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Abstract. We complete the classification of flocks of the quadratic cone in PGð3; qÞ for qc 29,
by showing by computer that there are exactly 8 flocks of the quadratic cone in PGð3; 19Þ, 18
flocks of the quadratic cone in PGð3; 23Þ, 12 flocks of the quadratic cone in PGð3; 25Þ, 14
flocks of the quadratic cone in PGð3; 27Þ, and 28 flocks of the quadratic cone in PGð3; 29Þ, up
to equivalence.

1 Introduction

The study of flocks of finite circle planes can be traced back to an error in Dem-
bowski (1968) [13], where he mistakenly asserted that it was easy to see that a flock of
an egglike finite inversive plane is linear. This mistake inspired Thas (1973) [39] who
provided a proof for characteristic 2, and then W. F. Orr (1973) [28] provided a proof
for odd characteristic in his thesis, published in [29]. Thas went on to consider flocks
of Miquelian Minkowski planes, classifying them in Thas (1975) [40] for character-
istic 2 and Thas (1990) [42] for fields of order 1mod 4, with Bader–Lunardon (1989)
[1] completing the proof for fields of order 3mod 4. Bonisoli–Korchmaros (1992)
[6] provided a di¤erent proof and their introduction was understandably optimistic
about the remaining Miquelian Laguerre plane case. (Recently Durante–Siciliano
[14] gave a beautiful and short new proof.) That the Laguerre case was considerably
more complicated was evident by then from constructions in [15], [43], [20], [30], [22],
[41], [17], [16], [21], [3], [19], [31], [18]. However, in compensation, the link with gen-
eralised quadrangles [41], [23] makes these flocks more interesting. (The links with
translation planes are many, with new links via hyperbolic fibrations recently dis-
covered [5], [4].) Since then, it has become clear that complete classification in the
Miquelian Laguerre case is extremely di‰cult, with further constructions appearing
in [10], [34], [25], [32], [9], and so attention has turned to small field orders. The pre-
viously known classification results are Thas (1987) [41] for fields of orders 2, 3, 4 and
De Clerck–Gevaert–Thas (1988) [11] for fields of orders 5, 7, 8 (these are computer-
free results); Mylle (1991) [27] for the field of order 9, De Clerck–Herssens (1992) [12]
for the fields of orders 11, 16, Penttila–Royle (1998) [35] for the fields of orders 13,



17, Brown–O’Keefe–Payne–Penttila–Royle [7] for the field of order 32 (these are
computer-based results), see Theorem 2.6. Here we add the fields of orders 19, 23,
25, 27 and 29 to the list, finding that there are exactly 8 flocks of the quadratic cone
in PGð3; 19Þ (Corollary 4.7), 18 flocks of the quadratic cone in PGð3; 23Þ (Corol-
lary 5.8), 12 flocks of the quadratic cone in PGð3; 25Þ (Corollary 6.3), 14 flocks of
the quadratic cone in PGð3; 27Þ (Corollary 7.3), and 28 flocks of the quadratic cone
in PGð3; 29Þ (Corollary 8.3), up to equivalence, with these being computer-based
results.

Our methods involve the approach of Penttila–Royle (1998) [35] via BLT-sets,
made possible by the results of Bader–Lunardon–Thas (1990) [3]. In this setting our
results are that there are 5 BLT-sets of Qð4; 19Þ (Theorem 4.6), 9 BLT-sets of Qð4; 23Þ
(Theorem 5.7), 6 BLT-sets of Qð4; 25Þ (Theorem 6.2), 6 BLT-sets of Qð4; 27Þ (Theo-
rem 7.2), and 9 BLT-sets of Qð4; 29Þ (Theorem 8.2), up to equivalence. They were all
constructed previously, see [35] for orders 19, 23 and 25, and [24] for orders 27 and 29
(or [25] for order 27). These papers also explain how many flocks arise from each
BLT-set.

