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Abstract. We generalize the theory of sheaves to chamber systems. We prove that, given a
chamber system C and a family R of proper residues of C containing all residues of rank c1,
every sheaf defined over R admits a completion which extends C. We also prove that, under
suitable hypotheses, a sheaf defined over a truncation of C can be extended to a sheaf for C. In
the last section of this paper, we apply these results to a number of special cases.

1 Introduction

Given a diagram D over a set of types I and a nonempty subset J of I with jI nJjd 3,
let G be a geometry over K :¼ I nJ where residues of rank 2 are as if G were a trun-
cation of a geometry E belonging to D. We might wonder if such an extension E
really exists for G, being willing to be satisfied with something less than a geometry,
namely a chamber system from which the chamber system of G can be obtained as a
truncation. That geometry (or chamber system) E, if it exists, is called a D-extension
of G. More formally, a D-extension of G is a pair ðE; tÞ where E is a geometry (or a
chamber system) belonging to D and t is an isomorphism from G (respectively, from
the chamber system CðGÞ of G) to the J-truncation TrJðEÞ of E. (We recall that,
when E is a geometry, TrJðEÞ is the induced subgeometry of E obtained by removing
all elements of type j A J; when E is a chamber system, TrJðEÞ is the chamber system
induced by E on the set of its J-cells.)

The most natural way to cope with the above problem is inductive: Assume that,
for a suitable family R of proper residues of G and every X A R, a DI ntðXÞ-extension
ðEX; tXÞ of X is given, where DI ntðXÞ is the diagram induced by D on I ntðXÞ and tðXÞ
is the type of X. We call ðEX; tXÞ a local extension of G at X. Under suitable com-

patibility conditions, we can paste local extensions together in such a way to obtain a
D-extension of G.

Three di¤erent kinds of compatibility conditions are considered in the literature,
namely those assumed in Ronan’s theory of extensions [22], those of Ceccherini and
Pasini [7] and the conditions embodied by the notion of sheaf (Brouwer and Cohen
[5]; see also Kasikova and Shult [11, Section 3]).

Ronan’s theory is entirely formulated in the language of chamber systems: A



chamber system C is considered instead of a geometry and local extensions are cham-
ber systems. R is the family of all residues of C of type K0 ¼ Knf0g or K1 ¼ Knf1g
for two distinguished types 0; 1 A K , and Knf0; 1g admits a proper nonempty subset
H that separates f0; 1g from I nðH U f0; 1gÞ in D. (Note that this forces jK jd 4.) The
following are assumed: 1) For every K1-residue X of C, every ðI nðH U f1gÞ-residue
of the local extension EX is the direct product of a 0-panel and an ðI nðH U f0; 1gÞ-
residue U, and every non-trivial automorphism of U acts non-trivially on TrJðUÞ.
2) For every residue Y of C of type Knf0; 1g and any two DI nf0;1g-extensions ðE1; t1Þ
and ðE2; t2Þ of Y, there is an isomorphism a : E1 ! E2 such that at1 ¼ t2. Under
the above assumptions, C admits a D-extension (Ronan [22, (2.4)]). Actually, one
would expect to see compatibility conditions stated explicitly for pairs of extensions
ðEX0

; tX0
Þ and ðEX1

; tX1
Þ where tðXiÞ ¼ Ki and X0 VX1 0q, but they are implicit

in the above hypotheses (see [22, (2.1), (2.2)]). Note also that no particular local
extension is associated to any Knf0; 1g-residue.

The machinery set up by Ceccherini and myself [7] is a compromise between
Ronan’s theory and sheaf theory. We expose it here, generalizing it a bit. A type
0 A K and a subset HHKnf0g are given, such that H separates J from 0 in D and
Knð0UHÞ separates 0 from H, where 0 is the subset of K formed by 0 and all its
neighbours in D. (For instance, this happens when the diagram induced by D on K

is a string of length at least 4 with 0 as the leftmost node and H only contains the
rightmost node of that string.) R is the family of residues of type K0;K1 or H, where
K0 ¼ Knf0g and K1 ¼ f0gUH. Local extensions are chamber systems, as in Ronan’s
theory. A geometry G over K is considered in [7], but we may take a chamber system
C instead of that. For every H-residue X of C, if Xi is the Ki-residue of C containing
X ði ¼ 0; 1), then an embedding eXi

X : EX ! EXi
is given such that eXi

X tX ¼ tXi
iXi

X ,
where iXi

X denotes the inclusion mapping ofX inXi. Moreover, for any twoH-residues
X and Y of C with XUY contained in a common K1-residue X1, there exists exactly
one isomorphism aYX : EX ! EY such that eX1

Y aYX ¼ eX1

X . A reducibility condition is also
needed, as in Ronan’s theory: for every K1-residue X, EX is the direct product of a
0-panel and a ðJ U f1gÞ-residue. (But there is no need to assume this condition when
C is the chamber system of a geometry.)

In sheaf theory (inspired by Aschbacher [1], as Brouwer and Cohen say in [5]), R is
the collection of all proper residues of G, namely R ¼ fResGðF ÞgF AF where F is the
family of nonempty flags of G. For every F A F, the local extension EF :¼ EResGðFÞ
is a geometry. As we are dealing with geometries, we may assume that ResGðFÞ ¼
TrJðEF Þ and that the isomorphism tF : ResGðFÞ ! TrJðEF Þ is the identity mapping.
For every nonempty subflag G of F a compatibility embedding eGF : EF ! EG is given,
in such a way that eGF induces on ResGðFÞ its natural embedding in ResGðGÞ and
eGF e

F
H ¼ eGH for every flag HKF . The pair S ¼ ðfEFgF AF; feGF gF ;G AF;GHF Þ is called

a sheaf. If a sheaf S is given for G, then a chamber system can be constructed by
pasting the extensions associated by S to the flags F A F, according to the compati-
bility embeddings. That chamber system (called the completion of S) is indeed a D-
extension of G.

This approach is admittedly more elegant than Ronan’s theory, let alone the
machinery of [7], but perhaps less satisfactory in two respects. Firstly, the local
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extensions are geometries, but the completion is a chamber system, which might not
arise from any geometry. That slip from geometries to chamber systems is not very
elegant either. It might also cause some trouble in practise, if, when in an inductive
argument, one has to use at step nþ 1 an extension that one has got at step n as a
completion. A translation of sheaf theory into the language of chamber systems
would meet these objections. We shall give it in Section 3 of this paper. That trans-
lation is straightforward in principle, but not all details are so trivial. As a by-product
of it, we will see that a sheaf defined over the collection of all residues of rankc2 of a
given chamber system C (in the geometric case, residues of flags of corankc2), does
the same job as a complete sheaf, defined for all proper residues of C. This makes
things easier in many circumstances. We will also see that, in order to get an exten-
sion of a chamber system C, a sheaf defined only on the set of panels and chambers
of C is su‰cient. That will allow us to recognize sheaves with fairly nice com-
pletions even in cases where one hardly would have expected to see them, as when C
has rank 2.

Turning to my second objection, when one has to apply sheaf theory in practise,
one firstly must show that a sheaf indeed exists. This is not always so obvious. Let us
consider the following seemingly easy case, for instance. Suppose that G belongs to
the following truncated diagram:

0

�
1

�
2

� � � �
n�2

�
n�1

�
nj

where K ¼ f0; 1; . . . ; n� 1g is the type-set of G, I ¼ f0; 1; 2; . . . ; ng, J ¼ fng and D is
the Coxeter diagram Cnþ1. We want to define a sheaf. In view of a result of Ellard
and Shult [8], reported by Onofrei [14, Section 6], we only need to define extensions
Ex and Ex;y and embeddings exx;y : Ex;y ! Ex for elements x and flags fx; yg of G.

Assume firstly that x has type tðxÞ < n� 1. When tðxÞ ¼ 0, Ex is an n-dimensional
projective geometry with f1; 2; . . . ; ng as its type-set and ResGðxÞ ¼ TrnðExÞ. As
every n-element x of Ex is uniquely determined by the set sðxÞ of ðn� 1Þ-elements of
Ex incident to x, we may regard x as the same thing as sðxÞ. Thus, x is a distinguished
set of ðn� 1Þ-elements of G. Suppose that 1c tðxÞ < n� 1. Then Ex ¼ Res�GðxÞlEþ

x

where Res�GðxÞ is the direct summand of ResGðxÞ formed by the elements of type less
than tðxÞ and Eþ

x is an ðn� tðxÞÞ-dimensional projective geometry over the set of
types ftðxÞ þ 1; tðxÞ þ 1; . . . ; ng. Denoting by ResþGðxÞ the other direct summand of
ResGðxÞ, formed by the elements of type greater than tðxÞ, we have TrnðEþ

x Þ ¼ ResþGðxÞ.
Accordingly, we may regard every n-element x of Eþ

x as the set sðxÞ of ðn� 1Þ-
elements of G that, as elements of Eþ

x , are incident to x. Turning to flags, for a
flag fx; yg with 0c tðxÞ < tðyÞ < n� 1, we put Ex;y :¼ ðResGðxÞVRes�G ðyÞÞlEþ

x;y,
where TrnðEþ

x;yÞ ¼ ResþG ðyÞ. Two n-elements x and u of Ex and Ey correspond to the
same n-element of Ex;y when sðuÞH sðxÞ. Accordingly, we may take as n-elements of
Eþ
x;y the pairs ðsðuÞ; sðxÞÞ with sðuÞH sðxÞ, u and x as above. It is now clear how

the embeddings exx;y : Ex;y ! Ex and eyx;y : Ex;y ! Ex are defined.
So far, we have indeed obtained a sheaf, but for the ðn� 1Þ-truncation Trn�1ðGÞ of

G rather than for G itself. In order to define a sheaf for G, we also need to consider
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Ex for tðxÞ ¼ n� 1. When tðxÞ ¼ n� 1, Ex ¼ ResGðxÞlEþ
x where Eþ

x is a projective
line. For an element y of G incident to x, we may assume that Ey;x ¼ ResEyðxÞ. How-
ever, in order to define the embedding exy;x : Ey;x ! Ex, we need a trick to relate the
points of the projective line Eþ

x to the n-elements of Ey. The following is the way sug-
gested in [5] (but not thoroughly checked, regretfully): for every y A ResGðxÞ, let Sy

be the set of all n-elements of Ey that are incident to x and put S ¼ 6
y AResGðxÞ Sy. A

graph S can be defined on S, as follows: x1 A Sy1 and x2 A Sy2 are adjacent when
fy1; y2g is a flag of G and there exists an n-element z of Ey1;y2 such that eyiy1;y2ðzÞ ¼ xi
for i ¼ 1; 2. Suppose the following:

(*) we have jC VSyjc 1 for every connected component C of S and every
y A ResGðxÞ.

