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Abstract. We construct a new ovoid of the polar space arising from the Hermitian surface of
PGð3; q2Þ with qd 5 odd. The automorphism group G of such an ovoid has a normal cyclic
subgroup F of order 1

2 ðqþ 1Þ such that G=FGPGLð2; qÞ. Furthermore, G has three orbits on
the ovoid, one of size qþ 1 and two of size 1

2 qðq� 1Þðqþ 1Þ.
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1 Introduction

The concept of ovoid and its generalisations have played an important role in finite
geometry since the fifties. By a beautiful result of A. Barlotti [2] and G. Panella [10],
every ovoid in PGð3; qÞ with q odd is an elliptic quadric. This is a generalisation of
Segre’s famous theorem [11] stating that every oval in PGð2; qÞ, with q odd, is a conic.
Ovoids of finite classical polar spaces have been intensively investigated, especially in
the last two decades, see [1], [3], [4], [5], [9], [12], [13], [14] and the recent survey paper
[15]. In this paper we are concerned with ovoids of the polar space determined by a
non-degenerate Hermitian surface Hð3; q2Þ of PGð3; q2Þ.

An ovoid O of the polar space arising from Hð3; q2Þ is a set of q3 þ 1 points in
Hð3; q2Þ which meets every generator (that is, every line contained in Hð3; q2Þ) in
exactly one point. The intersection of Hð3; q2Þ with any non-tangent plane provides
an ovoid—namely, the classical ovoid of Hð3; q2Þ. Existence of non-classical ovoids
of Hð3; q2Þ was pointed out by Payne and Thas [16], who constructed a non-classical
ovoid O 0 from the classical one O by replacing the qþ 1 points of O lying in a chord l
by the common points of Hð3; q2Þ with the polar line l 0 of l. A straightforward
generalisation of this procedure consists in replacing a number of chords of O, each
with its own polar line. The condition for the resulting set to be an ovoid is easily
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stated: the replaced chords must pairwise intersect outside of O. The above procedure
will be called derivation or multiple derivation according to one or more chords being
replaced.

In this paper, we construct an ovoid O of Hð3; q2Þ for every odd qd 5 which
cannot be obtained either by derivation or by multiple derivation. We also deter-
mine the automorphism group of O, as given by the subgroup of PGUð4; q2Þ pre-
serving O.

2 Preliminary results on ovoids of the Hermitian surface

Let Hð3; q2Þ be a non-degenerate Hermitian surface in PGð3; q2Þ. It is well known,
see [6, Chapter 19], that Hð3; q2Þ can be reduced by a non-singular linear transfor-
mation to the canonical form X

q
0 X3 þ X0X

q
3 þ uX

qþ1
1 þ vX

qþ1
2 ¼ 0, where u; v A Fq

are non-zero elements. The linear collineation group of PGð3; q2Þ preservingHð3; q2Þ
is PGUð4; q2Þ. See [8] for a classification of the subgroups of PGUð4; q2Þ. We shall
rely only upon an existence theorem for subgroups of homologies, as stated in the
following lemma.

Lemma 2.1. Let a be a non-tangent plane to Hð3; q2Þ and A its pole under the unitary

polarity associated with Hð3; q2Þ. Then the ða;AÞ homology group of PGUð3; q2Þ, that
is, the maximal subgroup of PGUð3; q2Þ consisting of homologies with axis a and cen-

tre A, is a cyclic group of order qþ 1.

We shall also need a characterisation of ovoids which can be obtained by multiple
derivation.

Lemma 2.2. Let O 0 be an ovoid of Hð3; q2Þ. A necessary and su‰cient condition for O 0

to be obtainable from a classical ovoid O of Hð3; q2Þ through multiple derivation is that

O 0 is preserved by the ða;AÞ homology group of PGUð3; q2Þ for a non-tangent plane a

and its pole A.