In [35], the time-consuming aspect is isomorph rejection. A hybrid algorithm,
involving orderly generation of partial BLT-sets is used up to some chosen cut-o¤
point, and then this list is used to generate a list, with redundancies, of all BLT-sets,
after which isomorph rejection must take place. (For orderly algorithms, see [38],
[26], [37].) While general improvements to isomorph rejection lie beyond our abilities,
we are able to use some happy circumstances to improve the e‰ciency of isomorph
rejection for BLT-sets. These happy circumstances include the availability of fast
algorithms for dealing with permutation groups in MAGMA [8], including the avail-
ability of the group PGOð5; qÞ as a permutation group on the points of Qð4; qÞ, for
the relevant field orders q, and the fact that none of the presently known BLT-sets are
rigid. Taking a group-theoretic approach, equivalence implies conjugacy of stabilisers;
and two BLT-sets with the same stabiliser if equivalent are equivalent by an element
normalising that stabiliser. These observations lead to a reduction for isomorph rejec-
tion of non-rigid BLT-sets to stabiliser, conjugacy and normaliser calculations. Now
isomorph rejection is iterated, so its replacement by a cheaper equivalent improves
e‰ciency even if the proof of equivalence is expensive, as the proof need not be iter-
ated. Thus, rather than perform conjugacy calculations many times, we characterise
the known BLT-sets of Qð4; qÞ, for each relevant value of the field order q, by an ad
hoc property PðqÞ of their stabilisers. It should be emphasised that the availability of
e‰cient algorithms for dealing with permutation groups is the reason for our choice
of this approach.

The total computing time used was about 5 weeks on a Pentium clone. A lot of
memory was needed—about 450 Meg of RAM. To proceed further, even only to the
field of order 31, would require considerable computing time (our best estimate is 8
years), and may well run out of memory, as the most we have access to is 512 Meg of
RAM. It is also the belief of the authors that rigid BLT-sets exist in Qð4; qÞ for some
q in f37; 41; 43; 47; 49g, which would cause our methods to fail. (As yet, we have
failed to find any rigid BLT-sets.) In contrast, we believe that the list of 8 BLT-sets of
Qð4; 31Þ in [24] is probably complete.
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2 Preliminaries

A flock of a quadratic cone K in PGð3; qÞ is a set of q planes meeting K in sections
which partition K , minus its vertex. Two flocks of K are equivalent if there is a colli-
neation fixing K and taking the first flock to the second. A flock is linear if the planes
all share a line. A partial BLT-set of Qð4; qÞ is a set B of points, such that for any
point P of Qð4; qÞ not in B, the number of points of B collinear with P is at most 2.
Two partial BLT-sets are equivalent if they are in the same orbit of the automorphism
group PGOð5; qÞ. A partial BLT-set of Qð4; qÞ has size at most qþ 1; if equality
occurs it is a BLT-set.

Theorem 2.1 ([3]). Every flock of the quadratic cone in PGð3; qÞ, q odd, determines a

BLT-set of Qð4; qÞ. Conversely, given a BLT-set B of Qð4; qÞ, q odd, and a point P of

B, there arises a flock of the quadratic cone of PGð3; qÞ. Moreover, equivalent flocks
give equivalent BLT-sets, and conversely, two flocks arising from the points P and Q of

a BLT-set B are equivalent if and only if P and Q lie in the same orbit of the stabiliser

of B in PGOð5; qÞ.

Lemma 2.2. For q odd, Qð4; qÞ contains a unique partial BLT-set of size 3, up to

equivalence.

Proof. By Witt’s theorem, up to equivalence there is a unique plane whose polar is an
external line. Again, by Witt’s theorem, the stabiliser of this plane is 3-transitive on
the points of Qð4; qÞ in this plane. Hence PGOð5; qÞ is transitive on partial BLT-sets
of size 3.

