Caps on Hermitian varieties and maximal curves

James W. P. Hirschfeld and Gábor Korchmáros

Dedicated to Adriano Barlotti on the occasion of his 80th birthday

Abstract. A lower bound for the size of a complete cap of the polar space $H(n, q^2)$ associated to the non-degenerate Hermitian variety \mathcal{U}_n is given; this turns out to be sharp for even q when n = 3. Also, a family of caps of $H(n, q^2)$ is constructed from \mathbb{F}_{q^2} -maximal curves. Such caps are complete for n = 3 and q even, but not necessarily for q odd.

1 Introduction

Let \mathcal{U}_n be the non-degenerate Hermitian variety of the *n*-dimensional projective space $PG(n, q^2)$ coordinatised by the finite field \mathbb{F}_{q^2} of square order q^2 . An ovoid of the polar space $H(n, q^2)$ arising from the non-degenerate Hermitian variety \mathcal{U}_n with $n \ge 3$ is defined to be a point set in \mathcal{U}_n having exactly one common point with every generator of \mathcal{U}_n . For *n* even, \mathcal{U}_n has no ovoid; see [23]. For *n* odd, the existence problem for ovoids of \mathcal{U}_n has been solved so far only in the smallest case n = 3; see [25].

A natural generalization of an ovoid is a *cap* (also called a *partial ovoid*). A cap of \mathcal{U}_n is a point set in \mathcal{U}_n which has at most one common point with every generator of \mathcal{U}_n . Equivalently, a cap is a point set consisting of pairwise non-conjugate points of \mathcal{U}_n . A cap is called *complete* if it is not contained in a larger cap of \mathcal{U}_n .

The size of a cap is at most $q^n + 1$ for odd *n* and q^n for even *n*; equality holds if and only if the cap is an ovoid. The following upper bound for the size *k* of a cap different from an ovoid is due to Moorhouse [19]:

$$k \leq \left[\left(\frac{p+n-1}{n} \right)^2 - \left(\frac{p+n-2}{n} \right)^2 \right]^h + 1, \quad q = p^h.$$

$$(1.1)$$

A lower bound for k is given in Section 2 by proving that $k \ge q^2 + 1$.

In this paper a family of caps of \mathcal{U}_n that are not ovoids is constructed, and it is shown that they are complete provided that n = 3 and q is even. The construction relies on an interesting property of \mathbb{F}_{q^2} -maximal curves of $PG(n, q^2)$ that is stated in §3: the \mathbb{F}_{q^2} -rational points of an \mathbb{F}_{q^2} -maximal curve naturally embedded in a Hermitian variety \mathcal{U}_n are pairwise non-conjugate under the associated unitary polarity. Hence the set $\mathscr{X}(\mathbb{F}_{q^2})$ of all \mathbb{F}_{q^2} -rational points of an \mathbb{F}_{q^2} -maximal curve \mathscr{X} is a cap of \mathscr{U}_n . The main result is that $\mathscr{X}(\mathbb{F}_{q^2})$ is a complete cap for n = 3 and q even.

For n = 3 and q odd, there exist \mathbb{F}_{q^2} -maximal curves such that $\mathscr{X}(\mathbb{F}_{q^2})$ is a cap of size $\frac{1}{2}(q^3 - q)$ contained in an ovoid of \mathscr{U}_3 ; see Example 4.8.

2 A lower bound for the size of a complete cap of \mathcal{U}_n

A (non-degenerate) Hermitian variety \mathcal{U}_n is defined as the set of all self-conjugate points of a non-degenerate unitary polarity of a projective space $PG(n, q^2)$. Hermitian varieties of $PG(n, q^2)$ are projectively equivalent, as they can be reduced to the canonical form

$$X_0^{q+1} + \dots + X_n^{q+1} = 0$$

by a non-singular linear transformation of $PG(n, q^2)$. A generator of \mathcal{U}_n is defined to be a projective subspace of maximum dimension lying on \mathcal{U}_n , namely of dimension $\lfloor \frac{1}{2}(n-1) \rfloor$. General results on Hermitian varieties are due to Segre [21]; see also [15], [14], [16]. Here, some basic facts from [16, Section 23.2] are recalled. Let μ_n denote the number of points on \mathcal{U}_n .