Then we can take the connected components of S as elements of Eþ
x . The rest

follows. Regretfully, Brouwer and Cohen do not mention (*) in [5], as if they took it
for granted in the case they consider, where n > 3 and all C3-residues of G are cov-
ered by buildings. However, (*) might fail to hold when n ¼ 3, as it certainly happens
when no C4-extension exists. Examples of this kind are described by Ronan [22], [21]
(see also Subsection 5.2 of this paper). They are mentioned in [5], too. On the other
hand, it follows from [22] that a Cnþ1-extension E of G always exists when n > 3. If
furthermore all C3-residues of G are covered by buildings, then E is covered by a
building ~EE and (*) holds, as one can see by lifting the graph S and the sets Sy to ~EE.
Regretfully, this indirect argument does not really explain what might go wrong with
(*) when n ¼ 3. Only direct verifications would give us a satisfactory answer, but
checking directly if a condition like (*) holds or not in a given particular case is
beyond my capabilities. However, there is an easy way to prove the existence of a
Cnþ1-extension when n > 3, exploiting sheaf theory but without caring about (*) at
all. Here it is: As remarked above, a sheaf S0 exists, but defined over the family F0 of
nonempty flags of G0 :¼ Trn�1ðGÞ. Its completion, say E, is a Cnþ1-extension of G0,
but it is not di‰cult to check that TrJðEÞGCðGÞ. So, E is also a Cnþ1-extension of G.

Di‰culties similar to that discussed here are faced fairly often, but in most cases
we can avoid them by a trick as above. An axiomatization of that trick will be given
in Section 4. In Section 5, we will apply the theory set up in Sections 3 and 4 to a
number of special cases.

2 Essentials on chamber systems

In this section we give an epitome of the theory of chamber systems, focusing on
notions and results to be used in the rest of this paper.

2.1 Basics. Following [16] and [7, Section 7], given a finite nonempty set I , we
define a chamber system over the set of types I as a pair C ¼ ððC;@Þ; tÞ where ðC;@Þ
is a connected graph and t is a surjective mapping from the set of edges of ðC;@Þ to I

such that

(CS) for every i A I , all connected components of C i are complete graphs with at
least two vertices,

Antonio PasiniS78



where C i is the subgraph of ðC;@Þ with C as the vertex-set and t�1ðiÞ as the set of
edges. The size jI j of I is called the rank of C and the vertices of ðC;@Þ are called
chambers. We will write c A C to say that c is a chamber of C. If tðfc; dgÞ ¼ i for an
edge fc; dg of ðC;@Þ then we say that the chambers c and d are i-adjacent and we
write c@i d. The connected components of C i are called i-panels. The paths of ðC;@Þ
are called galleries. The type of a gallery C0 @i1 C1 @i2 � � �@im Cm is the sequence
ðikÞmk¼1.

For JJ I , let CJ be the subgraph of ðC;@Þ with all chambers c A C as vertices
and t�1ðJÞ as the set of edges. The connected components of CJ are called residues

of type J (also J-residues, for short). Given a J-residue X, we write tðXÞ ¼ J to recall
that J is its type, we call jJj the rank of X, I nJ the cotype of X and jI nJj the corank
of X. In particular, the residues of rank 1 are the panels and those of rank 0 are the
chambers of C. Only one I -residue exists, namely C itself. We call it the improper

residue, all remaining residues of C being called proper.
Note that, for q0 JJ I , all J-residues are chamber systems over J. When a J-

residue is regarded as a set of chambers, no mind of its adjacency relations, we call it
a J-cell, also denoting it by ½c�J , where c is any of its chambers. For two residues X,
Y of C, if tðXÞJ tðYÞ and XJY, then we say that X is a subresidue of Y and we
write XcY (also X < Y, when X0Y).

Every chamber is declared to be i-adjacent to itself, for every type i. With this
convention, the i-adjacency relation is an equivalence relation. We denote that rela-
tion by F i. For JJ I , FJ :¼ 4

j A J F
j is the equivalence relation on C that has

the J-cells of C as classes. In particular, Fq is the identity relation on C.
We recall that the chambers (maximal flags) of a geometry G form a chamber

system CðGÞ. We can recover G from its chamber system C ¼ CðGÞ as follows: the
i-elements of G correspond to the cells of C of cotype i, two elements of G being
incident precisely when their corresponding cells meet non-trivially; the flags of G of
type J correspond to the ðI nJÞ-cells of C.

We say that a chamber system C is geometric if CGCðGÞ for a suitable geometry
G. Geometric chamber systems are characterized by the following properties (see
[16, Chapter 12]): 1) FJ VFK ¼ FJVK for all J;K J I , and 2) FJ V ðFKFHÞ ¼
ðFJ VFKÞðFJ VFHÞ for all J;K ;HJ I .

All chamber systems of rank 2 are geometric. So, diagrams can be defined for
chamber systems using just the same conventions as for geometries. Similarly for
orders, thinness and thickness.

We say that a chamber system C is tight at a given type i if it admits only one
residue of cotype i, namely: the set C of all chambers of C is an ðI nfigÞ-cell. Tight
chamber systems insistently spring out of many contexts (see Example 5.1, for
instance). They are non-geometric.

Remark. The above definition of chamber system is more restrictive than those given
by other authors (compare Kasikova and Shult [11], for instance), but it is su‰cient
for many purposes. For instance, it suites chamber systems arising from parabolic
systems. It also keeps chamber systems as close as possible to geometries. As for the
latter, we recall that the inductive definition of [16] (which we follow here) forces all
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geometries to be residually connected and firm. Firmness corresponds to the assump-
tion, made in (CS), that every panel contains at least two chambers. The residual con-
nectedness of a geometry G accounts for the connectedness of CðGÞ and the corre-
spondence between flags of G and cells of CðGÞ.

Geometric chamber systems are called ‘residually connected’ by some authors, but
I don’t like that terminology.

2.2 Morphisms, epimorphisms, embeddings and coverings. Given two finite sets I

and I 0 with I V I 0 0q and chamber systems C and C 0 on I and I 0 respectively, a
morphism from C to C 0 is a mapping j from the set C of chambers of C to the set C 0

of chambers of C 0 such that, for every i A I and any two i-adjacent chambers c; d A C,
if i A I V I 0 then jðcÞ@i jðd Þ and, if i A I nI 0, then jðcÞ ¼ jðd Þ.

Assuming I ¼ I 0, a morphism j : C ! C 0 is called an isomorphism if it is bijective
as a mapping from C to C 0 and j�1 is also a morphism. Symbols asG and AutðCÞ
have the usual meaning. If AutðCÞ acts transitively on C, then we say that C is tran-
sitive. When C ¼ CðGÞ for a geometry G, AutðCÞ ¼ AutðGÞ and C is transitive if and
only if G is flag-transitive.

Epimorphisms and quotients. Assume that I K I 0. We say that a morphism j : C ! C 0

is an epimorphism if jðCÞ ¼ C 0. If moreover, for any i A I 0 and any two i-adjacent
chambers c 0; d 0 A C 0, there are chambers c A j�1ðc 0Þ and d A j�1ðd 0Þ such that c@i d,
then we say that the epimorphism j is full.

We turn to quotients now. Let Y be an equivalence relation on the set C of cham-
bers of C such that:

(Q1) YdFI nI 0
;

(Q2) no class of Y is the join of i-panels of C, for any i A I 0;

(Q3) ðY4F iÞV ðY4F jÞ ¼ Y for any two distinct types i; j A I 0;

(Note that (Q1) is empty when I 0 ¼ I .) We can form a chamber system C=Y over
I 0, which we call the quotient of C by Y, by taking the classes of Y as chambers
and the quotient relations ðF i4YÞ=Y as i-adjacency relations, for i A I 0. (Note that,
in view of (Q3), if X @i Y @j X in C=Y for di¤erent types i; j, then X ¼ Y ; also, by
(Q2), all panels of C=Y have sized 2, as required in (CS).) The natural projection
pY : C ! C=Y is an epimorphism from C to C=Y, called the projection of C onto
C=Y.

Conversely, given an epimorphism j : C ! C 0, let Y be the equivalence relation
on C with the fibers of j as classes. Then Y satisfies (Q1), (Q2) and (Q3) and we have
j ¼ apG for a unique isomorphism a : C=Y ! C 0.

When I ¼ I 0 and the classes of Y are the orbits of a subgroup GcAutðCÞ, the
quotient C=Y is also denoted by C=G and is called the quotient of C by G. In this
case, the projection epimorphism is full.

Finally, a warning: quotients of geometric chamber systems are non-geometric, in
general.
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Embeddings. Let I J I 0. An embedding of C in C 0 is an injective morphism from C to
C 0. If moreover jðCÞ is an I -cell of C 0 and j induces an isomorphism from C to the
I -residue of C 0 supported by jðCÞ, then we say that the embedding j is full.

Coverings. Given two chamber systems C and C 0 over the same set of types I , let j be
a morphism from C to C 0 and suppose that, for a given positive integer m < jI j and
every residue X of C of rank m, the restriction of j to X is a full embedding of X in
C 0. Then j is called an m-covering. If an m-covering j : C ! C 0 exists, then we say
that C is an m-cover of C 0 and that C 0 is an m-quotient of C.

Every m-covering is a full epimorphism. Clearly, every isomorphism is an m-
covering. If an m-covering j : C ! C 0 is not an isomorphism, then we call it a proper

m-covering. Accordingly, we say that C is a proper m-cover of C 0 and C 0 is a proper
m-quotient of C.

It is well known (Tits [26], Ronan [20]) that every chamber system C of rank n >
md 1 admits a universal m-covering ~jj : ~CC ! C, uniquely determined up to isomor-
phism by the following property: Given a chamber c A C and a chamber ~cc A ~jj�1ðcÞ,
for any m-covering j : C 0 ! C and every chamber c 0 A j�1ðcÞ, there exist a unique
m-cover c : ~CC ! C 0 such that cð~ccÞ ¼ c 0. Moreover, CG ~CC=Dð~jjÞ where Dð~jjÞ :¼
fg A Autð ~CCÞ j ~jjg ¼ ~jjg.

A chamber system is said to be m-simply connected if its universal m-covering is
an isomorphism. The following celebrated theorem of Tits will be exploited a number
of times in Section 5:

Theorem 2.1. Given a chamber system C belonging to a Coxeter diagram, suppose that
all residues of C of rank 3 and spherical type are 2-covered by buildings. Then the uni-

versal 2-cover of C is a building. Moreover, all buildings are 2-simply connected.

We recall that thin buildings are Coxeter complexes. All thin chamber systems of
rank 3 and spherical type are 2-quotients of Coxeter complexes (see [17]). Therefore,

Corollary 2.2. Every thin chamber system is 2-covered by a Coxeter complex.

2.3 Truncations. Given a chamber system C over a set of types I and a nonempty
proper subset J of I , if FJ defines a quotient of C then we say that C admits the J-

truncation and we call TrJðCÞ :¼ C=FJ the J-truncation of C. Needless to say, the
projection of C onto TrJðCÞ is the projection pJ :¼ pF J : C ! C=FJ ¼ TrJðCÞ.

If C is geometric, say C ¼ CðGÞ, then C admits the J-truncation for every non-
empty proper subset J of I and we have TrJðCÞGCðTrJðGÞÞ, where TrJðGÞ is the J-
truncation of G, namely the induced subgeometry of G obtained by removing all ele-
ments of type j A J. (Note that the chambers of TrJðGÞ are flags of G of cotype J,
whence they correspond to J-cells of C.)

Truncations of morphisms. Given two chambers systems C and C with type-sets I and
I where I J I , suppose that both C and C admit the J-truncation for a given proper
nonempty subset J of I and let j : C ! C be a morphism. Then jð½c�JÞJ ½jðcÞ�J for
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every chamber c A C. So, j induces a morphism TrJðjÞ : TrJðCÞ ! TrJðCÞ. We call
TrJðjÞ the J-truncation of j. If j is a (full) epimorphism, then TrJðjÞ is also a (full)
epimorphism. If j is a (full) embedding, then TrJðjÞ is a (full) embedding.