The known infinite families of BLT-sets are the classical BLT-sets associated with
the linear flocks, the Fisher–Thas–Walker BLT-sets [15], [43] for fields of order con-
gruent to 2 modulo 3, the Fisher BLT-sets [15] (see also [34]), the Kantor semifield
BLT-sets [22] for field of non-prime order, the Kantor monomial BLT-sets [22] for
fields of order congruent to 2 or 3 modulo 5, the Ganley BLT-sets [17], [16] for fields
of characteristic 3, the Kantor likeable BLT-sets [17], [21] for fields of characteristic
5, the Mondello BLT-sets [34] for fields of order congruent to 1 or 4 modulo 5, and
the Law–Penttila BLT-sets [25] for fields of characteristic 3. When there is a unique
flock arising from the BLT-set, we give it the same name, except for the linear flocks
arising from the classical BLT-sets (this covers the Fisher–Thas–Walker, Fisher,
Kantor semifield and Mondello cases [3], [33], [34]). The presently known sporadic
BLT-sets are surveyed in [24]. Notation for those we need to refer to will be fixed in
each appropriate section. The known infinite families of flocks of the quadratic cone
in characteristic 2 are the linear flocks, the Fisher–Thas–Walker flocks [15], [43] for
fields of non-square order, the two classes of Payne flocks [30], [31] for fields of non-
square order, the Subiaco flocks [10], and the Adelaide flocks [9] for fields of square
order. No sporadic flocks of the quadratic cone in characteristic 2 are presently
known.

The following theorem is a restatement of a theorem of [41].
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Theorem 2.3. A BLT-set of Qð4; qÞ contained in a hyperplane is classical or Kantor

semifield.

The following theorem is a restatement of a theorem of [33].

Theorem 2.4. A BLT-set meeting a classical BLT-set in at least half of its points is

classical or Fisher.

Lemma 2.5. A BLT-set of Qð4; qÞ with a stabiliser in PGOð5; qÞ with Sylow r-subgroup

R of order >qþ 1, where r is an odd prime divisor of qþ 1, is classical or Fisher.

Proof. The only orbits of R of length <r2 on points of Qð4; qÞ are those of points on 2
planes fixed by R, since a Sylow r-subgroup of PGOð5; qÞ fixes two planes (which
each meets Qð4; qÞ in the points of a classical BLT-set) and acts semiregularly on the
points of Qð4; qÞ outside those planes. Hence a BLT-set B admitting R, being made
up of orbits of length <r2, is contained in the union of these two planes. Since these
planes are classical BLT-sets, it follows that B must contain at least half of the points
of a classical BLT-set. So, by Theorem 2.4, it follows that B is classical or Fisher.

Theorem 2.6. (i) [41] All flocks of the quadratic cone of PGð3; 2Þ are linear.
(ii) [41] All flocks of the quadratic cone of PGð3; 3Þ are linear.
(iii) [41] All flocks of the quadratic cone of PGð3; 4Þ are linear.
(iv) [11] All flocks of the quadratic cone of PGð3; 5Þ are linear or Fisher, up to

equivalence.

(v) [11] All flocks of the quadratic cone of PGð3; 7Þ are linear or Fisher, up to

equivalence.

(vi) [11] All flocks of the quadratic cone of PGð3; 8Þ are linear or Fisher–Thas–

Walker, up to equivalence.

(vii) [27] All flocks of the quadratic cone of PGð3; 9Þ are linear or Fisher or Kantor

semifield, up to equivalence.

(viii) [12] All flocks of the quadratic cone of PGð3; 11Þ are linear or Fisher or Fisher–

Thas–Walker or Mondello, up to equivalence.

(ix) [35] All flocks of the quadratic cone of PGð3; 13Þ are linear or Fisher or one of

two flocks arising from the Kantor monomial BLT-set, up to equivalence.

(x) [12] All flocks of the quadratic cone of PGð3; 16Þ are linear or Subiaco, up to

equivalence.