Proof. Choose a pair ða;AÞ consisting of a non-tangent plane a to Hð3; q2Þ and the
pole A of a under the unitary polarity associated with Hð3; q2Þ. Let O be the clas-
sical ovoid given by all common points of Hð3; q2Þ and a. Denote by C the homol-
ogy group of PGUð3; q2Þ with axis a and centre A. It is easily verified that if an ovoid
O 0 arises from O by (multiple) derivation, then C preserves O 0. Conversely, we prove
that if C preserves an ovoid O 0 di¤erent from O, then O 0 can be obtained from O by
(multiple) derivation. Let P A O 0 be a point not on a. Then the orbit of P under C
consists of the common points of Hð3; q2Þ and the line l 0 joining A and P. Hence,
Hð3; q2ÞV l 0 is contained in O 0. Let now l 0

1; . . . ; l
0
m be the lines through A which

meet O 0 outside a, and let l1; . . . ; lm be their corresponding polar lines. The latter
lines are chords of the Hermitian curve Hð2; q2Þ ¼ O, cut out on Hð3; q2Þ by the
plane a, and any two of them intersect outside Hð2; q2Þ. This proves that O 0 arises
from O by multiple derivation. r
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3 The construction

We assume qd 5 to be odd and write the equation of the Hermitian surface Hð3; q2Þ
in its canonical form

X
q
3 X0 þ X3X

q
0 þ 2X qþ1

2 � X
qþ1
1 ¼ 0: ð3:1Þ

The starting point of our construction is the following lemma.

Lemma 3.1. Let ðx; yÞ satisfy the relation

yq þ yþ xðqþ1Þ=2 ¼ 0: ð3:2Þ

Then the point ð1; x; y; y2Þ lies on Hð3; q2Þ.

Proof. If ðx; yÞ satisfies (3.2), then the polynomial identity

ðY q þ Y � X ðqþ1Þ=2ÞðY q þ Y þ X ðqþ1Þ=2Þ ¼ Y 2q þ 2Y qþ1 þ Y 2 � X qþ1

implies that y2q þ 2yqþ1 þ y2 � xqþ1 ¼ 0. The geometric interpretation of this equa-
tion is that the point ð1; x; y; y2Þ lies on Hð3; q2Þ. r

Lemma 3.2. Let x A F�
q2 . Then Equation (3.2) has either q or 0 solutions in y A Fq2 ,

according as x is a square or a non-square in Fq2 .

Proof. We first prove that if ðx; yÞ, with x; y A Fq2 , satisfies (3.2), then x is the square
of an element of Fq2 . The assertion holds trivially for x ¼ 0; hence, we may assume
that x0 0. Since yq þ y A Fq, we have �xðqþ1Þ=2 A Fq, whence ðxðqþ1Þ=2Þq�1 ¼ 1. On
the other hand, x0 0 is a square in Fq2 if and only if xðq

2�1Þ=2 ¼ 1, which proves
the assertion. Conversely, let x be a square element of Fq2 , and take x A Fq2

such that x ¼ x2. By [7, 1.19], the equation yq þ y ¼ xqþ1 has exactly q solutions in
Fq2 . Hence, yq þ y ¼ xðqþ1Þ=2 holds for exactly q values y A Fq2 . This completes the
proof. r

Let S denote the set of all pairs ðx; yÞ with x; y A Fq2 satisfying (3.2).

Lemma 3.3. The set S has size 1
2 qðq2 þ 1Þ.