Result 2.1. (1) $\mu_n = (q^{n+1} + (-1)^n)(q^n - (-1)^n)/(q^2 - 1).$

(2) For any point $P \in \mathcal{U}_n$, the number of lines through P and contained in \mathcal{U}_n is equal to μ_{n-2} .

(3) The tangent hyperplane at $P \in \mathcal{U}_n$ meets \mathcal{U}_n in $q^2 \mu_{n-2} + 1$ points.

Now we give a lower bound for the size of complete caps which does not depend on n.

Theorem 2.2. The size k of a complete cap of \mathcal{U}_n satisfies $k \ge q^2 + 1$.

Proof. The assertion is true for ovoids. Let \mathscr{K} be a complete cap of \mathscr{U}_n that is not an ovoid. Take a generator H of \mathscr{U}_n disjoint from \mathscr{K} . For any point $P \in \mathscr{K}$, the tangent hyperplane Π_P to \mathscr{U}_n at P does not contain H. In fact, some point of H is not conjugate to P, as H is a projective subspace of maximum dimension contained in \mathscr{U}_n . This implies that $\Pi_P \cap H$ is a hyperplane H(P) of H. As \mathscr{K} is a complete cap of \mathscr{U}_n , the projective subspaces H(P) cover H as P ranges over \mathscr{K} . Since H is a projective space of dimension $r = \lfloor \frac{1}{2}(n-1) \rfloor$, this yields

$$1 + q^2 + \dots + q^{2r} \le k(1 + q^2 + \dots + q^{2(r-1)}).$$

Hence

$$k \ge q^2 + 1/(1 + q^2 + \dots + q^{2(r-1)}).$$

Since k is an integer, this is only possible for $k \ge q^2 + 1$.

The above lower bound is sharp for n = 3 and even q; see Example 3.6 and Theorem 4.1 with g = 0. For the classification of transitive ovoids when n = 3 and q is even, see [5]. It is not known whether the lower bound is sharp for n > 3 or for n = 3 and arbitrary odd q. To the best of our knowledge, the smallest complete cap of \mathcal{U}_n for any q is that described in the following theorem.

Theorem 2.3. Let α be a plane of PG (n, q^2) which meets \mathcal{U}_n in a non-degenerate Hermitian curve \mathcal{U}_2 . Then \mathcal{U}_2 is a complete cap of \mathcal{U}_n of size $q^3 + 1$.

Proof. First, \mathscr{U}_2 is a cap of \mathscr{U}_n . Let $A \in \mathscr{U}_n$ be any point. The tangent hyperplane Π_A to \mathscr{U} at A either contains α or meets it in a line ℓ . It turns out in both cases that Π_A has a common point with \mathscr{U}_2 , whence the assertion follows.

3 Hermitian varieties and maximal curves

In algebraic geometry in positive characteristic the Hermitian variety is defined to be the hypersurface $\overline{\mathcal{U}}_n$ of homogeneous equation

$$X_0^{q+1} + \dots + X_n^{q+1} = 0,$$

viewed as an algebraic variety in $PG(n, \overline{\mathbb{F}})$ where $\overline{\mathbb{F}}$ is the algebraic closure of \mathbb{F}_{q^2} . Points of \mathcal{U}_n are the points of $\overline{\mathcal{U}}_n$ with coordinates in \mathbb{F}_{q^2} , usually called \mathbb{F}_{q^2} -rational points of $\overline{\mathcal{U}}_n$. For a point $A = (a_0, a_1, \ldots, a_n)$ of $\overline{\mathcal{U}}_n$, the tangent hyperplane to $\overline{\mathcal{U}}_n$ at A has equation