(xi) [35] All flocks of the quadratic cone of PGð3; 17Þ are linear or Fisher or Fisher–

Thas–Walker or one of two flocks arising from the Kantor monomial BLT-set

or one of two flocks arising from the sporadic BLT-set of De Clerck–Herssens

(1992) [12], or one of two flocks arising from the sporadic BLT-set of Penttila–

Royle (1998) [35], up to equivalence.
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(xii) [7] All flocks of the quadratic cone of PGð3; 32Þ are linear, Fisher–Thas–Walker,
or one of the two classes of Payne or Subiaco, up to equivalence.

3 The algorithm

For q ¼ 19; 23; 25; 27 and 29, all partial BLT-sets of size 5 of Qð4; qÞ are generated,
using an orderly algorithm. Then, for each partial BLT-set B of size 5 a graph G is
formed, with vertices the points P of Qð4; qÞ such that X U fPg is a partial BLT-set,
and edges fP;Qg such that X U fP;Qg is a partial BLT-set. The BLT-sets of Qð4; qÞ
containing B are precisely the sets BUC, where C is a clique of G of size q� 4, and
this is the size of the largest clique in G. These cliques are calculated (using the inbuilt
AllCliques command in MAGMA), and each is tested to see if property PðqÞ holds.

Independently, algorithms are run to show if a BLT-set of Qð4; qÞ satisfies PðqÞ
then it is known, for q ¼ 19; 23; 25; 27 and 29.

4 Classification of BLT-sets in Q(4‚19)

Here the definitive work on construction is [35], where 5 BLT-sets of Qð4; 19Þ are
listed, namely, the classical and Fisher BLT-sets ([15]), and three new ones with
groups of orders 40, 20 and 16. The one with the group of order 40 is a member of
the Mondello family of [34]; the other two we shall refer to as PR20 and PR16.

The ad hoc hypothesis P(19) used to characterise these BLT-sets B of Qð4; 19Þ is
on the stabiliser of B in PGOð5; 19Þ: that it has order divisible by 5 or is isomorphic
to D8 � C2 and has 2 elements with no fixed points, 2 elements with 2 fixed points, 5
elements with 20 fixed points, 3 elements with 22 fixed points and 3 elements with 362
fixed points (in the action on the points of Qð4; 19Þ). We call the latter alternative for
the stabiliser being of PR16-type.

Lemma 4.1. A BLT-set of Qð4; 19Þ with group of order divisible by 25 is classical or

Fisher, up to equivalence.

Proof. Apply Lemma 2.5, with r ¼ 5.

Lemma 4.2. A BLT-set of Qð4; 19Þ with a group of order divisible by 5 is classical,
Fisher, Mondello or PR20, up to equivalence.

Proof. We run software in MAGMA to verify the assertions below.
(i) There are 3 conjugacy classes of subgroups of PGOð5; 19Þ of order 5: one H1

with 20 fixed points, two with 0 fixed points (one H2 with centraliser in PGOð5; 19Þ of
order 400, the other H3 with centraliser in PGOð5; 19Þ of order 136 800).

(ii) H1 leads only to BLT-sets with group of order divisible by 25.
(iii) H2 leads only to BLT-sets with group of order divisible by 25 and BLT-sets

with a group of order 20. All the BLT-sets with a group of order 20 arising are
equivalent under the normaliser of H2 in PGOð5; 19Þ.

(iv) H3 leads to both BLT-sets with group of order divisible by 25 and BLT-sets
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with group of order 40. All the BLT-sets with a group of order 40 arising are equiv-
alent under the normaliser of H3 in PGOð5; 19Þ. In conclusion, either the BLT-set has
a group of order divisible by 25, in which case, by Lemma 4.1, it is classical or Fisher,
or it has a group of order 40 or a group of order 20. If it has a group of order 40, then
it is uniquely determined, so it is Mondello. If it has a group of order 20, then it is
uniquely determined, so it is PR20.

Lemma 4.3. There is a unique conjugacy class of subgroups of PGOð5; 19Þ of PR16-
type.

Proof. We apply the Subgroups command in MAGMA to a Sylow 2-subgroup of
PGOð5; 19Þ, and check the order distributions and fixed point distributions for the
resulting subgroups of order 16.