Truncations and covers. With j : C ! C as above, let I ¼ I and suppose that the mor-
phism j : C ! C is an m-covering for a positive integer m < jI nJj and that, for every
residue X of C of cotype i A I nJ, j induces on X a full embedding in C. Then TrJðjÞ
is an m-covering from TrJðCÞ to TrJðCÞ. Assume furthermore that j is universal.
Then one might wonder if TrJðCÞ is the universal m-cover of TrJðCÞ. The next the-
orem partially answers this question.

Theorem 2.3 ([7, Theorem 7.19]). Let C admit the J-truncation and suppose that, for
a given positive integer m < jI nJj and every subset KJ I nJ of size m, all ðK U JÞ-
residues of C are m-simply connected. Then the universal m-cover ~CC of C admits the J-

truncation and TrJð ~CCÞ is the universal m-cover of TrJðCÞ.

2.4 Reducibility. Given a diagram D over a set of types I , let J and K be mutually
disjoint subsets of I such that no type of J is joined to any type of K by a stroke of
D. Let C be a chamber system belonging to D. Then FJFK ¼ FKFJ . (We warn the
reader that, contrary to what is said in [7, Proposition 7.4], the converse is false in

general: when C is non-geometric, it might happen that FJFK ¼ FKFJ and, never-
theless, some strokes of D go from J to K .)

Assume that J UK ¼ I . Then the equality FJFK ¼ FKFJ can be rephrased as fol-
lows: XVY0q for every J-cell X and every K-cell Y of C. Suppose moreover that
FJ VFK ¼ Fq. (We recall that Fq is the identity relation on the set of chambers
of C.) Then XGTrKðCÞ and YGTrJðCÞ for any J-residue X and any K-residue Y
of C, and we have CGX�Y, the direct product X�Y being defined as follows:
The chambers of X�Y are the pairs ðx; yÞ with x A X and y A Y and, for j A J (or
k A K), two pairs ðx1; y1Þ and ðx2; y2Þ are declared to be j-adjacent (k-adjacent) when
x1@j x2 and y1 ¼ y2 (respectively, x1 ¼ x2 and y1 @k y2).

With C;X;Y; J and K as above, suppose that both X and Y are geometric. Then
C is geometric if and only if FJ VFK ¼ Fq, namely C ¼ X�Y. When J UKH I ,
all the above remain valid, but applied to ðJ UKÞ-residues of C rather than to C
itself.

3 Sheaves and their completions

3.1 Definitions. Given a set I of types, a subset JH I with jI nJjd 3, a chamber
system C over K :¼ I nJ and a nonempty family R of proper residues of C, an I-sheaf

for C over R is a triple S ¼ ðfEXgX AR; ftXgX AR; feYXgX;Y AR;X<YÞ where

(S1) For every X A R, EX is a chamber system over the set of types J U tðXÞ, it
admits the J-truncation and tX is an isomorphism from X to TrJðEXÞ.

(S2) For all X;Y A R with XcY, eYX is a full embedding of EX in EY. (When
X ¼ Y, eYX stands for the identity automorphism of EX.) Moreover:
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(S3) TrJðeYXÞtX ¼ tYi
Y
X where iYX is the inclusion mapping of X into Y.

(S4) For X;Y;Z A R, if XcYcZ then eZY e
Y
X ¼ eZX .

Furthermore, if a diagram D over I is given and

(S5) for every X A R, EX belongs to the diagram DJUtðXÞ induced by D on J U tðXÞ,

then we say that S is a defined over D, or that S is a D-sheaf, for short. We call R
the support of S. We say that R is reliable if it contains all panels and all chambers of
C (the latter being regarded as residues of rank 0). If furthermore R contains all res-
idues of C of rank 2, then we say that R is fully reliable. Note that the collection of
reliable families of proper residues of C admits a minimal element, namely the family
Rmin of all panels and chambers of C. The family of all proper residues of C is the
maximal (fully) reliable family. If S is an I -sheaf over R and R0 is a reliable sub-
family of R, then the triple

ðfEXgX AR0
; ftXgX AR0

; feYXgX;Y AR0;X<YÞ

is an I -sheaf over R0. We call it the sheaf induced by S on R0. Given two I -sheaves,

S ¼ ðfEXgX AR; ftXgX AR; feYXgX;Y AR;X<YÞ;

S 0 ¼ ðfFXgX AR; fyXgX AR; fhYXgX;Y AR;X<YÞ;

with the same support R, an isomorphism from S to S 0 is a collection g ¼ fgXgX AR of
isomorphisms gX : EX ! FX such that

(I1) gXtX ¼ yX for every X A R and

(I2) gYe
Y
X ¼ hYXgX for any choice of X;Y A R with XcY.

An I-extension (D-extension) of C is a chamber system E over the set of types I (be-
longing to the diagram D) such that TrJðEÞGC. Given an I -extension E of C, a
family R of proper residues of C and an isomorphism a : TrJðEÞ ! C, put j :¼ apJ ,
where pJ is the projection of E onto TrJðEÞ. For X A R, let EX be the preimage of
X by j, regarded as a ðJ U tðXÞÞ-residue of E, and let tX be the restriction of a�1 to
X. If X < Y A R, let eYX be the inclusion embedding of EX in EY. Then the triple

SRðEÞ ¼ ðfEXgX AR; ftXgX AR; feYXgX;Y AR;X<YÞ

is an I -sheaf, defined over the same diagram as E. We call it the sheaf induced by E on
R. Clearly, the isomorphism type of SRðEÞ does not depend on the particular choice
of the isomorphism a : TrJðEÞ ! C. Also, if E 0 GE, then SRðEÞGSRðE 0Þ.

3.2 The completion of a sheaf with reliable support. For the rest of this section D

is a given diagram over I , R is a reliable family of proper residues of C and S ¼
ðfEXgX AR; ftXgX AR; feYXgX;Y AR;X<YÞ is a D-sheaf over R. We firstly state some
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notation. Given X;Y A R with YcX and a chamber x A eXYðEYÞ, we denote by ðxÞY
the preimage of x by eXY . Given X A R and a chamber x A EX, the preimage by tX of
the J-cell ½x�J of x in EX is a chamber of C and belongs to R, as R is reliable. We will
denote that preimage by the symbol cðxÞ.

Let E be the set of pairs ðX; xÞ where X A R and x is a chamber of EX. We say
that two pairs ðX1; x1Þ; ðX2; x2Þ A E are equivalent when X1 VX2 0q and we can
choose a residue X A R and a chamber x A EX such that XcXi and eXi

X ðxÞ ¼ xi for
i ¼ 1; 2. Note that if such a pair ðX; xÞ exists, then we can replace it with any pair
ðY; yÞ where Y A R, YcX and eXYðyÞ ¼ x. In particular, modulo replacing ðX; xÞ
with ðcðxÞ; ðxÞcðxÞÞ, we may always assume that X is a chamber. When ðX1; x1Þ and
ðX2; x2Þ are equivalent, we write ðX1; x1Þ1 ðX2; x2Þ.

Lemma 3.1. The relation1 is an equivalence relation.

Proof. Let ðX1; x1Þ1 ðX2; x2Þ1 ðX3; x3Þ. So, there are pairs ðX; xÞ and ðX 0; x 0Þ such
that eXi

X ðxÞ ¼ xi for i ¼ 1; 2 and eXi

X 0 ðx 0Þ ¼ xi for i ¼ 2; 3. As eX2

X ðxÞ ¼ eX2

X 0 ðx 0Þ ¼ x2,

(S3) implies that cðxÞ ¼ cðx 0Þ ¼ cðx2Þ. Therefore XVX 0 contains the chamber c :¼
cðxÞ ¼ cðx 0Þ ¼ cðx2Þ. In view of (S3), for i ¼ 1; 3 the embedding eXi

c maps Ec onto
the J-cell ½xi�J of EXi

and we have eX1
c ððx1ÞcÞ ¼ x1 and eX3

c ððx3ÞcÞ ¼ x3. Consequently,
ðxÞc ¼ ðx1Þc and ðx 0Þc ¼ ðx3Þc by (S4) and since x ¼ ðx1ÞX and x 0 ¼ ðx3ÞX 0 . On the
other hand, x ¼ ðx2ÞX and x 0 ¼ ðx2ÞX 0 . Hence ðxÞc ¼ ðx2Þc ¼ ðx 0Þc. So, for y ¼
ðxÞc ¼ ðx 0Þc, we have eX1

c ðyÞ ¼ x1 and eX3
c ðyÞ ¼ x3. Therefore, ðX1; x1Þ1 ðX3; x3Þ.

r

Lemma 3.2. Every class of1 admits a unique representative of the form ðc; xÞ, where c
is a chamber of C and x A Ec. The members of the class of1 containing ðc; xÞ are the

pairs ðY; yÞ where y ¼ eYc ðxÞ and Y is any member of R containing c. In other words,
ðX; xÞ1 ðcðxÞ; ðxÞcðxÞÞ for every pair ðX; xÞ A E.

In the sequel, we denote by E the set of equivalence classes of1 and we take the
pairs ðc; xÞ ðc A C; x A EcÞ as canonical representatives of the classes of 1. For two
classes C1;C2 A E, let ðci; xiÞ be the canonical representative of Ci ði ¼ 1; 2Þ. Given
a type j A J, we declare C1 and C2 to be j-adjacent when c1 ¼ c2 and x1@j x2 in
Ec. If k A K , then we say that C1 and C2 are k-adjacent when c1@k c2 in C and
eXc1 ðx1Þ@k e

X
c2
ðx2Þ in EX, where X is the k-panel of C containing c1 and c2. (Recall

that X A R, as R is reliable.) If C1 and C2 are i-adjacent for i A I ð¼K U JÞ, then we
write C1 @E

i C2 (also C1 @i C2, for short). The following is obvious:

Lemma 3.3. The relation@E
i is an equivalence relation for any i A I .

Lemma 3.4. For C1;C2 A E and distinct types i; j A I , if C1@i C2@j C1, then C1 ¼ C2.

Proof. When i; j A J or i; j A K , the claim is obvious. (Recall that, according to (CS)
of Section 2, no two distinct chambers of a chamber system are both i- and j-adjacent
for distinct types i; j.) Let i A K and j A J. As C1@j C2, we have c1 ¼ c2 ¼ c, say.
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So, x1; x2 A Ec. On the other hand, x1@i x2 in Ec and c1@i c2 in C. Let X be the
i-panel of C containing c1 and c2. Then eXc ðx1Þ@i e

X
c ðx2Þ@j e

X
c ðx1Þ. This forces

eXc ðx1Þ ¼ eXc ðx2Þ, whence x1 ¼ x2. Therefore, C1 ¼ C2. r

Lemma 3.5. For every type i A I , every class of@E
i contains at least two members.

Proof. Let C A E with ðc; xÞ as its canonical representative. Suppose firstly that i A J.
By (CS) on Ec, the i-panel ½x� i of Ec contains at least one chamber x 0 0 x. If C 0 is
the1-class of ðc; x 0Þ, then C 0 @i C0C 0. Let now i A K and X be the i-panel of C
containing c. Then eXc ðEcÞ is a J-cell of EX and contains y ¼ eXc ðxÞ. EX contains a
chamber y 0 0 y with y 0 @i y. The1-class of ðX; y 0Þ is i-adjacent to C and di¤erent
from C. r

Definition. We call the coloured graph EðSÞ :¼ ðE; f@E
i gi A I Þ the completion of the

sheaf S.

