,v,_1} represented by u is

S(u) = {vluy #0,0 </ <i—1}.

By V(u) we will denote the IF,n-span of the vectors in S(u). For example, if u =
(1,1,0,1) then V(u) = FFamvo + Fomv; + IFomws. For convenience, we also allow con-
catenation of binary vectors. If u = (uo,u1,...,u;i-1) and u' = (ug, ..., u/_;) then the
concatenation of u with u’ is

wxu' = (o, ... U1, U, U ).
Moreover u * u * - - - * u is abbreviated to u*’.
—————
/
Now we can reformulate Lemma 3.8 as follows: For every integer ¢ such that
3 <1< 5L, there exists a binary vector u of length at most m — (¢ + 2) such that

V(u) = V and the number of consecutive 1’s in u is at most 7 — 1. It is this refor-
mulation that we will prove in this appendix.
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One final preparation before we give the proof. Given integers i and j > 0, let
I(i, j) denote the IFym-span of v;, viy1, ..., v;1;-1. Given a subspace W of V, we define
W2 = {w?|we W}, where w?' means component-wise exponentiation of w by 2°.
We will need the following lemma.

Lemma 4.1. Suppose that W = V (u) where u = (ug,uy, ... us_1) €IF3. If I(s,t) « W
and W?' NI1(0,s) ¢ W then W = V.

Proof. By assumption, W is spanned by a subset of {vg,...,v,_1}. Let v;€ W, 0 <
i < s— 1, be one of the generating vectors. If i + ¢ < s — 1, then viZZ =0, €1(0,5)N
W c W.Ifi+t>s—1,thenv? = vy, € I(s,t) = W. Hence for any vector v; € W,
0 <i<s—1, we have v;, € W. Extending this property to linear combinations of
the generating vectors of W, we see that I(s+¢,¢) < W since I(s,¢) < W. That is,
I(s+/t,t) c Wiorall/ > 0. Hencev;e WforalO<i<m—land W=V. [

Proof of Lemma 3.8. Write r = kt + a where 0 < a <t — 1. Since r = '”2‘3, we have
m=2kt+2a+3.Seta=(1,1,...,1) e Ff and u = (0,1,...,1) e F}. Let

V()= V(axu").

That is, V(i) is the space spanned by the vectors in S(a * u*'). Then V (k) is the Fyu-
span of {vo, v1,..., 01 }\{V4 Vars,- -, Vo (k—1)¢}- Since {vo, v1,...,0,1} is a basis for
V, we see that dim V' (k) = r — k. Let b be the smallest nonnegative integer such that
V(k+b)=V(k+b+1).In particular, V' (k + i) is a proper subspace of V(k + i+ 1)
if 0 <i < b. We observe that 0 < b < k. There are three cases to consider.

Case 1: dimV(k+1)=2r—k+2. In this case b <k —1. If V(k+b)= "V, then
S(a* u***t)) spans V. Note that a * u***?) has length a + (k + b)t < a+ (2k — 1)t =
m — a — (t+ 3). By construction this vector does not have more than 7 — 1 consecu-
tive 1’s. So we are done in this case.

If V(k+b)#Vthenb<k—2 Let0=(0,0,...,0) e F; and @’ = (1,0,...,0) €
IF]. Let

w; = a*u®h) x 0% a

We define W (i) = V(w;) to be the IFon-span of the vectors in S(w;). In par-
ticular, W(0) = V(k+b). Let b’ be the smallest nonnegative integer such that
W' = Wb +1).

dim W (0) = dim V' (k + b)
dimV(k+1)+(b—1)
r—k+2+b-1
=r—(k—b-1).

=
=
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Hence 0 < b’ <k —1—b. We claim that
(i) W) o I(a+ (b+k+z+1)t 1)
(i) W(b')=> Wb ) ﬂI(O,a+(b+k+i+1)t)

for all i > 0. By Lemma 4.1, these two claims imply that W (b") = V. The length of
Wy is

a+(k+b+1+b)i<a+2kt=m—a-3.

Note that the last # — 1 entries in wy are zero. Dropping these ¢ — 1 positions we
obtain a vector of length m — a — (¢ + 2). This vector does not have more than ¢ — 1
consecutive 1’s and it corresponds to a subset of {v,,,...,v, } that spans ¥, hence
Lemma 3.8 is proved in this case once we prove the above two claims.