$$a_0^q X_0 + a_1^q X_1 + \dots + a_n^q X_n = 0.$$

In this paper, the term *algebraic curve defined over* \mathbb{F}_{q^2} stands for a projective, geometrically irreducible, non-singular algebraic curve \mathscr{X} of $PG(n, q^2)$ viewed as a curve of $PG(n, \overline{\mathbb{F}})$. Further, $\mathscr{X}(\mathbb{F}_{q^{2i}})$ denotes the set of points of \mathscr{X} with all coordinates in $\mathbb{F}_{q^{2i}}$, called $\mathbb{F}_{q^{2i}}$ -rational points of \mathscr{X} . For a point $P = (x_0, \ldots, x_n)$ of \mathscr{X} , the Frobenius image of P is defined to be the point $\Phi(P) = (x_0^{q^2}, \ldots, x_n^{q^2})$. Then $P = \Phi(P)$ if and only if $P \in \mathscr{X}(\mathbb{F}_{q^2})$.

An algebraic curve \mathscr{X} defined over \mathbb{F}_{q^2} is called \mathbb{F}_{q^2} -maximal if the number N_{q^2} of its \mathbb{F}_{q^2} -rational points attains the Hasse–Weil upper bound, namely $N_{q^2} = q^2 + 1 + 2gq$, where g denotes the genus of \mathscr{X} . In recent years, \mathbb{F}_{q^2} -maximal curves have been the subject of numerous papers; a motivation for their study comes from coding theory based on algebraic curves having many points over a finite field. Here, only results on maximal curves which play a role in the present investigation are gathered.

Result 3.1 (Natural embedding theorem [17]). Up to \mathbb{F}_{q^2} -isomorphism, the \mathbb{F}_{q^2} -maximal curves of $PG(n, q^2)$ are the algebraic curves defined over \mathbb{F}_{q^2} of degree q + 1 and contained in the non-degenerate Hermitian variety $\overline{\mathcal{U}}_n$.

Remark 3.2. The \mathbb{F}_{q^2} -maximality of \mathscr{X} implies that $(q+1)P \equiv qQ + \Phi(Q)$ for every $Q \in \mathscr{X}$, and the natural embedding arises from the smallest linear series Σ contain-

S208

ing all such divisors. Apart from some exceptions, Σ is complete and hence $\Sigma = |(q+1)P_0|$ for any $P_0 \in \mathbb{F}_{q^2}$. By the Riemann–Roch theorem, dim $\Sigma = q+1-g+i$ where *i* is the index of speciality. In many situations, for instance when q+1 > 2g - 2, we have i = 0, and hence dim $\Sigma = q + 1 - g$. With our notation, $n = \dim \Sigma$.

This, together with some more results from [17], gives the following.

Result 3.3. Let \mathscr{X} be an \mathbb{F}_{q^2} -maximal curve naturally embedded in $\overline{\mathscr{U}}_n$. For a point $P \in \mathscr{X}$, let Π_P be the tangent hyperplane to $\overline{\mathscr{U}}_n$ at P. Then Π_P coincides with the hyperosculating hyperplane to \mathscr{X} at P, and

$$\Pi_P \cap \mathscr{X} = \begin{cases} \{P\} & \text{for } P \in \mathscr{X}(\mathbb{F}_{q^2}), \\ \{P, \Phi(P)\} & \text{for } P \in \mathscr{X} \setminus \mathscr{X}(\mathbb{F}_{q^2}). \end{cases}$$
(3.1)

More precisely, for the intersection divisor D cut out on \mathscr{X} by Π_P ,

$$D = \begin{cases} (q+1)P & \text{for } P \in \mathscr{X}(\mathbb{F}_{q^2}), \\ qP + \Phi(P) & \text{for } P \in \mathscr{X} \setminus \mathscr{X}(\mathbb{F}_{q^2}). \end{cases}$$
(3.2)

Theorem 3.4. Let \mathscr{X} be an \mathbb{F}_{q^2} -maximal curve naturally embedded in $\overline{\mathscr{U}}_n$. For a point $A \in \mathscr{U}_n \setminus \mathscr{X}$, let Π_A be the tangent hyperplane to \mathscr{U}_n at A. If n = 3 and q is even, then Π_A has a common point with $\mathscr{X}(\mathbb{F}_{q^2})$.