Proposition 3.6. EðSÞ is a chamber system over the set of types I.

Proof. In view of Lemmas 3.3, 3.4 and 3.5, we only must prove that EðSÞ is con-
nected. For C;C 0 A E, let ðc; xÞ and ðc 0; x 0Þ be their canonical representatives. Take a
gallery of C from c to c 0: c ¼ c0 @i1 c1@i2 c2 � � �@im cm ¼ c 0. For k ¼ 1; 2; . . . ;m, let
Xk be the ik-panel of C containing fck�1; ckg and, if k < m, pick a chamber xk A Eck .
Put x0 ¼ x, xm ¼ x 0 and, for k ¼ 0; 1; . . . ;m, denote by Ck the element of E repre-
sented by ðck; xkÞ. So, C0 ¼ C and Cm ¼ C 0. For k ¼ 1; 2; . . . ;m, the chambers
yk�1 ¼ eXk

ck�1
ðxk�1Þ and yk ¼ eXk

ck
ðxkÞ of EXk

are joined by a gallery ðyk�1 ¼ yk;0;
yk;1; . . . ; yk; sk ¼ ykÞ. For h ¼ 0; 1; . . . ; sk, let Ck;h be the element of E represented by
ðcðyk;hÞ; ðyk;hÞcðyk; hÞÞ. Then ðCk;0;Ck;1; . . . ;Ck; sk Þ is a path of EðSÞ from Ck;0 to Ck; sk .

However, Ck;0 ¼ Ck�1 and Ck; sk ¼ Ck. Thus, Ck�1 and Ck are joined by a path gk of
EðSÞ. The join g1g2 . . . gm of those paths is a path from C to C 0. r

Proposition 3.7. TrJðEðSÞÞGC.

Proof. For a chamber C of E ¼ EðSÞ, let ðc; x0Þ be its canonical representative in D.

Then the chambers of the J-cell ½C �J containing C are precisely those represented by
pairs ðc; xÞ for x A Ec. So, we can put að½C �JÞ ¼ c, thus obtaining a bijection a from
the set of chambers of TrJðEÞ to the set of chambers of C. We shall prove that a is an
isomorphism.

Let j ¼ apJ , where pJ is the projection of E onto TrJðEÞ. For i A K, let U ;U 0 be
two i-adjacent chambers of TrJðEÞ and put c :¼ aðUÞ and c 0 :¼ aðU 0Þ. Regarding U

and U 0 as J-cells of E, pick two chambers C A U and C 0 A U 0. Then E contains a
gallery g ¼ ðC ¼ C0 @j1 C1 @j2 C2 � � �@jm Cm ¼ C 0Þ of type tðgÞJ J U fig from C to
C 0. If jk A J, then jðCk�1Þ ¼ jðCkÞ whereas, if jk ¼ i, then jðCk�1Þ@i jðCkÞ.
Therefore, jðCÞ@i jðC 0Þ. However, jðCÞ ¼ c and jðC 0Þ ¼ c 0. Hence c@i c

0. Con-
versely, suppose that c@i c

0 and let X be the i-panel of C containing both c and
c 0. Given y A eXc ðEcÞ and y 0 A eXc 0 ðEc 0 Þ, let ðy ¼ y0; y1; . . . ; ym ¼ y 0Þ be a gallery of
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EX from y to y 0 and, for k ¼ 0; 1; . . . ;m, let Ck be the chamber of E represented by
ðcðykÞ; ðykÞcðykÞÞ. Then g ¼ ðC0;C1; . . . ;CmÞ is a gallery of E of type tðgÞJ J U fig.
Moreover, C0 A U and Cm A U 0. So, U @i U

0. r

Proposition 3.8. SGSRðEðSÞÞ.

Proof. Let j be the function mapping every chamber x A EX to the 1-class of
ðX; xÞ. We shall prove that j is an isomorphism from EX to a ðtðXÞU JÞ-residue
of E ¼ EðSÞ. For x; y A EX, let x@i y. If i A J, then clearly jðxÞ@i jðyÞ. Sup-

pose that i A tðXÞ (HK). Then ½x�J @i ½y�J , hence t�1
X ð½x�JÞ@i t

�1
X ð½y�JÞ, namely

cðxÞ@i cðyÞ by (S1) on tX. Denoting by Y the i-panel of X containing cðxÞ and
cðyÞ, we have eXYðeYcðxÞððxÞcðxÞÞÞ ¼ x and eXYðeYcðyÞððyÞcðyÞÞÞ ¼ y, by (S4). Hence

eYcðxÞððxÞcðxÞÞ@i e
Y
cðyÞððxÞcðyÞÞ, as x@i y. Therefore jðxÞ@i jðyÞ, according to the def-

inition of the i-adjacency relation@E
i of E.

So far, we have proved that j preserves adjacencies. Hence jðEXÞ is contained in a
ðtðXÞU JÞ-residue of E, say Z. Let C@i jðxÞ for i A tðXÞU J, C A E and x A EX. Let
ðc; yC Þ be the canonical representative of C. If i A J, then c ¼ cðxÞ and yC @i ðxÞcðxÞ
in Ec ¼ EcðxÞ. Therefore y :¼ eXcðxÞðyC Þ@i x and C ¼ jðyÞ. On the other hand, let

i A tðXÞ. Then c@i cðxÞ and, if Y is the i-panel of C containing c and cðxÞ, then
eYc ðyC Þ@i e

Y
cðxÞððxÞcðxÞÞ. However, YcX. Hence y :¼ eXc ðyC Þ@i e

X
cðxÞððxÞcðxÞÞ ¼ x

and C ¼ jðyÞ. It follows that jðEXÞ ¼ Z and that, for every i A tðXÞU J ¼ tðZÞ,
every i-adjacent pair of chambers of Z is the image by j of an i-adjacent pair of
chambers of EX.

To finish, we need to prove that j in injective. Suppose that jðxÞ ¼ jðyÞ. Then
cðxÞ ¼ cðyÞ and ðxÞcðxÞ ¼ ðyÞcðyÞ, by the uniqueness of canonical representatives. On

the other hand, x ¼ eXcðxÞððxÞcðxÞÞ and y ¼ eXcðyÞððyÞcðyÞÞ. Therefore, x ¼ y. r

Clearly, if S 0 GS for another sheaf S 0 supported by R, then EðS 0ÞGEðSÞ. It is
also clear from its construction that EðSÞ only depends on the subsheaf of S induced
on the collection Rmin of panels and chambers of C. As a consequence:

Theorem 3.9. Let S 0 be another D-sheaf for C with reliable support and suppose that S

and S 0 induce isomorphic sheaves on Rmin. Then EðS 0ÞGEðSÞ.

The following is also obvious:

Proposition 3.10. EðSRðEÞÞGE for every I-extension E of C.

Lemma 3.11. If R is fully reliable, then EðSÞ belongs to D.

Proof. As R is fully reliable, for any two types i; j A I we can find a residue X A R
such that tðXÞ ¼ fi; jg. The conclusion follows from Proposition 3.8. r

By Lemma 3.11, Proposition 3.7 and Theorem 3.9 we immediately obtain the fol-
lowing:
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Theorem 3.12. Without assuming that R is fully reliable, suppose that there exists a

D-sheaf S 0 for C, with fully reliable support and such that S 0 and S induce isomor-

phic sheaves on the collection Rmin of chambers and panels of C. Then EðSÞ is a D-

extension of C.

3.3 Sheaves for chamber systems of rank 2. So far, we have assumed jK jd 3, but the
definitions of Subsection 3.1 can be stated for the case of jK j ¼ 2 as well. Everything
said in Subsection 3.2 remains true for that case. However, when jK j ¼ 2 proper
residues have rankc 1. As a consequence, if a target diagram D has been chosen (for
instance, inherited from a larger chamber system of which C is a truncation, as in the
examples of Section 5), the rank 2 residues of EðSÞ of type K might be quite di¤erent
from those allowed by the K-stroke of D. In other words, we cannot keep K-residues
under control.

We can also describe this situation as follows: a chamber system over the set of
types K ¼ f0; 1g might admit both a D-extension and a D 0-extension for two di¤er-
ent diagrams D and D 0 over I ¼ f0; 1gU J, where D and D 0 have the same fi; jg-
stroke for every pair fi; jgH I but for fi; jg ¼ f0; 1g.

Example 3.1. The vertex-edge system of a 3-dimensional simplex is also the vertex-
edge system of the quotient of a 3-dimensional cube by the antipodal relation. In this
case, D and D 0 are the Coxeter diagrams A3 and C3:

ðA3Þ
0

�
1

�
2

� ðC3Þ
0

�
1

�
2

�

Example 3.2. The point-line system of PGð3; 2Þ can also be regarded as the plane-line
system of the flat C3-geometry GðAltð7ÞÞ for the alternating group Altð7Þ (see [16,
6.4.2]). The diagrams D and D 0 of PGð3; 2Þ and GðAltð7ÞÞ are the Coxeter diagrams
A3 and C3, with types 0; 1; 2 as in Example 3.1, planes and lines of GðAltð7ÞÞ being
given the types 0 and 1, respectively.

In view of the above, when jK j ¼ 2, relating S with a diagram D as we do when we
call S a D-sheaf, is an abuse. Nevertheless, we will not scruple to commit that abuse
sometimes in the sequel, when that will help us to avoid awkward circumlocutions.

3.4 A few remarks on the geometric case. Suppose that C is geometric, C ¼ CðGÞ for
a geometry G. Then we say that a sheaf

S ¼ ðfEXgX AR; ftXgX AR; feYXgX;Y AR;X<YÞ

for C is geometric if the chamber system EX is geometric for every X A R.
In general, the completion EðSÞ of a geometric sheaf S is non-geometric. This often

happens when C has rank 2 (see Examples 5.1, 5.2, 5.3), but it also may happen when
C has rankd 3 (see below, Example 3.3). Regretfully, I have not been able to find
any general su‰cient condition for EðSÞ to be geometric.
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Example 3.3. Let D be a Coxeter complex of type Dn, nd 4, regarded as a geometry.
With I ¼ f0; 1; . . . ; n� 1g, put J :¼ f3; 4; . . . ; n� 1g, where types are given as fol-
lows:

0

�

1

�

2

� � � �
n�2

�
n�1

�

It is well known that AutðDÞ ¼ V0S where V0 is the subgroup of the additive group
of V ¼ Vðn; 2Þ formed by the vectors of even weight and SG SymðnÞ, acting on V

as the group of permutational matrices. Let G be a non-trivial subgroup of V0 such
that all non-zero vectors of G have weight at least 4. Then G defines a 2-quotient
E :¼ CðDÞ=G of CðDÞ. It also defines a 2-quotient G :¼ TrJðDÞ=G of TrJðDÞ, and
CðGÞGTrJðEÞ. Moreover, for every residue of CðDÞ of type J U fig or J U fi; jg,
i; j A f0; 1; 2g, the projection pG : CðDÞ ! E induces an injective mapping on that
residue. So, those residues form a geometric sheaf S for C :¼ CðGÞ and we have
EðSÞGE. However, the geometry D does not admit any proper 2-quotient. That is,
none of the proper 2-quotients of CðDÞ is geometric. Hence EðSÞ is non-geometric.