Proof. The number of squares in Fq2 , zero included, is ðq2 þ 1Þ=2. Thus, the assertion
follows from Lemma 3.2 together with a counting argument. r

We embed S in PGð3; q2Þ by means of the map j : ð1; x; yÞ 7! ð1; x; y; y2Þ. Some
properties of the embedded set are collected in the following two lemmas.
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Lemma 3.4. Let D be the set of all points ð1; x; y; y2Þ of PGð3; q2Þ with ðx; yÞ A S,
together with the point ð0; 0; 0; 1Þ. Then

I) D has size 1
2 ðq3 þ qþ 2Þ;

II) The plane p with equation X1 ¼ 0 intersects D in a set D1 of size qþ 1. The set D1

is the complete intersection in p of the conic C with equation X0X3 � X 2
2 ¼ 0 and

the Hermitian curve Hð2; q2Þ with equation X
q
0 X3 þ X0X

q
3 þ 2X

qþ1
2 ¼ 0;

III) The Baer involution b :¼ ðX0;X2;X3Þ 7! ðX q
0 ;�X

q
2 ;X

q
3 Þ of p preserves both C

and Hð2; q2Þ. The associated Baer subplane p0 of p meets Hð2; q2Þ in D1;

IV) D1 lies in p0 and consists of all the points of a conic C0 of p0.

Proof. The lemma is a consequence of straightforward computations. r

Lemma 3.5. The point U ¼ ð0; 1; 0; 0Þ is not in D. Furthermore,

i) A line through U meets D in either 1
2 ðqþ 1Þ or 1 or 0 points. More precisely, there

are exactly q2 � q lines through U sharing 1
2 ðqþ 1Þ points with D, and qþ 1 lines

having just one point in D. The former lines meet the plane p in the points of the

conic C not lying on D1; the latter in the points of D1;

ii) A plane through U meets D in either qþ 1 or 1
2 ðqþ 1Þ or 0 points;

iii) A plane missing U meets D in at most q2 þ 1 points.

Proof. In order to prove ii), take a point Pð1; x; y; y2Þ in D and consider the line
l through U and P. The point Ptð1; xþ t; y; y2Þ, for t A Fq2 , is a common point

of l and D if and only if yq þ yþ ðxþ tÞðqþ1Þ=2 ¼ 0. By (3.2) this occurs when
ðxþ tÞðqþ1Þ=2 ¼ xðqþ1Þ=2. For x ¼ 0, this implies t ¼ 0. Hence, in this case, P is
the only common point of l and D. In particular, P A D1. For x0 0, we obtain
ð1þ t=xÞðqþ1Þ=2 ¼ 1. Since all the 1

2 ðqþ 1Þ-st roots of unity are contained in Fq2 and
they are pairwise distinct, l contains exactly 1

2 ðqþ 1Þ points from D. The common
point of l and p is the point ð1; 0; y; y2Þ which lies on C, but does not belong to D1.
Let now a be the plane through U with equation u0X0 þ u2X2 þ u3X3 ¼ 0; a point
Pð1; x; y; y2Þ of D lies in a if and only if u0 þ u2yþ u3y

2 ¼ 0. Since for every y A Fq2 ,
Equation (3.2) has exactly 1

2 ðqþ 1Þ solutions in x A Fq2 , statement ii) follows. To
prove iii), consider a plane b which meets any line through U in exactly one point. By
statement i), there are at most q2 þ 1 lines through U containing a point of D. Hence,
q2 þ 1 is an upper bound for the number of points in common between b and D. This
proves statement iii). r

We need some more notation. For q1 1 ðmod 4Þ, denote by D 0 the set of all
points in Hð2; q2ÞnD1 which are covered by chords of C0. For q1 3 ðmod 4Þ, D 0 will
denote the set of all points in Hð2; q2Þ which are covered by external lines to C0 in
p0. Clearly, D

0 has size 1
2 qðqþ 1Þðq� 1Þ. Several properties of DUD 0 can be deduced

from Lemma 3.5. However, we just state one which will be used in Section 5.
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Lemma 3.6. With the notation above,

i) The plane X1 ¼ 0 meets DUD 0 in 1
2 ðq3 þ qþ 2Þ points; any other plane of PGð3; q2Þ

has at most q2 þ qþ 2 points in common with DUD 0;

ii) A line through U meets DUD 0 in either 1
2 ðqþ 1Þ or 1 or 0 points. More precisely,

there are exactly q2 � q lines through U sharing 1
2 ðqþ 1Þ points with DUD 0, and

1
2 ðq3 þ qþ 2Þ having just one point in DUD 0. The former lines meet p in the points

of the conic C which are not in D1; the latter meet p in the points of D1 UD 0.