To prove the first claim, we recall that W(b') = V(a* u***) 5 0 x a’**"). Hence
Vat (k+b+1+i)r € W(b') for all i > 0 since this vector corresponds to the first position in
the i-th copy of a’. Now W(b') 2 V(k+b)=V(k+b+1+1i) foralli > 0, we also
have S(a * w**+*+1+0) < W(b'). Thus

!
Vat(ke4-b+ 1401415 - - s Vat (ktb+14i)1+(1—1) € w(b'),

since these vectors correspond to the nonzero positions in the last copy of u in
a s w*k+b+2+0) This proves our first claim.

For the second claim it suffices to show that S(0 * a * u***?) x 0 x a"') = W(b').
Hence we need to show that the vectors corresponding to the (k + b)-th copy
of u and the i-th copy of a’, respectively, are in W (b'). The former is true since
W (b') includes S(a * u**+>+1)) which spans V' (k + b + 1). The latter holds because
W(b') = W(b' + 1) which includes the vectors in S(a* u***+?) 5 0% a*(*'+1)). This
proves our second claim.

Case 2: dimV(k+1)=r—k+1=dim V' (k) + 1. In this case, one of the vectors
Uritl, .-, O —1) does not belong to V(k). Suppose that vector is v, = Vuiks+j,
I<j<e—1. Then V(k +1) = V(k) + IFynv,,;. Since any linear dependence rela-
tion translates to a linear dependence relation when both sides are raised to the
2'th power, we get dim V'(k + i) < dim V(k) +1i, i > 0.

Subcase 1: V(k +b) # V,ie., b < k. As seen above, all vectors v,,1, ..., v._1) were
linearly dependent on vectors in V' (k) and v,;. Any such linear dependence translates
to a linear dependence of v, (5_1)4, i # j, on vectorsin V(k +b — 1) and v, (p_1),4-
Hence the vector v, (5_1),,; must be a vector among v, (1)1, - - - » V4 (h—1)4+(—1) that
isnotin V' (k + b — 1). Therefore, we can replace those positions in the last copy of u
in axu* =1« y that do not correspond to 4 (p-1)4; by 0; we will denote the
modified vector by a  u** =1 s (/) where u(/) contains only one 1. By our discus-
sion above, we see that

V(k4b) = V(axu*b=D s g0y,
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and dimV(k+b)=r—k+b=r— (k—b). Let a’ be as defined in Case 1, and let
w! = axu' %= 5 4U) x a1 Define W (i) = V(w]). Let b’ be the smallest nonnega-
tive integer such that W (b') = W (b’ 4+ 1). Then 0 < b’ < k — b. Similar to Case 1,
we have

M) W) > 1(a+ (k+b+i)1)

(i) W(b') > Wb NI0,a+ (k+b+i)).

Thus, by Lemma 4.1 we have V(w,)= W(b')=V. The length of w;, is
a+ (k+b)t+b't <a+ 2kt. Dropping the last t — 1 zeros in w;,, we get a vector

of length m — a — (¢ + 2), which does not contain more than 7 — 1 consecutive 1’s.
So Lemma 3.8 is proved in this subcase.

Subcase 2: V(k+b) =V, ie., b=k. Since V(k+b) = V(a*u b1 s« ul)) (cf.
Subcase 1), we have

V = V(ax w0 s 40y,

Note that the binary vector a * u**+*=1 s y() haslengtha + (k+b— 1)t + (j+ 1) =
m — (t+2) — (¢ — j) and does not have more than 7 — 1 consecutive 1’s. If & > j this
vector will work. So we assume that j > a. Recall that v,,1,...,v,,(;_1) € V(k) but
v.1; ¢ V(k) by our choice of j. Let (0,1,...,1) e Fj and w' = a*u™* % (0,1,...,1).
Then V(w') = V (k).
Letz=(1,1,...,1,0,1,1,...,1) e IF}, and let V’(i) be the IFau-span of S(a * z*),
—_—

=j J—1
i.e., V'(i) = V(a*z*"). Observe that when we shift the vector a  z*¥ to the right by j
positions, we get

0,...,0)%(1,.... 1)« ® Vs (0,1,...,1).
J t+(a—j J

The subset represented by this vector is

{0,001, U 1 P\ at s Var2rs - -+ Vathr}-

Hence V'(k)* = V(k) + i!:ll Fynvys = V(k). In fact, V'(k)* = V(k) since the
two subspaces have the same dimension r — k. Similarly, V'(k + DY =V(k+1).
Moreover, since v>’ = v,.; ¢ V (k) we have v, ¢ V'(k). Hence V'(k +1) = V'(k) +
IFymv,. It follows that V'(k+ i) = V'(k+i— 1) + Famv, for 1 <i < k. In particu-
lar, V'(2k) = V. Since V'(2k) = V'(2k — 1) + IF2mv,; k1), We see that actually

V'(2k) = V(a*z2®* V% (1,0,...,0)).
(2k) ( ( )
t

The length of the vector ax*z**~Vx(1,0,...,0) is a+ (2k—1)t+1=
———

m — (t+2) — a. So we are also done in this subcase.’
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Case 3: V(k) =V(k+1), ie., dim V(k+ 1) =r— k. In this case V is spanned by
S(a* uw* x a"*). Thus, we have

r—1
Vpp] = E Civ;,
i=0

where ¢, =0 for all 0 < n < k. Let / be the largest index such that ¢, # 0. We
consider three subcases.