4 The back-and-forth trick

In this section we consider the following situation: Given a chamber system C over a
set of types K and a diagram D over I IK , suppose that we look for a sheaf for C
but, on the spot, we do not see how to define it. Suppose that, however, we can easily
find a D-sheaf S0 for a suitable truncation TrHðCÞ of C. We shall show that, under
certain conditions, S0 can be extended to a D-sheaf of C. In short, we firstly step
backward from K to KnH, next we move forward, regaining K .

Given I ;D;K and C as above and a nonempty subset H of K such that jKnHjd 2,
we put J :¼ I nK , J0 ¼ J UH and K0 :¼ KnH ¼ I nJ0. Assuming that C admits the
H-truncation, we denote by p the projection of C onto C0 :¼ TrJðCÞ. Every residue
X of C0 is the projection by p of a unique ðtðXÞUHÞ-residue p�1ðXÞ of C. We also
denote by pX the projection of p�1ðXÞ onto X induced by p. Without assuming any
sheaf for C, suppose that a D-sheaf S0 ¼ ðfEXgX AR0

; ftXgX AR0
; feYXgX;Y AR0;X<YÞ is

given for C0, with reliable support R0. As in Section 3, EðS0Þ is the completion of S0.
(As noticed in Subsection 3.3, EðS0Þ exists and is an extension of C0 even if jK0j ¼ 2.)
We also assume that S0 satisfies the following:

(T1) for every X A R0, EX admits the J-truncation and an isomorphism tV is given
from V :¼ p�1ðXÞ to TrJðEXÞ such that tXpX ¼ pEXtV, where pEX is the pro-
jection of TrJðEXÞ onto TrJ0ðEXÞ;

(T2) for X;Y A R0, if X < Y then TrJðeYXÞtV ¼ tWiWV , where iWV is the inclusion
mapping of V ¼ p�1ðXÞ in W ¼ p�1ðYÞ.

Theorem 4.1. TrJðEðS0ÞÞGC.
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Proof. Given a chamber C of E, let ðc; xC Þ (xC A Ec) be its canonical representa-

tive (see Lemma 3.2). The chambers of ½C �J are represented by the pairs ðc; xÞ, for
x A ½xC �J . In view of (T1), if c :¼ p�1ðcÞ then t�1

c ð½xC �JÞ is a chamber of C. We
denote it by að½C �JÞ. The function a defined in this way is a bijection from the set of
J-cells of E to the set of chambers of C. We shall prove that a is an isomorphism. It
will be useful to consider the composition j ¼ apE, where pE stands for the projection
of E onto TrJðEÞ.

Let U1;U2 be chambers of TrJðEÞ. For s ¼ 1; 2, put as :¼ aðUsÞ and, given a cham-
ber Cs of E in the J-cell Us, let ðcs; xsÞ be its canonical representative. Note that
jðCsÞ ¼ as. Suppose that U1 and U2 are i-adjacent in TrJðEÞ. Then there is a gallery
g ¼ ðX0;X1; . . . ;XmÞ of E from C1 ¼ X0 to C2 ¼ Xm, of type tðgÞJ J U fig. For k ¼
0; 1; . . . ;m, put bk ¼ jðXkÞ and let ðdk; ykÞ be the canonical representative of Xk. In
particular, b0 ¼ a1 and bm ¼ a2. If Xk�1@j Xk for j A J, then bk�1 ¼ bk. Suppose
that Xk�1@i Xk. If i A H, then dk�1 ¼ dk and yk�1@i yk. In this case (T1) implies
that bk�1@i bk. Let i A K0. Then dk�1@i dk and eXdk�1

ðyk�1Þ@i e
X
dk
ðykÞ, where X

is the i-panel of C0 containing fdk�1; dkg. Put V0 ¼ p�1ðdk�1Þ, V1 ¼ p�1ðdkÞ and
W ¼ p�1ðXÞ. Then bk�1 A V0, bk A V1 and V0 UV1 JW. Since bk�1; bk A W, we
have eXdk�1

ðyk�1Þ A tWðbk�1Þ and eXdk ðykÞ A tWðbkÞ by (T2). As eXdk�1
ðyk�1Þ@i e

X
dk
ðykÞ,

(T1) implies that bk�1@i bk. Thus, bk�1@i bk in any case. Hence jðgÞ is contained in
an i-panel of C. As a consequence, a1@i a2.

Conversely, suppose that a1@i a2. If i A H, then c1 ¼ c2 ¼ c, say. By (T1) applied
to p�1ðcÞ we see that the cells ½x1�J and ½x2�J of Ec are i-adjacent. Hence x1 and x2 are
joined by a gallery of Ec of type contained in J U fig. So, C1@i C2. Finally, let i A K0.
Then c1 and c2 are i-adjacent, hence they are contained in the same i-panel X of C0.
Again, a1; a2 A W ¼ p�1ðXÞ, eXc1 ðx1Þ A tWða1Þ and eXc2 ðx2Þ A tWða2Þ. As a1@i a2, (T1)
implies that the cells ½eXc1 ðx1Þ�

J and ½eXc2 ðx2Þ�
J of EX are i-adjacent, namely eXc1 ðx1Þ and

eXc2 ðx2Þ are joined by a gallery of EX of type JJ U fig. Again, C1@i C2. r

By Lemma 3.11 and Theorem 4.1 we immediately obtain the following:

Theorem 4.2. Let jK0jd 3 and suppose that R0 is fully reliable. Then EðS0Þ is a D-

extension of C.

Theorem 4.3. Suppose that H separates K0 from J in D. Given an isomorphism a from

TrJðEðS0ÞÞ to C, let j :¼ apE, where pE is the projection of E :¼ EðS0Þ onto TrJðEÞ.
Then, for every residue U of E of type q0 tðUÞJK0, jðUÞ is a K0-residue of C and

j induces a full epimorphism jU : U ! jðUÞ. Moreover:

(1) If the ðJ U tðUÞÞ-residue p�1
E ðUÞ of E containing U splits as a direct product of U

and a J-subresidue, then jU is an isomorphism.

(2) If tðUÞ ¼ tðXÞ for some X A R0 and EX is geometric for every X A R0 of type

tðXÞ ¼ tðUÞ, then jU is an isomorphism.

(3) If U has rank at least 3, R0 is fully reliable and EX is geometric for every residue X
of C of rank 2 and type tðXÞJ tðUÞ, then jU is a 2-covering.
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(4) If U has rank at least 2 and EX is geometric for every panel X of C of type

tðXÞ A tðUÞ, then jU is a 1-covering.

Proof. Assume that C ¼ TrJðEÞ and a is the identity mapping, to avoid unnecessary
complications. So, j ¼ pE. As H separates K0 from J, the equality FJFT ¼ FTFJ

holds in E for any T JK0 (see Subsection 2.4). Accordingly, if pEðC1Þ@i pEðC2Þ for
chambers C1;C2 A U and a type i A K0, then C1@i C

0
2 for a chamber C 0

2 A ½C2�J .
However, C 0

2 belongs to U, as it is i-adjacent to C1 A U. This shows that the restric-
tion pU of pE to U is a full epimorphism onto pEðUÞ. Claim (1) is obvious and (2)
follows from (1). We shall now prove (3).

Assume the hypotheses of (3). We must prove that, for i; j A tðUÞ and every fi; jg-
subresidue V of U, pE induces an isomorphism from V to V :¼ pEðVÞ. Clearly, V
is a fi; jg-subresidue of U :¼ pEðUÞ. Put X :¼ pðVÞ (recall that we have assumed
that j ¼ pE). As R0 is fully reliable, fi; jg A R0 and, by (T1), we recognize V in EX

as a J-truncation of a suitable J U fi; jg-residue ŴW of EX. By the hypotheses made
on EX in (3), we have ŴW ¼ V 0 �J for subresidues V 0 and J of type fi; jg and J

respectively. Therefore, VGTrJðŴWÞGV 0. However, by Proposition 3.8, an iso-
morphism exists from ŴW to an ðfi; jgU JÞ-residue W of E contained in U, which
maps V 0 onto V and such that pE induces an isomorphism from TrJðWÞ to V.
Therefore pE induces an isomorphism from V to V. Claim (3) is proved. Claim (4)
can be proved in a similar way. We leave its proof for the reader. r

In view of (T1) and (T2), we may also regard S0 as a sheaf for C over p�1ðR0Þ :¼
fp�1ðXÞgX AR0

. The family p�1ðR0Þ is non-reliable, but it is contained in several reli-
able families of residues of C. We call such families reliable C-extensions of R0. (For
instance, p�1ðR0ÞURmin is a reliable C-extension of R0.) We say that an I -sheaf S
over a reliable C-extension R of R0 is an extension of S0 over R (also, an R-extension
of S0) if it induces on p�1ðR0Þ a sheaf isomorphic to S0.

Theorem 4.4. Let R be a reliable C-extension of R0. Then S0 admits an R-extension S.
The extension S is uniquely determined up to isomorphisms, it is defined over the same

diagram as EðS0Þ and we have EðSÞGEðS0Þ.

Proof. The sheaf SRðEÞ induced by E ¼ EðS0Þ on R is defined over the same diagram
as E and extends S0 (Proposition 3.8). Suppose that S0 admits another extension S ¼
ðfFVgV AR; fyVgV AR; fhWV gV;W AR;V<WÞ. Put E 0 ¼ EðSÞ. Then SGSðE 0Þ, by Prop-
osition 3.8. Thus, if E 0 GE then SGSðEÞ, and the proof of the theorem will be com-
plete. So, we must only prove that E 0 GE.

Without loss, we may assume that, for X A R0, V ¼ p�1ðXÞ and tV as in (T1)
and (T2), FV ¼ EX and yV ¼ tV. Also, if W ¼ p�1ðYÞ for Y A R0 with Y > X, we
assume that hWV ¼ eYX. Let E0 be the set of pairs ðX; xÞ with X A R0 and x A EX and
E1 be the set of pairs ðV; vÞ with V A R and v A FV. The equivalence relation1 of
Subsection 3.2 will be denoted by10 if we refer to pairs ðX; xÞ A E0 and by11 if we
refer to E1. Clearly, if ðX; xÞ10 ðY; yÞ, then ðp�1ðXÞ; xÞ11 ðp�1ðYÞ; yÞ. Conversely,
suppose that ðV; xÞ11 ðW; yÞ for V ¼ p�1ðXÞ, W ¼ p�1ðYÞ, x A FV ¼ EX and y A
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FW ¼ EY. Then hVd ðzÞ ¼ x and hWd ðzÞ ¼ y, where ðd; zÞ is the canonical representa-
tive of the11-class of ðV; xÞ and ðW; yÞ. Put c :¼ pðd Þ ¼ ½d�H . Then, regarding c

as a H-residue of C, we have hVc ðhc
dðzÞÞ ¼ hVd ¼ x and hWc ðhc

dðzÞÞ ¼ hWd ðzÞ ¼ y. Put

z 0 ¼ hc
dðzÞ A Fc ¼ Ec. Then eXc ðz 0Þ ¼ x and eYc ðz 0Þ ¼ y. Therefore the function, say g,

that maps the10-class of ðX; xÞ onto the11-class of ðp�1ðXÞ; xÞ, is well-defined and
injective. As every chamber d of C is contained in the chamber ½d�H of C0, g is also
surjective. That is, g is a bijection from the set of chambers of E to the set of cham-
bers of E 0.