The main result of this paper is the following.

Theorem 3.7. The set DUD 0 is an ovoid of Hð3; q2Þ which cannot be obtained from a

Hermitian curve by means of multiple derivation.

The proof of Theorem 3.7 is postponed till Section 5. Meanwhile, we state and
prove some properties of the collineation group of DUD 0 which will play a role in its
proof.

4 The subgroup of PGU(4‚q2) preserving DUDO

The linear collineation group of PGð3; q2Þ preserving Hð3; q2Þ is PGUð4; q2Þ. First,
we determine the subgroup of PGUð4; q2Þ which preserves D. In doing so, we shall be
dealing with several collineations from PGUð4; q2Þ.

For any a A Fq2 , with aq þ a ¼ 0, and for any square m in Fq2 , let

Ta :¼

1 0 0 0

0 1 0 0

a 0 1 0

a2 0 2a 1

0
BBB@

1
CCCA; Mm :¼

1 0 0 0

0 m 0 0

0 0 mðqþ1Þ=2 0

0 0 0 mðqþ1Þ

0
BBB@

1
CCCA:

Denote by ½Ta� and ½Mm� the linear collineations associated with the matrices Ta and
Mm, respectively.

It is easily verified that T ¼ f½Ta� j a A Fq2g is an elementary Abelian group of order
q, while M ¼ f½Mm� j m A F�

q2g is a cyclic group of order 1
2 ðq2 � 1Þ. Furthermore, the

group generated by T and M is the semidirect product TzM.
For any non-zero square l in F�

q , let

Ll :¼

1 0 0 0

0 l 0 0

0 0 1 0

0 0 0 1

0
BBB@

1
CCCA:

Again, ½Ll� is the linear collineation associated to the matrix Ll. Clearly, L ¼
f½Ll� j l A F�

q g is a cyclic group of order ðqþ 1Þ=2. Finally, let
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N :¼

0 0 0 1

0 1 0 0

0 0 1 0

1 0 0 0

0
BBB@

1
CCCA;

and ½N� be the associated linear collineation; the collineation group N generated by
½N� has order 2.

Lemma 4.1. Let G be the the group generated by all of the above linear collineations.
Then

i) G preserves both Hð3; q2Þ and D;

ii) G has two orbits on D. One is D1 and the other, say D2, has size
1
2 qðq� 1Þðqþ 1Þ;

iii) G acts on D1 as a sharply 3-transitive permutation group;

iv) The subgroup F of G fixing D1 pointwise is a cyclic group of order 1
2 ðqþ 1Þ and

G=FGPGLð2; qÞ;

v) G has order 1
2 qðq� 1Þðqþ 1Þ2.

Proof. A straightforward computation shows that each of the above linear collinea-
tions preserves both Hð3; q2Þ and D. This proves the first assertion. Next, take any
square x A Fq2 . Following Lemma 3.4, let DðxÞ be the set of the q points Py ¼
ð1; x; y; y2Þ, satisfying yq þ y ¼ xðqþ1Þ=2, y A Fq2 . Then D1 ¼ Dð0ÞUPyð0; 0; 0; 1Þ.
Further, let D2 ¼ 6DðxÞ, where the union is over the set of non-zero squares of Fq2 .
Then jD2j ¼ 1