Proof. Let ℓ be a line of \mathcal{U}_n . Then ℓ , viewed as a line of $PG(n, \overline{\mathbb{F}})$, is contained in $\overline{\mathcal{U}}_n$. Let $Q \in \ell \cap \mathcal{X}$; then it must be shown that $Q \in \mathcal{X}(\mathbb{F}_{q^4})$.

Assume, on the contrary, that $Q \in \mathscr{X}(\mathbb{F}_{q^{2l}})$ with $i \ge 3$. Then the three points $Q, \Phi(Q), \Phi(\Phi(Q))$ are distinct points of \mathscr{X} . Since ℓ is defined over \mathbb{F}_{q^2} , so ℓ contains not only Q but also $\Phi(Q)$ and $\Phi(\Phi(Q))$. By (3.1), the hyper-osculating hyperplane Π_Q to \mathscr{X} at Q contains $\Phi(Q)$, and hence Π_Q contains the line ℓ . But then Π_Q must contain $\Phi(\Phi(Q))$, contradicting (3.1).

Assume now that $Q \in \mathscr{X}(\mathbb{F}_{q^4})$. The previous argument also shows that ℓ contains both Q and $\Phi(Q)$ but no more points from \mathscr{X} . Also, ℓ cannot contain more than one point from $\mathscr{X}(\mathbb{F}_{q^2})$, again by (3.1). Hence, if $\ell \cap \mathscr{X}$ is non-trivial, then either $\ell \cap \mathscr{X}$ is a single \mathbb{F}_{q^2} -rational point or $\ell \cap \mathscr{X}$ consists of two distinct points, Frobenius images of each other, both in $\mathscr{X}(\mathbb{F}_{q^2})$.

Let $Q \in \overline{\mathscr{U}}_n$ be any point in $\Pi_A \cap \mathscr{X}$. Then the line ℓ through A and Q is contained in $\overline{\mathscr{U}}_n$. Now, assume that n = 3; then such a line is contained in \mathscr{U}_n . By the above assertions, the points in $\Pi_A \cap \mathscr{X}$ are \mathbb{F}_{q^4} -rational points of \mathscr{X} . For a point $Q \in \mathscr{X}$, let $I(\mathscr{X}, \Pi_A; Q)$ denote the intersection multiplicity of \mathscr{X} and Π_A at Q. By Bézout's theorem, $\sum_O I(\mathscr{X}, \Pi_A; Q) = q + 1$ where Q ranges over all points of \mathscr{X} . Write

$$\sum_{\mathcal{Q}} I(\mathscr{X}, \Pi_A; \mathcal{Q}) = \sum_{\mathcal{Q}}' I(\mathscr{X}, \Pi_A; \mathcal{Q}) + \sum_{\mathcal{Q}}'' I(\mathscr{X}, \Pi_A; \mathcal{Q}),$$

where the summation \sum' is over $\mathscr{X}(\mathbb{F}_{q^2})$ while \sum'' is over $\mathscr{X}(\mathbb{F}_{q^4}) \setminus \mathscr{X}(\mathbb{F}_{q^2})$. Since both Π_A and \mathscr{X} are defined over \mathbb{F}_{q^2} ,

$$I(\mathscr{X}, \Pi_A; Q) = I(\mathscr{X}, \Pi_A; \Phi(Q)).$$

Hence $\sum_{Q}^{"} I(\mathcal{X}, \Pi_A; Q) \equiv q + 1 \pmod{2}$. For q even, this implies that $I(\mathcal{X}, \Pi_A; Q) > 0$ for at least one point $Q \in \mathcal{X}(\mathbb{F}_{q^2})$, whence the assertion follows.

Remark 3.5. Theorem 3.4 might not extend to n > 3. For a point $A \in \mathcal{U}_n$, let $Q \in \overline{\mathcal{U}}_n$ be a point other than A in the tangent hyperplane Π_A of \mathcal{U}_n at A. If n = 3, then the line ℓ through A and Q is \mathbb{F}_{q^2} -rational. But this assertion does not hold true for n > 3.