It is not di‰cult to see that g�1 preserves i-adjacencies for every i A I . (Note
that, when i A H, every i-panel of C is contained in a chamber of C0 and, when
i A K0, every i-panel of C is contained in the preimage by p of a panel of C0.) We
shall now prove that g preserves i-adjacencies. The statement is obvious when i B K0.
Let i A K0 and, given an i-panel X of C0, let c1; c2 A X and x1; x2 A Eck be such that
eXc1 ðx1Þ@i e

X
c2
ðx2Þ. For k ¼ 1; 2, let Ck be the10-class of ðck; xkÞ. Then C1 and C2 are

i-adjacent as chambers of E. Let d1 and d2 be the chambers of C corresponding to
½C1�J and ½C2�J by the isomorphism constructed in the proof of Theorem 4.1. Then
d1@i d2. Moreover, ½d1�H ¼ c1 and ½d2�H ¼ c2. So, for k ¼ 1; 2 there exists a unique
chamber zk A Fk such that ðdk; zkÞ is the canonical representative of the11-class of
ðck; xkÞ, namely jck

dk
ðzkÞ ¼ xk. Let W be the i-panel of C containing d1 and d2. Then

W<V :¼ p�1ðXÞ and, for k ¼ 1; 2, we have hVWðhWdk ðzkÞÞ ¼ hVck ðh
ck
dk
ðzkÞÞ ¼ hVck ðxkÞ ¼

eXck ðxkÞ. As eXc1 ðx1Þ@i e
X
c2
ðx2Þ, we obtain that hVWðhWd1 ðz1ÞÞ@i h

V
WðhWd2 ðz2ÞÞ. However,

hVW induces an isomorphism from FW to hVWðFWÞ. Therefore, hWd1 ðz1Þ@i h
W
d2
ðz2Þ.

That is, the chambers of E 0 represented by ðd1; z1Þ and ðd2; z2Þ are i-adjacent. r

According to Theorems 4.2 and 4.4,

Corollary 4.5. If R0 is fully reliable (whence jK0jd 3), then the R-extension of S0 is

defined over D. On the other hand, if R0 is not fully reliable (as when jK0j ¼ 2) and
EðS0Þ does not belong to D, then there is no way to extend S0 to a D-sheaf of C.

5 Some applications of the back-and-forth trick

5.1 Preliminaries. In all cases to be considered in the sequel, C ¼ CðGÞ for a geom-
etry G over K and C0 ¼ CðG0Þ for G0 :¼ TrHðGÞ. We will freely switch from C and C0

to G and G0 whenever this will be convenient, regarding a residue X of C (or C0) as a
residue of G (or G0), hence as a geometry. When jK0j > 2, the support R0 of the D-
sheaf S0 to be constructed is the minimal fully reliable family of proper residues of G0,
namely the collection of all residues of G0 of rankc2. When jK0j ¼ 2, R0 is just the
collection of all chambers and panels of G0. The diagram D, which we call the target
diagram, is suggested by a diagram of G. In all examples of this section but that of
Theorem 5.1, the sheaf S0 is geometric (Subsection 3.4): for every X A R0,
EX ¼ CðDXÞ for a given geometry DX. We may also assume to have chosen DX in
such a way that X, regarded as a geometry, is just the J0-truncation of DX (namely,
tX is induced by the inclusion embedding of X in DX). Thus, we can regard S0 as a
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pair formed by a family of geometries fDXgX AR0
and a family feYXgX;Y AR0;X<Y of

embeddings satisfying properties ðS1Þ; ðS2Þ; . . . ; ðS5Þ of Subsection 3.1, but with (S1)
and (S3) rephrased as follows:

(S1) J U tðXÞ is the type-set of DX and X ¼ TrJ0ðDXÞ;

(S3) eYX induces the identity mapping on X.

For X A R0, we put p�1ðXÞ ¼ ResGðFXÞ, where FX is the flag of G0 such that X ¼
ResG0

ðFXÞ. We also assume to have chosen the elements of DX and the embeddings
eYX in such a way that TrJðDXÞ ¼ p�1ðXÞ and eYXðxÞ ¼ x for every element x A p�1ðXÞ
ðJp�1ðYÞÞ. These conditions correspond to (T1) and (T2) of Section 4 (take the iden-
tity mapping on V :¼ p�1ðXÞ as tV). Moreover, if X < Y (namely, FX IFY), then
FXnFY is a flag of DY and ResDY

ðFXnFYÞ ¼ eYXðDXÞ. For a flag F of DX, let sXðF Þ be
the set of H-flags of p�1ðXÞ that, regarded as flags of DX, are incident to F .

In each of the geometric examples to be discussed in the sequel but that of Sub-
section 5.6, the following is satisfied:

(?) jHj ¼ 1 and D induces a string on J UH, with the element of H as the leftmost
node. Moreover, for every X A R0, up to isomorphisms, there is exactly one
geometry DX for DJUHUtðXÞ such that TrJUHðDXÞGX, and the following holds
for every flag F of DX of type tðFÞJ tðXÞ (possibly, F ¼ q) and any two ele-
ments x1; x2 of DX of type tðx1Þ; tðx2Þ A J:

1) if sXðF U fx1gÞ ¼ sXðF U fx2gÞ then x1 ¼ x2;

2) sXðF U fx1gÞH sXðF U fx2gÞ if and only if x1 and x2 are incident and tðx1Þ is
closer to H than tðx2Þ in the string J UH.

Thus, given X;Y A R0 with X < Y, the embedding eYX is uniquely determined: for
an element x of DX of type j A J, eYXðxÞ is the unique j-element u of DY such that
sYðFY

X U fugÞ ¼ sXðxÞ. (Compare the example discussed in the Introduction of this
paper.) The above remarks imply that, if ð?Þ holds,
ð??Þ there exists a unique geometric D-sheaf S0 over R0.

When jK0jd 3, then R0 is fully reliable, the completion EðS0Þ of S0 is a D-extension
of C ¼ CðGÞ and each of its K0-residues is a 2-cover of a K0-residue of G (Theorem
4.3(3)). When jK0j ¼ 2, EðS0Þ is still an extension of C, but it might not belong to
the target-diagram D. We only know that, for i; j A I , if fi; jg0K0 then the fi; jg-
residues of EðS0Þ are as in D whereas, when fi; jg ¼ K0, they are 1-covers of corre-
sponding K0-residues of G (Theorem 4.3(4)). However, if the class DK0

of rank 2 geo-
metries associated to the K0-stroke of D has been chosen wisely, then some relations
still exist between the K0-residues of EðS0Þ and DK0

. For instance, if DK0
is the class

of all K0-residues of G, then the K0-residues of EðS0Þ are 1-covers of members of DK0
.

We are not going to survey locally truncated geometries in this section. We will
only choose a few examples, as illustrations of the theory developed in Sections 3 and
4. Some of them can be given a more general setting than we will do here, but we
leave these generalizations for the interested reader. We will consider truncated Cm-
and Dm-diagrams first, although nearly all one can say on them has already been said
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by Ronan [22]. However, as we have chosen a truncated Cm-diagram in the Introduc-
tion for our remarks on sheaves, we must firstly turn back to diagrams of that kind.
Moreover, the detailed discussion we will do of truncated Cm-diagrams of rank n > 3
can be repeated almost word-by-word for most of the cases considered in this section.
In those cases, we will feel free to skip details.

5.2 Geometries of truncated Cm-type. Let G belong to the following truncated dia-
gram (compare Introduction):

ððCmÞnÞ
0

�
1

�
2

� � � �
n�2

�
n�1

�
nj � � �

m�1j
where 3c n < m. We recall that black circles represent types of elements that actu-
ally exist in G, whereas the boxes represent ‘virtual elements’. Accordingly, K ¼
f0; 1; . . . ; n� 1g and J ¼ fn; nþ 1; . . . ;m� 1g. We take H ¼ fn� 1g and choose
the Coxeter diagram Cm as a target-diagram. So, K0 ¼ f0; 1; . . . ; n� 2g and S0 ¼
ðfDXgX AR0

; feYXgX;Y AR0;X<YÞ is the geometric Cm-sheaf on the collection R0 of all

residues of G0 ¼ TrHðGÞ of rank c2 (when n > 3) orc1 (when n ¼ 3). For X A R0,
DX is either a projective geometry over a set of types T K J UH, or it contains such
a projective geometry as a direct summand. Condition ð?Þ holds. Hence S0 is the
unique geometric Cm-sheaf over R0, by ð??Þ.

When n > 3, then EðS0Þ belongs to Cm. If furthermore all K0-residues of G are 2-
covered by buildings, then EðS0Þ is a 2-quotient of a Cm-building, by Theorem 2.1.
We should check that all rank 3 residues of EðS0Þ are 2-covered by buildings before
to apply Theorem 2.1, but this is quickly done: Let Z be a residue of EðS0Þ of rank 3.
If tðZÞUK0, then we can recover Z inside DX for a suitable X A R0. In that case
there is nothing to prove. If tðZÞJK0 then, by Theorem 4.3(3), Z is a 2-cover of a
tðZÞ-residue of G0. The latter is 2-covered by a building, by assumption. Hence Z is
also 2-covered by a building. (See Ronan [22] for a slightly di¤erent version of this
argument; also Brouwer and Cohen [5].)

When n ¼ 3, all residues of EðS0Þ but those of type f0; 1g are as in the target dia-
gram Cm, whereas the f0; 1g-residues of EðS0Þ are 1-covers of f0; 1g-residues of G
(Theorem 4.3(4)). No more can be said in general: the structure of those residues
depends on particular properties of G0. Here are some examples:

Example 5.1. Let G be the near-hexagon for M24, equipped with its quads as 2-
elements (Shult and Yanushka [23]; also Ronan [21] and [22]). Then G belongs to
ðC4Þ3 and its f0; 1g-residues are isomorphic to the generalized quadrangle Wð2Þ of
order 2. On the other hand, it is known that CðGÞ admits an extension E belonging to
the following diagram, where �

2

@ �
2
stands for the so-called tilde geometry (a

double 1-cover of Wð2Þ):

0
�
2

@ 1
�
2

2
�
2

3
�
2

(see Ceccherini and Pasini [7, Proposition 4.8]). Furthermore, SR0
ðEÞ is geometric.
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Hence SR0
ðEÞGS0, by ð??Þ. By Theorem 4.4, EðS0ÞGE. As E does not belong to

C4, no C4-sheaf exists for G (see Corollary 4.5). Note that E is transitive, with
AutðEÞGM24, but it is non-geometric (compare Theorem 4.3(1)). In fact, it is tight
at the type 3. Its f0; 1; 2g-residue is the well known tilde-geometry for M24 (see Iva-
nov [10, 3.3]). Notice that the parabolic system associated to E satisfies all hypotheses
of Fukshansky and Stroth [9] but the first one, which just rules out tight chamber
systems.

Example 5.2. Let n ¼ 3 and suppose that all f0; 1g-residues of G are ordinary quad-
rangles. Namely, G is a C2:c-geometry with orders ð1; 1; tÞ, t ¼ m� 2. By Theorem
4.3(4), the completion E :¼ EðS0Þ is thin and belongs to the following diagram,
where the label 4W on the f0; 1g-stroke means that, for a given set W of positive
integers, possibly enriched with the symboly, every f0; 1g-residue of E is an ordinary
4w-gon for a w A W and, for every w A W , at least one f0; 1g-residue of E is a 4w-gon.