2 qðq2 � 1Þ and D ¼ D1 UD2. To prove that D2 is a full orbit under G,
take any two points in D2, say P ¼ ð1; x; y; y2Þ and Q ¼ ð1; x 0; y 0; y 02Þ. Since both
x and x 0 are non-zero squares in Fq2 , their ratio m ¼ x=x 0 is also a non-zero square

element of Fq2 . The collineation ½Mm� maps Q onto a point R ¼ ð1; x; y; y2Þ A D2. For
a ¼ y� y, the collineation ½Ta� takes R onto P. This proves the assertion. We now
show that G induces on D1 a 3-transitive permutation group. This depends on the
following remarks: the group T fixes Py and acts transitively on the remaining q

points in D1, whereas M fixes both P0 and Py and acts transitively on the remaining
q� 1 points in D1. Hence, TzM acts on D1nfPyg as a sharply 2-transitive permu-
tation group whose one-point stabiliser is cyclic. Furthermore, ½N� interchanges
P0 and Py. Following the notation of Lemma 3.4, let F be the normal subgroup of
G which fixes p pointwise. Any collineation of F is associated with a diagonal matrix
of type

1 0 0 0

0 r 0 0

0 0 1 0

0 0 0 1

0
BBB@

1
CCCA;

with r A F�
q2 ; such collineation preserves D if and only if rðqþ1Þ=2 ¼ 1. This shows that

F ¼ L. Hence, F is a cyclic group of order ðqþ 1Þ=2. Let G ¼ G=F be the linear
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collineation group induced by G on p. Then G is the linear collineation group of p
which preserves D1. Actually, G also preserves the Baer subplane p0 as defined in III)
of Lemma 3.4, since the associated Baer involution b centralises G. By IV) of Lemma
3.4, G is a linear collineation group of p0 which acts 3-transitively on a conic C0 of
p0. Thus, GGPGLð2; qÞ acts on C0 as PGLð2; qÞ in its unique sharply 3-transitive
permutation representation. In particular, G has order qðq� 1Þðqþ 1Þ, and hence v)
holds. r

In the previous proof, we have also shown that G coincides with the subgroup of
PGUð4; q2Þ which preserves both D1 and D2. Actually, this result can be improved
with little more e¤ort.

Lemma 4.2. The group G is the subgroup of PGUð4; q2Þ which preserves D.

Proof. Assume, to the contrary, that the subgroup of PGUð4; q2Þ which preserves
D acts transitively on D. Then the size of D should divide the order of PGUð3; q2Þ,
that is, 12 ðqþ 1Þðq2 � qþ 2Þ should divide q6ðqþ 1Þ3ðq� 1Þ2ðq2 � qþ 1Þ. Let d be a

prime divisor of q2 � qþ 2. Thus d divides ðq� 1Þ2ðqþ 1Þ3 too. This is possible only
for d ¼ 2. Hence, q2 þ q� 2 ¼ 2m for an integer md 1. We show that this cannot
occur for qd 5. First, assume that m ¼ 2n is even and write q2 � qþ 2 ¼ 22n in the
equivalent form ð2nþ1 þ ð2q� 1ÞÞð2nþ1 � ð2q� 1ÞÞ ¼ 7, whence 2nþ1 þ 2q� 1 ¼ 7
and 2nþ1 � ð2q� 1Þ ¼ 1. This only occurs for q ¼ 2, n ¼ 1. For the case m ¼ 2nþ 1,
write q2 � qþ 2 ¼ 22nþ1 as qðq� 1Þ ¼ 2ð2n þ 1Þð2n � 1Þ. This yields kq ¼ 2n G 1
and 1

2k
ðq� 1Þ ¼ 2n H 1 for a divisor k of q� 1. Then kq� 1

2k
ðq� 1Þ ¼ 2, which is

only possible for q ¼ 3, n ¼ 1 and k ¼ 1, since kq� 1
2k
ðq� 1Þ > ðq� 1Þ k � 1

k

� �
>

1
2 kðq� 1Þ. r

We now turn our attention to D 0.

Lemma 4.3. The group G preserves D 0. More precisely, D 0 is an orbit under G.