Lemma 4.4. There is a unique BLT-set of Qð4; 19Þ, up to equivalence, whose group is of

PR16-type. This unique BLT-set is PR16.

Proof. Taking the orbits of a representative H of this unique conjugacy class (Lemma
4.3), calculate the orbits that form partial BLT-sets and the unions of orbits that
form BLT-sets by computer. There arise two classical BLT-sets and 2 with groups of
order 16. The latter fall into a single orbit under the normaliser of H in PGOð5; 19Þ,
so up to equivalence, there is a unique result. It is easy to verify that PR16 has these
properties.

Theorem 4.5. A BLT-set of Qð4; 19Þ is equivalent to a classical, Fisher, Mondello,
PR20 or PR16 BLT-set if and only if P(19) holds.

Proof. Combine Lemmas 4.2 and 4.4.

Theorem 4.6. The only BLT-sets of Qð4; 19Þ are the classical, Fisher, Mondello, PR20
and PR16 BLT-sets, up to equivalence.

Corollary 4.7. There are exactly 8 flocks of the quadratic cone in PGð3; 19Þ, up to

equivalence.

Proof. By [35], each of the classical, Fisher, Mondello and PR20 BLT-sets of Qð4; 19Þ
leads to a single flock of the quadratic cone in PGð3; 19Þ, while the BLT-set PR16 of
Qð4; 19Þ leads to 4 inequivalent flocks of the quadratic cone in PGð3; 19Þ. The result
follows by Theorem 2.1.

5 Classification of BLT-sets in Q(4‚23)

Here the definitive work on construction is [35], where 9 BLT-sets of Qð4; 23Þ are
listed, namely, the classical, Fisher [15], Fisher–Thas–Walker [15], [43], Kantor mon-
omial [22], De Clerck–Herssens [12] with a group of order 72, which we shall refer to
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as DCH72, and four new ones with groups of orders 1152, 24, 16 and 6, which we
shall refer to as PR1152, PR24, PR16 and PR6.

The ad hoc hypothesis P(23) used to characterise these BLT-sets B of Qð4; 23Þ is
on the stabiliser of B in PGOð5; 23Þ: that it has order divisible by 5 or is isomorphic
to D8 � C2 and has 2 elements with no fixed points, 2 elements with 2 fixed points, 5
elements with 22 fixed points, 3 elements with 26 fixed points and 3 elements with 530
fixed points (in the action on the points of Qð4; 23Þ). We call the latter alternative for
the stabiliser being of PR16-type.

Lemma 5.1. A BLT-set of Qð4; 23Þ with group of order divisible by 9 is classical,
Fisher, PR1152, or DCH72.

Proof. We run software in MAGMA to verify the assertions that follow.
(i) A Sylow 3-subgroup S of PGOð5; 23Þ has 320 orbits that are partial BLT-sets of

size 9 and 16 that are partial BLT-sets of size 3.
(ii) The normaliser N of S in PGOð5; 23Þ has 3 orbits on orbits of S of size 9 that

are partial BLT-sets, with representatives O1;O2;O3. Only O1 has the property that
there are other orbits X of S of length 9 such that O1 UX is a partial BLT-set. There
are 2 such orbits X1 and X2 and each has the property that OUXi can be completed
to a unique BLT-set Bi by the addition of orbits of S of length 3. B1 has a group of
order 1152 and is not Fisher. B2 has a group of order 72.

(iii) N has only one orbit on orbits of S that are partial BLT-sets of size 3, with
representative Y . There are no BLT-sets comprised of 5 orbits of S of length 3 and 1
of length 9. There are 3 BLT-sets containing Y comprised of 8 orbits of S of length 3,
two of which are Fisher and one classical.

In conclusion, since only one BLT-set with a group of order 1152 arose which is
not Fisher, it must be PR1152, and since only one BLT-set with a group of order 72
arose, it must be DCH72.

Lemma 5.2. A BLT-set of Qð4; 23Þ with a group of order divisible by 3 is classical,
Fisher, Fisher–Thas–Walker, PR1152, DCH72, PR24 or PR6.