ðð4WÞmÞ
0

�
4W 1

�
2

� � � �
m�2

�
m�1

�

I conjecture that W is just the set of wrapping numbers wðaÞ of configurations a ¼
ðX; x0; x1Þ of G, where X is a f0; 1g-residue and fx0; x1g is a f0; 1g-flag of G with
x0 A X but x1 c X (see Pasini and Pica [18, Section 3] for the definition of wðaÞ). If so,
W is finite, it does not contain the symbol y and its maximal element is the wrap-
ping number wðGÞ of G.

Note that ð4WÞm is a Coxeter diagram precisely when W is a singleton. Suppose
that W is a singleton, W ¼ fwg. Then the universal 2-cover ~EE of E is a Coxeter com-
plex (Corollary 2.2). If w ¼ 1, then ð4WÞm ¼ Cm and ~EE is an m-dimensional cube.
Suppose w > 1. Then ~EE is infinite, whereas G is finite (Pasechnik [15]). In view of
Theorem 2.3, for some q0X J f3; 4; . . . ;m� 1g some of the f0; 1gUX -residues
of E do not split as a direct product of a f0; 1g- and an X -residue. As a consequence,
E cannot be geometric. The reader may see Ceccherini and Pasini [7, Proposition
4.9] for a discussion of a particular example related to L3ð2Þ2, where m ¼ 4 and
W ¼ f2g. In that case both E and its f0; 1; 3g-residues are tight at the type 3.

An ordinary quadrangle is a grid of order s ¼ 1. Many ðCmÞ3-geometries are also
known where f0; 1g-residues are grids of order s > 1. Some of them are very inter-
esting, as the ðC17Þ3-geometry for J3 mentioned by Tits [25]. It is likely that what
we have said above for the case of s ¼ 1 can be repeated for s > 1. In particular,
some relations are likely to exist between wrapping numbers and gonalities of f0; 1g-
residues of EðS0Þ.

5.3 Geometries of truncated Dm-type. The following diagram is strictly related to
ðCmÞn:

ððDmÞnÞ

0

�

1

�

2

� � � �
n�2

�
n�1

�
nj � � �

m�2j m�1j
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where 3c n < m. The target-diagram is now Dm. It is well known that every geom-
etry G belonging to ðDmÞn can be ‘folded’ in order to obtain a geometry for ðCmÞn.
So, it is not surprising that things go for ðDmÞn just as for ðCmÞn: When n > 3, EðS0Þ
is a 2-quotient of a Dm-building. According to Theorem 4.3(4), when n ¼ 3 the f0; 1g-
residues of EðS0Þ are 1-covers of generalized digons, whereas all remaining residues
of EðS0Þ are as in Dm.

Example 5.3. Geometries of type ðDmÞ3 with order 1 at both types 0 and 1 are called
c:c�-geometries. The ‘folding’ of a c:c�-geometry is a ðCmÞ3-geometry with ordinary
quadrangles as f0; 1g-residues, as considered in Example 5.2. Accordingly, if G is a
c:c�-geometry, the completion E ¼ EðS0Þ of S0 is thin and belongs to the following
diagram, where the label 2W at the side of the f0; 1g-stroke means that the f0; 1g-
residues of E are ordinary 2w-gons for some w A W .

ðð2WÞmÞ 2W

1 �

0 �

2

�
3

� � � �
m�2

�
m�1

�
�
�
�
�
�

When W ¼ f1g, then ð2WÞm ¼ Dm and E is covered by a Coxeter complex of type
Dm. However, many examples and even infinite families of c:c�-geometries are
known that do not arise from a Coxeter complex of type Dm (see Baumeister [3]; also
Baumeister and Pasechnik [4], Pasini and Yoshiara [19]). Clearly, W 0 f1g in those
cases.

5.4 Geometries admitting two non-isomorphic extensions. As shown in Examples 3.1
and 3.2, some geometries of rank 2 exist that can be regarded as truncations of dif-
ferent geometries of the same rank n > 2. When such a geometry occurs as a residue
of a geometry G of larger rank, and we look for an extension of G, it might happen
that di¤erent sensible choices are possible for the target diagram. In this subsection,
we discuss a few examples of this kind.

Example 5.4. It is known (Meixner [13]) that only two simply connected geometries
exist for the following diagram, where P� denotes the dual of the Petersen graph and
c stands for the class of circular spaces:

ðc:P�Þ
0

�
c 1

�
P� 2

�

The automorphism group of one of those two geometries, say G1, is an extension of
26 : Symð5Þ by a torsion-free group. Denoting by G2 the other geometry, AutðG1Þ is
an extension of 3�Symð6Þ by a torsion-free group.

The Petersen graph can be regarded as the vertex-edge system of the quotient of
a dodecahedron by the antipodal relation. So, we can also depict c:P� as a truncated
diagram, as follows:
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2 �

0 �

1

�
3j5

For G ¼ G1 or G ¼ G2, put G0 :¼ Tr1ðGÞ. Condition (?) holds. So, G0 admits a geo-
metric sheaf S0 and E :¼ EðS0Þ is an extension of G. Clearly, E is thin. It follows
from the presentations given for AutðG1Þ and AutðG2Þ by Meixner [13] that E has
diagram as follows:

2 �

0 �

1

�
3

�
2 �

0 �

1

�
3

�
5

ðwhen G ¼ G1Þ ðwhen G ¼ G2Þ

�
�
�
�
�

5

In both cases E is transitive and it is a proper quotient of a Coxeter complex. How-
ever, as the f0; 1g-residues of G are circular spaces with four points, we may also
regard them as truncations of the quotient of a cube by the antipodal relation
(Example 3.1). Accordingly, we can also depict diagram c:P� as follows:

2 �

0 �

1

�
3j

5

We now get another extension E 0 for G. Comparing the presentation of AutðG1Þ and
AutðG2Þ by Meixner [13], one can see that E 0 has diagram as follows:

2 �

0 �

1

�
3

�
2 �

0 �

1

�
3

�
5

ðwhen G ¼ G1Þ ðwhen G ¼ G2Þ

�
�
�
�
�

5

Example 5.5. Aschbacher and Smith [2] describe two flag-transitive geometries D1

and D2 for O7ð3Þ with diagrams as follows:

1 �

0 �

2

�
3

�
1 �

0 �

2

�
3

�
ðD1Þ ðD2Þ

The residues of D1 of type f0; 2; 1g and f3; 2; 1g are isomorphic to the polar space for
S6ð2Þ. The f0; 2; 3g-residues of D1 are copies of PGð3; 2Þ. The f3; 2; 1g-residues of D2

are also isomorphic to the polar space for S6ð2Þ but those of type f3; 2; 0g are iso-
morphic to the C3-geometry GðAltð7ÞÞ (see Example 3.2).

Modulo permuting the types 0 and 3 in D1, the geometries D1 and D2 have the
same 3-truncation. Thus, we may assume to have given those two types in such a way
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that Tr3ðD1Þ ¼ Tr3ðD2Þ. Thus, both D1 and D2 are extensions of G :¼ Tr3ðD1Þ ¼
Tr3ðD2Þ. This fact can also be explained in terms of sheaves. Regarding G as a trunca-
tion of D2, but recalling that the plane-line system of GðAltð7ÞÞ is the point-line sys-
tem of PGð3; 2Þ, we get the following truncated diagram for G,

1 �

0 �

2

�
3j

The diagram of D1 is the most obvious completion of the above truncated diagram.
The completion of the geometric sheaf of G0 :¼ Tr2ðGÞ built with the diagram of D1

as a target is indeed D1. Needless to say, if we choose the diagram of D2 as a target,
then we go back to D2.

More geometries of rank 4 are known that belong to Coxeter diagrams and involve
GðAltð7ÞÞ as a residue (see Stroth [24] for a classification). Tricks as above can be
played for almost all of them, getting a new chamber system that shares a rank 3
truncation with the considered geometry. Regretfully, so far, the structures of those
new chamber systems remain mysterious to me.

Example 5.6. Let G be the geometry for M24 considered in Example 5.1. In that
example we took the Coxeter diagram C4 as a target diagram for an extension of G.
However, in view of Example 3.2, we may choose the following one as well, but with
the restriction that f1; 2; 3g-residues should be copies of GðAltð7ÞÞ:

0

�
1

�
2

�
3

�

With the above as a target, we can build a sheaf S0 on the 2-truncation of G. The
completion E of S0 is an extension of G with diagram like the above but possibly for
f0; 1g-residues, which might be proper covers of the generalized quadrangle Wð2Þ
rather than copies of it. Perhaps, M24 acts transitively on E, but I guess that E is tight
at some type.

5.5 The diagram (Dn;m)n;q. In this and the next subsection we take the following
Coxeter diagram as a target. We denote it by Dn;m, for convenience of reference.

ðDn;mÞ
nþ

�
ðn�1Þþ
� � � �

2þ

�
1

�
2�

� � � �
ðm�1Þ�
�

m�

��
�
�
�
�
� 0

(Note that Dn;m and Dm;n are the same, but for a switching of the diagram; note also
that Dn;2 is the Lie diagram Dnþ2 and, for n ¼ 3; 4; 5, Dn;3 is the Lie diagram Enþ3.)
Let G be a geometry for the following truncation of Dn;m, where we assume n > 2:
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ððDn;mÞn;qÞ
nþ

�
ðn�1Þþ
� � � �

2þ

�
1

�
2�j � � �

ðm�1Þ�j m�j�
�
�
�
�
� 0

K ¼ f0; 1; 2þ; . . . ; nþg is the type-set of G and J ¼ f2�; 3�; . . . ;m�g is the set of types
for ‘virtual objects’.

Theorem 5.1. Suppose that all f0; 1; 2þg-residues of G are ( possibly non-proper) 2-
quotients of truncations of buildings of type Dmþ2. Then CðGÞ admits a Dn;m-extension

E, and E is 2-covered by a building.

Proof. We firstly prove that G0 ¼ Tr1ðGÞ admits a Dn;m-sheaf. By assumption, for any
f2þ; 0g-residue X of G0, we have p

�1ðXÞGTrJð~DDX=GÞ for a Dmþ2-building ~DDX and a
suitable subgroup G < Autð~DDXÞ. So, Cðp�1ðXÞÞGTrJðCð~DDXÞ=GÞ. Put EX :¼
Cð~DDXÞ=G. For a residue Y of G0 of type fi; jg0 f2þ; 0g, we put EY ¼ CðDYÞ, where
the geometry DY is defined as in Subsection 5.1. Similarly for panels and cham-
bers. However, we must show how to relate chambers of EZ to chambers of EX for
a subresidue Z of X when X has type f2þ; 0g. In view of that, we need some pre-
liminaries.