Subcase 1: / =a+jt+swith2 <s<rt—land0< j<k—1 Now

r—
o(k—j~1)1

1
(A —j—1)t
(vr41) = Urg 1 (k—j—1)t C Vit (k—j—1)1-
i=0

Note that r — 1 +2 </ + (k—j — 1)t <r — 1. Hence vy (k—j—1), € S(axu™*) = V(k)
for all v; with ¢; # 0. Therefore we can express v/, (k—j_1); = Vas+(k—1)r+s as a linear
combination of v, (x_;_1), and some vector in ¥ (k). It follows that V'is spanned by
S(ax w5 ul) x a**k7=D 5 (1,1,0,...,0) * @) where (1,1,0,...,0)eIF} and
=(0,1,1,...,1,0,1,1,.... 1) e IFi. For convenience, denote the vector ax
——

s—1

w D s u) x @*k==1) 5 (1,1,0,...,0) xa™ by z. If j > 0, then we can drop 7 — 1
zeros from the last copy of @’ in z to obtain a binary vector of length m — a — (¢ + 2),
which contains no more than 7 — 1 consecutive 1’s. If j = 0 we can still drop the last
t — 2 zeros from z. The resulting vector has length no more than m — (¢ +2) if a > 1.
Hence we only need to consider the case j = 0 and @ = 0. In that case V' is spanned
by S(@**D x u) % a1 x (1,1)) and vy is not in the generating set. Thus, we can
shift every entry in **=1 s u4) x a1 « (1,1) to the left by one position. This still
is a generating vector for V which has length m — (¢ + 2).

Subcase 2: / =a+jt+1 with 0 < j<k— 1. If j <k — 1, the same vector z as in
Subcase 1 will suit our purpose since it does not contain more than ¢ — 1 consecutive
I’s. So we will assume j =k — 1. We have

r—1
2 2
Vrp2 =0, = E CiVit1.
i=0

Since / = a+ (k — 1)t + 1, we have c,4—1 = 0. Note that some of the v, might be
of the form v,.,,. However, since v,., € V(k) we must have Zf;ol cﬁ rni—1Varmt = 0.
Hence we have that v, = v, (x—1);4+1 is a linear combination of v,,, and some vector
in V(k). It follows that ¥V is spanned by S(a*u**=1D x(0,1,0,1,...,1)*(1,0,1,
0,... O)*a’*“"l)) Denote the vector a*u**~1 % (0,1,0,1,...,1)%(1,0,1,0,.

0) x a** =1 by z’. We see that z’ contains no more than ¢ — 1 consecutive 1s. If
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k — 1 > 0 then we can drop the last 1 — 1 zeros of z’ and obtain a vector of length
m—a—(t+2). If k —1 =0 we can drop the last 7 — 3 zeros of z’. If ¢ > 2 this vec-
tor will have length at most m — (¢ + 2). We need to consider the case k =1 and
a < 1. Suppose a =0 (so r = ¢). Then v, = cjv; with ¢; # 0. Keep squaring both
sides of this equation, we see that v,,,,, is a nonzero scalar multiple of v,4. If r > 3
then this contradicts the fact that any r consecutive vectors in the set {vg, ..., Un_1}
are linearly independent. So r < 3. Since ¢ > 3 and r = ¢ we have r > 3. Thus m = 9.
But we assumed that m > 9, so the case a = 0 cannot happen.

Now suppose @ = 1. Then v, = coo + c2v2 and ¢g # 0, hence v,» = 3v1 + 3vs.
Note that since a = 1, we have V' (k) = V(1) = V((1011...1)). So the previous equa-

-1
tion implies that v, ¢ V'(1), contradicting the assumption that V'(k + 1) = V (k).

Subcase 3: 0 </ <a—1. Observe that v.1,0p42,...,04.1 € V(k) as well. Note
that 02" = ¢ v, +--- ¢ V(k) as v, ¢ V(k). It follows that a — ¢ > ¢ — 2. Since
a < t—1 this is only possible when 7 = 0. But then v, | = covg, with ¢y # 0. This

implies that v,, = vy = cé'ﬁ”vl, which is impossible. This completes the proof.  []
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