Proof. We run software in MAGMA to verify the assertions that follow.
(i) There are 2 conjugacy classes of subgroups of PGOð5; 23Þ of order 3: one H1

with 0 fixed points, the other H2 with 24 fixed points.
(ii) H1 has 4 048 orbits of length 3 that are partial BLT-sets, which fall into one

orbit under the normaliser N of H1 in PGOð5; 23Þ, with representative Y . We calcu-
late all BLT-sets on Y that are a union of H1-orbits, obtaining many with a group
of order divisible by 9, 24 with a group of order 12 144 with representative B1, 192
with a group of order 24 with representative B2 and 192 with a group of order 6
with representative B3. N has order 582 912, and meets the stabiliser of B1 in a group
of order 48, the stabiliser of B2 in a group of order 6 and contains the stabiliser of
B3. Hence the orbit of B1 under N consists of 12 144 BLT-sets, the orbit of B2 under
N consists of 97 152 BLT-sets and the orbit of B3 under N consists of 97 152 BLT-
sets. Since N is transitive on H1-orbits of length 3 that are partial BLT-sets, each of
them lies on a constant number of BLT-sets in each of these orbits. That number is
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12 144:8=4 048 ¼ 24 for the N-orbit of B1, 97 152:8=4 048 ¼ 192 for both the N-orbit
of B2 and the N-orbit of B3. Thus all the BLT-sets arising with a group of order
12 144 are equivalent under N, all the BLT-sets arising with a group of order 24 are
equivalent under N, and all the BLT-sets arising with a group of order 6 are equiva-
lent under N.

(iii) H2 leads only to BLT-sets with a group of order divisible by 9.
In conclusion, either the BLT-set has a group of order divisible by 9, in which case,

by Lemma 5.1, it is classical, Fisher, PR1152 or DCH72 or it has a group of order
12 144 or a group of order 24 or a group of order 6. If it has a group of order 12 144,
then it is uniquely determined, so it is Fisher–Thas–Walker. If it has a group of order
24, then it is uniquely determined, so it is PR24. If it has a group of order 6, then it is
uniquely determined, so it is PR6.

Lemma 5.3. A BLT-set of Qð4; 23Þ with a group of order divisible by 11 is classical,
Fisher–Thas–Walker, or Kantor monomial.

Proof. We run software in MAGMA to verify the assertions that follow.
(i) There are four conjugacy classes of subgroups of PGOð5; 23Þ of order 11: one

H1 with 48 fixed points, another H2 with 26 fixed points, two H3 and H4 with 4 fixed
points.

(ii) H1 does not stabilise any BLT-sets.
(iii) H2 has 506 orbits of length 11 that are partial BLT-sets, which fall into one

orbit under the normaliser N of H2 in PGOð5; 23Þ, with representative Y . We cal-
culate all BLT-sets on Y that are a union of H2-orbits, finding just one, which is
classical.

(iv) H3 has 44 orbits of length 11 that are partial BLT-sets, which fall into one
orbit under the normaliser N of H3 in PGOð5; 23Þ, with representative Y . We calcu-
late all BLT-sets on Y that are a union of H3-orbits, finding just one, with a group of
order 44.

(v) H4 has 44 orbits of length 11 that are partial BLT-sets, which fall into one orbit
under the normaliser N of H4 in PGOð5; 23Þ, with representative Y . We calculate all
BLT-sets on Y that are a union of H4-orbits, finding just one, with a group of order
12 144.

Since the Fisher–Thas–Walker and Kantor monomial BLT-sets have to arise here
as they have groups of order 12 144 and 44, respectively, the BLT-set in (iv) is Kantor
monomial and that in (v) is Fisher–Thas–Walker.

Lemma 5.4. There is a unique conjugacy class of subgroups of PGOð5; 23Þ of PR16-
type.

Proof. We apply the Subgroups command in MAGMA to a Sylow 2-subgroup of
PGOð5; 23Þ, and check the order distributions and fixed point distributions for the
resulting subgroups of order 16.