In fact, let \mathcal{U}_n be given in its canonical form

$$X_0^q X_n + X_0 X_n^q + X_1^{q+1} + \dots + X_{n-1}^{q+1} = 0.$$

It may be assumed that A = (0, ..., 0, 1). Then Π_A has equation $X_0 = 0$ and $Q = (0, a_1, ..., a_{n-1}, 1)$ with $a_1^{q+1} + \cdots + a_{n-1}^{q+1} = 0$. The line ℓ is \mathbb{F}_{q^2} -rational if and only if $\Phi(Q)$ also lies on ℓ . This happens when $a_i^{q^2} = \lambda a_i$, i = 1, ..., n-1, for a suitable element $\lambda \in \overline{\mathbb{F}}$, or, equivalently, when $a_i^{q^2-1} = a_j^{q^2-1}$ for all i, j with $1 \le i, j \le n-1$ and $a_i, a_j \ne 0$. Now, $a_1^{q+1} = -a_2^{q+1}$ implies $(a_1^{q+1})^{q-1} = (a_2^{q+1})^{q-1}$, whence the assertion follows for n = 3. Unfortunately, as soon as n > 3, $a_1^{q+1} + \cdots + a_{n-1}^{q+1} = 0$ does not imply $a_i^{q^2-1} = a_j^{q^2-1}$ for any i, j with $1 \le i, j \le n-1$ and $a_i, a_j \ne 0$. Thus the assertion is not valid for n > 3.

The following example illustrates property (3.1).

Example 3.6. Still with q even, write the equation of \mathcal{U}_3 in the form

$$X_0^q X_3 + X_0 X_3^q = X_1^{q+1} + X_2^{q+1}.$$

The rational algebraic curve \mathscr{X} of degree q + 1, consisting of all points

$$A(t) = \{(1, t, t^q, t^{q+1}) \mid t \in \overline{\mathbb{F}}\}$$

together with the point $A(\infty) = (0, 0, 0, 1)$, lies on \mathcal{U}_3 . The morphism

$$(1,t) \to (1,t,t^q,t^{q+1})$$

is a natural embedding. We note that the tangent hyperplane $\Pi_{A(t)}$ to $\overline{\mathcal{U}}_3$ at A(t) has equation

$$t^{q(q+1)}X_0 + X_3 + t^q X_1 + t^{q^2} X_2 = 0.$$

To show that (3.1) holds for A(t), it is necessary to check that the equation

$$t^{q(q+1)} + u^{q+1} + t^q u + t^{q^2} u^q = 0$$

has only two solutions in u, namely u = t and $u = t^{q^2}$. Replacing u by v + t, the equation becomes $v^{q+1} + v^q t + t^{q^2} v^q = 0$. For $v \neq 0$, that is, for $u \neq t$, this implies $v = t^{q^2} + t$, proving the assertion. For $A(\infty)$, the tangent hyperplane $\Pi_{A(\infty)}$ has equation $X_0 = 0$. Hence it does not meet \mathscr{X} outside $A(\infty)$, showing that (3.1) also holds for $A(\infty)$.

4 Caps of the Hermitian variety arising from maximal curves

From the results stated in Section 3 we deduce the following theorem.

Theorem 4.1. Let \mathscr{X} be an \mathbb{F}_{q^2} -maximal curve naturally embedded in $\overline{\mathscr{U}}_n$. Then

- (i) $\mathscr{X}(\mathbb{F}_{q^2})$ is a cap of \mathscr{U}_n of size $q^2 + 1 + 2gq$;
- (ii) when q is even and n = 3, such a cap is complete.

Proof. Let $P \in \mathscr{X}(\mathbb{F}_{q^2})$. By (3.1), no further point from \mathscr{X} is in Π_P . Hence no point in $\mathscr{X}(\mathbb{F}_{q^2})$ is conjugate to P. This shows that $\mathscr{X}(\mathbb{F}_{q^2})$ is a cap of \mathscr{U}_n whose size is equal to $q^2 + 1 + 2gq$ by the \mathbb{F}_{q^2} -maximality of \mathscr{X} . Completeness for even q and n = 3 follows from Theorem 3.4.