Proof. Using the notation of Lemma 3.4, G preserves the plane p and induces on p a
linear collineation group GGPGLð2; qÞ that leaves both C0 and Hð2; q2Þ invariant.
In particular, G preserves the set of all chords of C0, as well as that of external lines
to C0. Hence, it leaves D 0 invariant. To prove that G is transitive on D 0, it is enough
to show that the stabiliser GP of a point P A Hð2; q2ÞnD1 has order 2. As P B p0, there
is only one line of p0 through P, say l. Since tangents to C0 are also tangents to
Hð2; q2Þ, l is either a chord of C0 or an external line to C0. Thus, the stabiliser Gl

of l is a dihedral group DqG1 of order 2ðqG 1Þ, where þ or � occurs depending
on whether l is an external line or a chord. The central involution of DqG1 fixes l
pointwise, whereas each of the qG 1 non-central involutions of DqG1 has exactly two
fixed points, both in p0, hence distinct from P. Choose now any element g A DqG1 of
order greater than 2. To complete the proof we have to show that gðPÞ0P. If l is
an external line to C0, then g has no fixed point on l; when l is a chord, g fixes the
common points of l and C0 but no other point on l. r
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Our final result is the following theorem.

Theorem 4.4. The group G is the subgroup of PGUð4; q2Þ which preserves DUD 0.

Proof. By virtue of the last two Lemmas, we have only to prove that any collineation
g A PGUð3; q2Þ preserving DUD 0 must also preserve D. By i) of Lemma 3.6, g pre-
serves the plane p with equation X1 ¼ 0. Since U ¼ ð0; 1; 0; 0Þ is the pole of p with
respect to the unitary polarity associated with Hð3; q2Þ, it turns out that g fixes U .
By ii) of Lemma 3.6, g preserves the conic C of p. Since g preserves Hð2; q2Þ ¼
Hð3; q2ÞV p and D1 ¼ Hð2; q2ÞVC ¼ C0, it follows that g preserves both D1 and
CnD1. Again, by ii) of Lemma 3.6, the latter assertion yields that g preserves not only
D1 but also DnD1. This can only happen if g preserves D. r

5 The proof of Theorem 3.7

We keep our previous notation. We first prove that O ¼ DUD 0 is an ovoid. Since O
has the right size, q3 þ 1, it is enough to show that no two distinct points in O are
conjugate under the unitary polarity associated with Hð3; q2Þ. As D1 UD2 lies in the
plane p, which is not tangent to Hð3; q2Þ, our assertion is true for any two distinct
points in D1 UD 0. It remains to prove that no point P A D2 ¼ DnD1 is conjugate to
another point in DUD 0. Since, by ii) of Lemma 4.1, G acts transitively on D2, we
may assume P 1; 1;� 1

2 ;
1
4

� �
. The plane aP, tangent to Hð3; q2Þ at P, has equation

X0 � 4X1 � 4X2 þ 4X3 ¼ 0. We have to verify that both of the following statements
hold:

i) aP has no points in D except P;

ii) aP meets p in a line disjoint from D1 UD 0.

Let Q ¼ ð1; x; y; y2Þ A D2 be a point of aP. Then by Lemma 3.2, x ¼ x2 with x A Fq2 .
In this case, both 1� 4x2 � 4yþ 4y2 ¼ 0 and yq þ yþ xqþ1 ¼ 0. The former equa-
tion gives y ¼G1

2 ð2xþ 1Þ; it follows that ðGxq � 1ÞðGx� 1Þ ¼ 0. This yields x ¼G1.
Thus, x ¼ 1 and either y ¼ � 1