Lemma 5.5. There is a unique BLT-set of Qð4; 23Þ, up to equivalence, whose group is of

PR16-type. This unique BLT-set is PR16.
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Proof. Taking the orbits of a representative H of this unique conjugacy class (Lemma
5.4), calculate the orbits that form partial BLT-sets and the unions of orbits that form
BLT-sets by computer. There arise two classical BLT-sets and 2 with groups of order
16. The latter fall into a single orbit under the normaliser ofH in PGOð5; 23Þ, so up to
equivalence, there is a unique result. It is easy to verify that PR16 has these properties.

Theorem 5.6. A BLT-set of Qð4; 23Þ is equivalent to a classical, Fisher, Mondello,
PR20 or PR16 BLT-set if and only if P(23) holds.

Proof. Combine Lemmas 4.2 and 4.4.

Theorem 5.7. The only BLT-sets of Qð4; 23Þ are the classical, Fisher, Fisher–Thas–
Walker, Kantor monomial, DCH72, PR1152, PR24, PR16 and PR6 BLT-sets, up to

equivalence.

Corollary 5.8. There are exactly 18 flocks of the quadratic cone in PGð3; 23Þ, up to

equivalence.

Proof. By [35], each of the classical, Fisher, Fisher–Thas–Walker, PR1152 and PR24
BLT-sets of Qð4; 23Þ leads to a single flock of the quadratic cone in PGð3; 23Þ, while
the BLT-sets DCH72 and Kantor monomial of Qð4; 23Þ each lead to 2 inequivalent
flocks of the quadratic cone in PGð3; 23Þ, the BLT-set PR16 leads to 4 inequivalent
flocks of the quadratic cone in PGð3; 23Þ, and the BLT-set PR6 leads to 5 inequiva-
lent flocks of the quadratic cone in PGð3; 23Þ. The result follows by Theorem 2.1.

6 Classification of BLT-sets in Q(4‚25)

Here the definitive work on construction is [35], where 6 BLT-sets of Qð4; 25Þ are
listed, namely, the classical and Fisher BLT-sets ([15]), Kantor semifield BLT-sets
([22]), Kantor likeable BLT-sets ([21], [17]), and two new ones with groups of orders
16 and 8, which we shall refer to as PR16 and PR8. In order to avoid being repetitive,
we shall abbreviate the treatment of each case from now on. The ad hoc hypothesis
P(25) used to characterise these BLT-sets B of Qð4; 25Þ is on the stabiliser of B in
PGOð5; 25Þ: that it has order divisible by 13 or contains an element of order 4 that
either is in PGOð5; 25Þ and has 4 fixed points or is not in PGOð5; 25Þ and has 8 fixed
points.

Theorem 6.1. A BLT-set of Qð4; 25Þ is equivalent to a classical, Fisher, Kantor semi-

field, Kantor likeable, PR16 or PR8 BLT-set if and only if P(25) holds.

Proof. By computer, broken down into the three cases. Conjugacy results are neces-
sary for the appropriate subgroups of order 4.

Theorem 6.2. Any BLT-set of Qð4; 25Þ is equivalent to a classical, Fisher, Kantor
semifield, Kantor likeable, PR16 or PR8 BLT-set.
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Corollary 6.3. There are exactly 12 flocks of the quadratic cone in PGð3; 25Þ, up to

equivalence.

Proof. By [35], each of the classical, Fisher and Kantor semifield BLT-sets of Qð4; 25Þ
leads to a single flock of the quadratic cone in PGð3; 25Þ, while the Kantor like-
able BLT-set of Qð4; 25Þ leads to 2 inequivalent flocks of the quadratic cone in
PGð3; 25Þ, the BLT-set PR16 leads to 3 inequivalent flocks of the quadratic cone in
PGð3; 25Þ, and the BLT-set PR8 leads to 4 inequivalent flocks of the quadratic cone
in PGð3; 23Þ. The result follows by Theorem 2.1.