In applying Theorem 4.1 it is essential to have information on the spectrum of the genera g of \mathbb{F}_{q^2} -maximal curves. However, it would be inappropriate in the present paper to discuss the spectrum in all details; so we shall content ourselves with a summary of the relevant results in characteristic 2. For this reason, q will denote a power of 2 in the rest of the paper, apart from Example 4.8.

Result 4.2. (1) *The lower limit of the spectrum of genera is* 0, *which is only attained by rational algebraic curves.*

(2) The upper limit of the spectrum is $\frac{1}{2}(q^2 - q)$, which is only attained by the Hermitian curve over \mathbb{F}_{q^2} ; see [22, Proposition V.3.3].

Result 4.3 ([1], [10], [17]). (1) The second largest value in the spectrum of genera is $\frac{1}{4}(q^2 - 2q)$, which is only attained by Example 4.5.

(2) In the interval $\left[\frac{1}{8}(q^2-4q+3),\frac{1}{4}(q^2-q)\right]$, there are 12 known examples.

Result 4.4 ([18]). The third largest value in the spectrum is $\lfloor \frac{1}{6}(q^2 - q + 4) \rfloor$. Examples 4.6 and 4.7 are the only known examples with this genus.

Example 4.5 ([9]). The absolutely irreducible plane curve \mathscr{C} with equation

$$y + y^2 + \dots + y^{q/2} + x^{q+1} = 0$$

has genus $\frac{1}{4}q(q-2)$. A non-singular model \mathscr{X} of \mathscr{C} is the \mathbb{F}_{q^2} -maximal curve defined by the morphism $\pi : \mathscr{C} \to \mathrm{PG}(3, q^2)$ with coordinate functions

$$f_0 = 1$$
, $f_1 = x$, $f_2 = y$, $f_3 = x^2$.

The curve \mathscr{X} lies on the Hermitian variety $\overline{\mathscr{Y}}_3$ with equation

$$X_2^q X_0 + X_2 X_0^q + X_1^{q+1} + X_3^{q+1} = 0$$

Also, \mathscr{X} lies on the quadric cone with equation $X_3X_0 = X_1^2$. The size of the corresponding complete cap $\mathscr{X}(\mathbb{F}_{q^2})$ of \mathscr{U}_3 is $\frac{1}{2}(q^3 + 2)$.

Example 4.6 ([7, Theorem 2.1. (IV)(2)]). Let $q \equiv 2 \pmod{3}$. The absolutely irreducible plane curve \mathscr{C} with equation $x^{(q+1)/3} + x^{2(q+1)/3} + y^{q+1} = 0$ has genus $g = \frac{1}{6}(q^2 - q + 4)$. A non-singular model \mathscr{X} of \mathscr{C} is the \mathbb{F}_{q^2} -maximal curve defined by the morphism $\pi : \mathscr{C} \to \mathrm{PG}(3, q^2)$ with coordinate functions

$$f_0 = x$$
, $f_1 = x^2$, $f_2 = y^3$, $f_3 = xy$.

The curve \mathscr{X} lies on the Hermitian variety $\overline{\mathscr{U}}_3$ given by the usual canonical equation

$$X_0^{q+1} + X_1^{q+1} + X_2^{q+1} + X_3^{q+1} = 0.$$

Also, \mathscr{X} lies on the cubic surface with equation

$$X_3^3 + w^3 X_0 X_1 X_2 = 0$$

with $w^{q+1} = -3$. The size of the corresponding complete cap $\mathscr{X}(\mathbb{F}_{q^2})$ of \mathscr{U}_3 is $\frac{1}{3}(q^3 + 2q^2 + 4q + 3)$.

Example 4.7 ([6, §6]). A similar but non-isomorphic example is given in [6]. Again, assume that $q \equiv 2 \pmod{3}$. The absolutely irreducible plane curve \mathscr{C} with equation

$$yx^{(q-2)/3} + y^q + x^{(2q-1)/3} = 0$$

has genus $\frac{1}{6}(q^2 - q - 2)$. A non-singular model \mathscr{X} of \mathscr{C} is the \mathbb{F}_{q^2} -maximal curve defined by the morphism $\pi : \mathscr{C} \to \mathrm{PG}(3, q^2)$ with coordinate functions

$$f_0 = x$$
, $f_1 = x^2$, $f_2 = y^3$, $f_3 = -3xy$.