2 , or y ¼ 3
2 . As q is odd, the latter condition is impos-

sible. Hence, Q is the only common point of a and D2.
To verify ii), we consider the line l ¼ aP V p with equation X0 � 4X2 þ 4X3 ¼ 0,

and we show that l is disjoint from D 0.
We first deal with the case q1 1 ðmod 4Þ. For any chord r of C0, compute the coor-

dinates of the point R ¼ lV r. Let R1 ¼ ð1; u; u2Þ and R2 ¼ ð1; v; v2Þ, with uq þ u ¼ 0,
vq þ v ¼ 0, be the common points of r andC0. Since r has equation uvX0 � ðuþ vÞX2 þ
X3 ¼ 0, we have R ¼ ð4ðuþ v� 1Þ; 4uv� 1; 4uv� u� vÞ. Let

f ¼ 4ðuþ v� 1Þqð4uv� u� vÞ þ 4ðuþ v� 1Þð4uv� u� vÞq þ 2ð4uv� 1Þqþ1:

Then f ¼ 0 if and only if R A Hð2; q2Þ. By a straightforward computation,

f ¼ 4ðuþ v� 1Þqðuþ v� 4uvÞ þ 4ðuþ v� 1Þðuþ v� 4uvÞq

þ 2ð4uv� 1Þqþ1 ¼ 4ð1þ 4v2Þu2 � 16vuþ 4v2 þ 1:
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This shows that f ¼ 0 implies that

u ¼ 4vþ ð4v2 � 1Þ j
2ð1þ 4v2Þ ; j2 ¼ �1: ð5:1Þ

As q1 1 ðmod 4Þ, we have j q ¼ j. Taking uq þ u ¼ 0, vq þ v ¼ 0 into account, we
see that f ¼ 0 yields

0 ¼ uq þ u ¼ 4v� 1

2ð1þ 4vÞ ð j þ j qÞ:

Therefore, q1 1 ðmod 4Þ implies f 0 0 and ii) follows for this case.
If q1 3 ðmod 4Þ, we have to consider an external line r to C0. Since r meets C

in two distinct points, r can be regarded as the line joining the point R1ð1; u; u2Þ,
with uq þ u0 0, and its image R2ð1;�uq; u2qÞ under the Baer involution associated
with p0, see statement III) of Lemma 3.4. Hence, r has equation X3 þ ðuq � uÞX2 �
uqþ1X0 ¼ 0. The common point of r and l is R ¼ ð4ðuq � uþ 1Þ; 4uqþ1 þ 1; 4uqþ1 �
uq þ uÞ. Let

f ¼ 4ðuq � uþ 1Þqð4uqþ1 � uq þ uÞ

þ 4ðuq � uþ 1Þð4uqþ1 � uq þ uÞq þ 2ð4uqþ1 þ 1Þqþ1:

Then R A Hð2; q2Þ if and only if f ¼ 0. By a direct computation f ¼ 2½4ðuq þ uÞ2 þ
ð4uqþ1 þ 1Þ2�. Therefore, f ¼ 0 implies that 2ðuq þ uÞ ¼ jð4uqþ1 þ 1Þ with j2 ¼ �1,
whence 4uqþ1 þ 10 0 and

j ¼ 2
uq þ u

4uqþ1 þ 1
:

This yields j A Fq, contradicting q1 3 ðmod 4Þ, and completes the proof of ii).
Finally, assume by way of contradiction that O is obtained by a multiple deriva-

tion. According to Lemma 2.2, there is a homology group C of order qþ 1 preserv-
ing O. Let a be its axis; the pole A of a is the centre of the elements of C. By Theorem
4.4, C is a subgroup of G; hence, it preserves p. However, C is not a subgroup of
F, since, by iv) of Lemma 4.1, the subgroup F of G fixing p pointwise has order
1
2 ðqþ 1Þ. In particular, a0 p. Hence, C acts faithfully on p. In other words, the linear
collineation group H induced by C on p has order qþ 1. Actually, H is a homology
group of p whose axis is the common line of a and p and whose centre is the point
of intersection of p and the line joining A and U . By ii) of Lemma 3.5, H preserves
the conic C of p. This leads to a contradiction, as no homology of order t > 2 pre-
serves a conic.
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