7 Classification of BLT-sets in Q(4‚27)

Here the definitive work on construction is [24], where 6 BLT-sets of Qð4; 27Þ are
listed, namely, the classical and Fisher BLT-sets [15], Kantor semifield BLT-sets [22],
Ganley BLT-sets [16], [17], Kantor monomial BLT-sets [22] and one new one with a
group of order 6, now a member of the Law–Penttila family [25].

The ad hoc hypothesis P(27) used to characterise these BLT-sets B of Qð4; 27Þ is on
the stabiliser of B in PGOð5; 27Þ: that it has an element of order 3 that has 40 fixed
points.

Theorem 7.1. A BLT-set of Qð4; 27Þ is equivalent to a classical, Fisher, Kantor semi-

field, Ganley, Kantor monomial or Law–Penttila BLT-set if and only if P(27) holds.

Theorem 7.2. Any BLT-set of Qð4; 27Þ is equivalent to a classical, Fisher, Kantor
semifield, Ganley, Kantor monomial or Law–Penttila BLT-set.

Corollary 7.3. There are exactly 14 flocks of the quadratic cone in PGð3; 27Þ, up to

equivalence.

Proof. By [24], each of the classical, Fisher and Kantor semifield BLT-sets of Qð4; 27Þ
leads to a single flock of the quadratic cone in PGð3; 27Þ, while the Kantor monomial
and Ganley BLT-sets of Qð4; 27Þ each lead to 2 inequivalent flocks of the quadratic
cone in PGð3; 27Þ, and the Law–Penttila BLT-set leads to 7 inequivalent flocks of the
quadratic cone in PGð3; 27Þ. The result follows by Theorem 2.1.

8 Classification of BLT-sets in Q(4‚29)

Here the definitive work on construction is [24], where 9 BLT-sets of Qð4; 29Þ are
listed, namely, the classical and Fisher BLT-sets [15], the Fisher–Thas–Walker BLT-
sets [15], [43], the Mondello BLT-sets [34], and five new ones with groups of orders
720, 48, 8, 6 and 3, which we will refer to as LP720, LP48, LP8, LP6 and LP3.

The ad hoc hypothesis P(29) used to characterise these BLT-sets B of Qð4; 29Þ is on
the stabiliser of B in PGOð5; 29Þ: that it has an element of order 3 that has no fixed
points or an element of order 5 that has no fixed points and a centraliser of order
730 800 or has a dihedral group of order 8 with 2 elements with 2 fixed points, 4 ele-
ments with 30 fixed points and 1 element with 32 fixed points.
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Theorem 8.1. A BLT-set of Qð4; 29Þ is equivalent to a classical, Fisher, Fisher–Thas–
Walker, Mondello, LP720, LP48, LP8, LP6 or LP3 BLT-set if and only if P(29)
holds.

Theorem 8.2. Any BLT-set of Qð4; 29Þ is equivalent to a classical, Fisher, Fisher–
Thas–Walker, Mondello, LP720, LP48, LP8, LP6 or LP3 BLT-set.

Corollary 8.3. There are exactly 28 flocks of the quadratic cone in PGð3; 29Þ, up to

equivalence.

Proof. By [24], each of the classical, Fisher, Fisher–Thas–Walker, Mondello and
LP720 BLT-sets of Qð4; 29Þ leads to a single flock of the quadratic cone in PGð3; 29Þ,
while the BLT-set LP48 of Qð4; 29Þ leads to 2 inequivalent flocks of the quadratic
cone in PGð3; 29Þ, the BLT-set LP8 of Qð4; 29Þ leads to 5 inequivalent flocks of the
quadratic cone in PGð3; 29Þ, the BLT-set LP6 of Qð4; 29Þ leads to 6 inequivalent
flocks of the quadratic cone in PGð3; 29Þ, and the BLT-set LP3 of Qð4; 29Þ leads to
10 inequivalent flocks of the quadratic cone in PGð3; 29Þ. The result follows by The-
orem 2.1.
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