The curve \mathscr{X} lies on the Hermitian variety Σ_{q+1} with equation

$$X_0^q X_1 + X_1^q X_2 + X_2^q X_0 - 3X_3^{q+1} = 0.$$

Also, \mathscr{X} is contained in the cubic surface with equation

$$X_3^3 + 27X_0X_1X_2 = 0.$$

It is worth noting that Σ_{q+1} is projectively equivalent to \mathscr{U}_3 in PG(3, q^6) but not in PG(3, q^2). Nevertheless, the projective transformation taking Σ_{q+1} to \mathscr{U}_3 maps \mathscr{X} to an \mathbb{F}_{q^2} -maximal curve lying on \mathscr{U}_3 . The size of the corresponding complete cap $\mathscr{X}(\mathbb{F}_{q^2})$ of \mathscr{U}_3 is $\frac{1}{3}(q^3 + 2q^2 - 2q + 3)$.

We end the paper with an example for q odd which shows that assertion (ii) in Theorem 4.1 does not hold for q odd.

Example 4.8. Let q be odd and let $\mathscr{C}(\mathbf{F}_{q^2})$ be the absolutely irreducible plane curve with equation

$$y^{q} + y + x^{(q+1)/2} = 0;$$

it has genus $\frac{1}{4}(q-1)^2$. A non-singular model \mathscr{X} of \mathscr{C} is the \mathbb{F}_{q^2} -maximal curve defined by the morphism $\pi : \mathscr{C} \to \mathrm{PG}(3, q^2)$ with coordinate functions

$$f_0 = 1$$
, $f_1 = x$, $f_2 = y$, $f_3 = y^2$.

The curve \mathscr{X} lies on the Hermitian surface \mathscr{U}_3 with equation

$$X_3^q X_0 + X_3 X_0^q + 2X_2^{q+1} - X_1^{q+1} = 0.$$

Also, \mathscr{C} lies on the quadric cone \mathscr{D} with equation $X_2^2 - X_0X_3 = 0$. The size of the corresponding cap \mathscr{K} of \mathscr{U}_3 is $q^2 + 1 + \frac{1}{2}q(q-1)^2 = \frac{1}{2}(q^3 + q + 2)$. The cap \mathscr{K} is incomplete, since it is contained in an ovoid of \mathscr{U}_3 ; see [13].

Acknowledgements. The second author's research was carried out within the project "Strutture geometriche, combinatoria e applicazioni" PRIN 2001–02, MIUR.

References

- M. Abdón, F. Torres, On maximal curves in characteristic two. *Manuscripta Math.* 99 (1999), 39–53. MR 2000h:11064 Zbl 0931.11022
- R. D. Baker, G. L. Ebert, G. Korchmáros, T. Szőnyi, Orthogonally divergent spreads of Hermitian curves. In: *Finite geometry and combinatorics (Deinze*, 1992), volume 191 of *London Math. Soc. Lecture Note Ser.*, 17–30, Cambridge Univ. Press 1993. MR 94k:51013 Zbl 0804.51013
- [3] A. E. Brouwer, H. A. Wilbrink, Ovoids and fans in the generalized quadrangle Q(4, 2). Geom. Dedicata **36** (1990), 121–124. MR 91h:51007 Zbl 0716.51007
- [4] A. Cossidente, J. W. P. Hirschfeld, G. Korchmáros, F. Torres, On plane maximal curves. Compositio Math. 121 (2000), 163–181. MR 2001e:11065 Zbl 0958.11048
- [5] A. Cossidente, G. Korchmáros, Transitive ovoids of the Hermitian surface of PG(3, q²), q even. J. Combin. Theory Ser. A, 101 (2003), 117–130.
- [6] A. Cossidente, G. Korchmáros, F. Torres, On curves covered by the Hermitian curve. J. Algebra 216 (1999), 56–76. MR 2000c:14027 Zbl 01309249
- [7] A. Cossidente, G. Korchmáros, F. Torres, Curves of large genus covered by the Hermitian curve. *Comm. Algebra* **28** (2000), 4707–4728. MR 2002d:14033 Zbl 0974.11031

- [8] G. Faina, A characterization of the tangent lines to a Hermitian curve. *Rend. Mat.* (7) **3** (1983), 553-557. MR 85k:51017 Zbl 0535.51011
- [9] R. Fuhrmann, A. Garcia, F. Torres, On maximal curves. J. Number Theory 67 (1997), 29-51. MR 98k:11077 Zbl 0914.11036
- [10] R. Fuhrmann, F. Torres, The genus of curves over finite fields with many rational points. Manuscripta Math. 89 (1996), 103-106. MR 96m:11046 Zbl 0857.11032
- [11] R. Fuhrmann, F. Torres, On Weierstrass points and optimal curves. Rend. Circ. Mat. Palermo (2) Suppl. 51 (1998), 25-46. MR 99e:11081 Zbl 01222881
- [12] A. García, J. F. Voloch, Fermat curves over finite fields. J. Number Theory 30 (1988), 345-356. MR 90a:14027 Zbl 0671.14012
- [13] L. Giuzzi, G. Korchmáros, Ovoids of the Hermitian surface in odd characteristic. To appear.
- [14] J. W. P. Hirschfeld, *Finite projective spaces of three dimensions*. Oxford Univ. Press 1985. MR 87j:51013 Zbl 0574.51001
- [15] J. W. P. Hirschfeld, Projective geometries over finite fields. Oxford Univ. Press 1998. MR 99b:51006 Zbl 0899.51002
- [16] J. W. P. Hirschfeld, J. A. Thas, General Galois geometries. Oxford Univ. Press 1991. MR 96m:51007 Zbl 0789.51001
- [17] G. Korchmáros, F. Torres, Embedding of a maximal curve in a Hermitian variety. Compositio Math. 128 (2001), 95-113. MR 2002i:11060 Zbl 01654614
- [18] G. Korchmáros, F. Torres, On the genus of a maximal curve. Math. Ann. 323 (2002), 589-608. MR 1 923 698 Zbl 01801616
- [19] G. E. Moorhouse, Some *p*-ranks related to Hermitian varieties. J. Statist. Plann. Inference 56 (1996), 229-241. MR 98f:51010 Zbl 0888.51007
- [20] H.-G. Rück, H. Stichtenoth, A characterization of Hermitian function fields over finite fields. J. Reine Angew. Math. 457 (1994), 185–188. MR 95h:11059 Zbl 0802.11053
- [21] B. Segre, Forme e geometrie hermitiane, con particolare riguardo al caso finito. Ann. Mat. Pura Appl. (4) 70 (1965), 1-201. MR 35 #4802 Zbl 0146.16703
- [22] H. Stichtenoth, Algebraic function fields and codes. Springer 1993. MR 94k:14016 Zbl 0816.14011
- [23] J. A. Thas, Ovoids and spreads of finite classical polar spaces. *Geom. Dedicata* **10** (1981), 135–143. MR 82g:05031 Zbl 0458.51010
- [24] J. A. Thas, Old and new results on spreads and ovoids of finite classical polar spaces. In: Combinatorics '90 (Gaeta, 1990), volume 52 of Ann. Discrete Math., 529-544, North-Holland 1992. MR 93h:51005 Zbl 0767.51004
- [25] J. A. Thas, S. E. Payne, Spreads and ovoids in finite generalized quadrangles. Geom. Dedicata 52 (1994), 227–253. MR 95m:51005 Zbl 0804.51007
- [26] G. van der Geer, M. van der Vlugt, Tables of curves with many points. Math. Comp. 69 (2000), 797-810. MR 2000i:11097 Zbl 0965.11028

Received 10 December, 2002; revised 18 March, 2003

- J. W. P. Hirschfeld, School of Mathematical Sciences, University of Sussex, Brighton BN1 9QH, United Kingdom Email: jwph@sussex.ac.uk
- G. Korchmáros, Dipartimento di Matematica, Università della Basilicata, 85100 Potenza, Italy

Email: korchmaros@unibas.it