For fh; kg ¼ f2þ; 0g, let x be a h-element of the geometry X. In view of the dia-
gram of G, the rank 2 geometry Sx;X :¼ Resp�1ðXÞðxÞ is an ðmþ 1Þ-dimensional pro-
jective space. Let ðy;S1; . . . ;SmÞ be a complete chain of subspaces of Sx;X. In partic-
ular, y is a point, namely a k-element of p�1ðXÞ incident to x, S1 is a line on y, S2 a
plane containing S1, and so on. For j ¼ 1; 2; . . . ;m, let Lj be the set of lines of Sx;X

contained in Sj and incident to y. (In particular, L1 is a 1-element of p�1ðXÞ incident
to the flag fx; yg.) The sequence ðy;L1; . . . ;LmÞ may be regarded as a chamber of the
geometry DXx

associated to the panel Xx :¼ ResXðxÞ of X. We call ðLjÞmj¼1 a maximal

virtual flag of Xx on y.
Given a chamber C of EX, we pick a chamber ~CC A p�1ðCÞ, where pG is the

projection of Cð~DDXÞ onto Cð~DDXÞ=G ¼ EX. Let Fð ~CCÞ be the f2þ; 0g-subflag of ~CC
and ~xx1; ~xx2; . . . ; ~xxm be the elements of ~CC of type 1; 2�; . . . ;m�, respectively. Put
sð ~CC; 1Þ :¼ ~xx1 and, for j ¼ 1; 2; . . . ;m, let sð ~CC; jÞ be the set of 1-elements of ~DDX that
are incident with F ð ~CCÞU f~xxjg. Then pG maps the pair ðFð ~CCÞ; ðsð ~CC; jÞÞmj¼1Þ onto a
pair rðCÞ :¼ ðFðCÞ; ðsðC; jÞÞmj¼1Þ where FðCÞ ¼ fx; yg is a f2þ; 0g-flag of X and
sðCÞ :¼ ðsðC; jÞÞmj¼1 is a maximal virtual flag of Xx on y as well as a maximal vir-
tual flag of Xy on x. The pair rðCÞ does not depend on the particular choice of
~CC A p�1

G ðCÞ. We call rðCÞ the track of C in G, sðCÞ the 1-shadow of C and F ðCÞ the
f2þ; 0g-support of C.

It is now clear that, given a f2þ; 0g-flag F ¼ fx; yg of X, the maximal virtual flags
of Xx on y, regarded as chains of distinguished sets of 1-elements of G, are the same
as those of Xy on x and bijectively correspond to the 1-shadows of the chambers of
EX supported by F . We should now prove the following:

(1) If rðCÞ ¼ rðC 0Þ then C ¼ C 0.
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(2) If i A f2þ; 0g, then we have C@i C
0 if and only if F ðCÞ@i FðC 0Þ and sðC; jÞ ¼

sðC 0; jÞ for all j ¼ 1; 2; . . . ;m.

(3) If i A f1; 2; . . . ;mg, then C@i C
0 if and only if FðCÞ ¼ F ðC 0Þ and sðC; jÞ ¼

sðC 0; jÞ for all j A f1; 2; . . . ;mgnfig.

We shall only prove (1), leaving the rest for the reader. Let rðCÞ ¼ rðC 0Þ. Then,
modulo replacing ~CC 0 with gð ~CC 0Þ for a suitable g A G, we may assume to have picked
~CC A p�1

G ðCÞ and ~CC 0 A p�1
G ðC 0Þ in such a way that F ð ~CCÞ ¼ F ð ~CC 0Þ ¼ ~FF , say. On the

other hand, for ~xx A ~FF , the residue of x ¼ pGð~xxÞ in EX is isomorphic to the residue
of ~xx in ~DDX, as both those residues are projective spaces. Hence no two chambers of
Res~DDX

ð ~FF Þ belong to the same orbit of G. However, sðCÞ ¼ sðC 0Þ by assumption.

Therefore ðsð ~CC; jÞÞmj¼1 ¼ ðsð ~CC 0; jÞÞmj¼1. This forces
~CC ¼ ~CC 0, hence C ¼ C 0.

It is now clear that, for an element x of X of type 2þ or 0, the function eXXx
mapping

every chamber ðy; ðLjÞmj¼1Þ of DXx
onto the chamber C of EX with rðCÞ ¼ ðfx; yg;

ðLjÞmj¼1Þ is an isomorphism from EXx
to a residue of EX. The existence of the sheaf S0

is proved.
By Theorem 4.2, the chamber system E :¼ EðS0Þ is a Dn;m-extension of CðGÞ. It

remains to prove that E is 2-covered by a building. If we prove that all residues of E
of rank 3 are 2-covered by buildings, then Theorem 2.1 will yield the conclusion. Let
U be a residue of E of rank 3. If tðUÞUK0 then, by Proposition 3.8, U is a residue
of EX for some X A R0, and U is covered by a building, by our choice of the local
extensions EX. Suppose that tðUÞJK0. By our choice of local extensions, if X is a
panel then EX is geometric. Hence the full epimorphism jU considered in Theorem
4.3 is a 1-covering, by Claim (4) of that theorem. However, it is well known that no
proper 1-coverings exist between projective planes or generalized digons. Therefore
jU is a 2-covering, as the rank 2-residues of U are either projective planes or gener-
alized digons. On the other hand, jðUÞ is either a projective 3-space or a direct product
of two chamber systems of rank 1 and 2 or of three chamber systems of rank 1. In
any case, jðUÞ is simply connected, and it is a building. Accordingly, jU is an iso-
morphism. Hence U is a building. r

Corollary 5.2. Suppose that G is flag-transitive, thick and locally finite (namely, all rank
2 residues of G are finite). Then CðGÞ admits a Dn;m-extension E and E is 2-covered by

a building.

Proof. By Cardinali and Pasini [6], the f0; 1; 2þg-residues of G are truncations of
buildings of type Dmþ2. The conclusion follows from Theorem 5.1. r

Remark. The hypothesis made on f0; 1; 2þg-residues in Theorem 5.1 is not superflu-
ous, as shown by the classification of flag-transitive cn:c�-geometries. We recall that a
cn�1:c�-geometry is a geometry G belonging to the diagram ðDn;mÞn;q with

order 1 at all types but 1. By Theorem 5.1, if all f0; 1; 2þg-residues of G are 2-
quotients of truncated Dmþ2-buildings (in this case, Coxeter complexes of type
Dmþ2), then G admits a ðDn;mÞn;q-extension, which is a truncated quotient of a
Coxeter complex. However, five flag-transitive cn�1:c�-geometries exist where
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f0; 1; 2þg-residues are not quotients of truncated Coxeter complexes (Meixner [12]
and Ceccherini and Pasini [7, 3.3]).

5.6 One more truncation of Dn;m. In this subsection G is a geometry belonging to the
following truncation of Dn;m:

ððDn;mÞ2;2Þ
nþj � � �

3þj 2þ

�
1

�
2�

�
3�j � � �

m�j�
�
�
�
�

� 0

Theorem 5.3. The chamber system CðGÞ admits a Dn;m-extension E and E is 2-covered
by a building.

Proof. If we define a sheaf S0 on G0 ¼ TrHðGÞ (H ¼ f2þ; 2�g), we do get an exten-
sion of CðGÞ, by Theorem 4.1. However, as G0 has rank 2, we loose control over
f0; 1g-residues. So, we must proceed di¤erently.

We consider Gþ
0 :¼ Tr2þðGÞ and G�

0 :¼ Tr2�ðGÞ and, for e A fþ;�g, we take a sheaf
Se
0 over the collection Re

0 of all residues of Ge
0 of rankc2. In view of the hypothesis

made on f2þ; 1; 2�g-residues of G, we may assume that Se
0 is geometric. So, Se

0 is the
unique geometric sheaf for Ge

0 with the following as the target-diagram:

nþ

� � � �
3þ

�
2þ

�
1

�
2�

�
3�j � � �

m�j�
�
�
�
�
� 0

ððDn;mÞn;2; for e ¼ þÞ

nþj � � �
3þj 2þ

�
1

�
2�

�
3�

� � � �
m�

��
�
�
�
�

� 0

ððDn;mÞ2;m; for e ¼ �Þ

(We warn that the type-set of ðDn;mÞn;2 is fnþ; . . . ; 2þ; 1; 0; 2�g and the type set of

ðDn;mÞ2;m is f2þ; 0; 1; 2�; . . . ;m�g.) By Theorem 4.2, the chamber system Ee :¼ EðSe
0Þ

is an extension of CðGÞ, with diagram as above. We shall construct a Dn;m-extension
E of CðGÞ by pasting Eþ and E� together. We fix some notation before defining E.
We put Jþ ¼ f3þ; 4þ; . . . ; nþg and J� ¼ f3�; 4�; . . . ;m�g. For e A fþ;�g, let ae :
TrJ eðEeÞ ! CðGÞ be an isomorphism as in the proof of Theorem 4.1. In the sequel,
given a chamber C e of E e, we put ceðC eÞ :¼ aeð½C e�J

e

Þ. The chamber system E is
defined as follows:

(1) The chambers of E are the pairs C ¼ ðCþ;C�Þ where C e is a chamber of Ee for
e A fþ;�g and cþðCþÞ ¼ c�ðC�Þ.

(2) For fe; hg ¼ fþ;�g and j A J e, we declare ðCþ
1 ;C

�
1 Þ and ðCþ

2 ;C
�
2 Þ to be j-

adjacent if C e
1@j C

e
2 in E e and C

h
1 ¼ C

h
2 .
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(3) For i A K :¼ f0; 1; 2þ; 2�g, we declare ðCþ
1 ;C

�
1 Þ and ðCþ

2 ; c
�
2 Þ to be i-adjacent if

C e
1@i C

e
2 for e A fþ;�g.

It is straightforward to check that E is a chamber system over the set of types I ¼
f0; 1; nþ; . . . ; 2þ; 2�; . . . ;m�g. We shall prove that E is indeed a Dn;m-extension of G.
We split our proof in a series of steps.

(4) For fe; hg ¼ fþ;�g, the function pe mapping C ¼ ðCþ;C�Þ onto C e induces an
isomorphism from

Proof. Let e ¼ þ and h ¼ �, to fix ideas. By (2), pþðCþ
1 Þ contains the J�-cell ½C1�J

�

of C1 ¼ ðCþ
1 ;C

�
1 Þ in E. Conversely, let C2 ¼ ðCþ

2 ;C
�
2 Þ with Cþ

2 ¼ Cþ
1 . Then

c�ðC�
1 Þ ¼ cþðCþ

1 Þ, by (1). Hence ½C�
1 �

J� ¼ ½C�
2 �

J�
and (2) implies that C2 A ½C1�J

�
.

So, the fibers of pþ are the J�-cells of E and pþ induces a bijection, say bþ, from
the set of J�-cells of E to the set of chambers of Eþ. Clearly, bþ preserves
adjacencies. It remains to prove that b�1

þ also preserves adjacencies. Let Cþ
1 and

Cþ
2 be i-adjacent chambers of Eþ. If i A Jþ, then Cþ

1 ;C
þ
2 belong to the same Jþ-

cell of Eþ, hence cþðCþ
1 Þ ¼ cþðCþ

2 Þ. Pick C� A c�1
� ðcþðCþ

1 ÞÞ. Then C1 ¼ ðCþ
1 ;C

�Þ
and C2 ¼ ðCþ

2 ;C
�Þ are chambers of E and C1@i C2. Claim (4) is proved.

(5) TrJðEÞGCðGÞ.
This follows from (4), recalling that TrJ eðE eÞGCðGÞ.

(6) For fe; hg ¼ fþ;�g and fi; j; kg ¼ f0; 1; 2eg, every residue Z of E of type J e U
fi; jgU J� is the direct product Z ¼ Ze �Jh of a subresidue Z e of type
J e U fi; jg and a subresidue Jh of type J h. Moreover, the function pe defined in
(4) induces an isomorphism from Z e to a ðJ e U fi; jgÞ-residue of E e.

Proof. Let e ¼ þ, to fix ideas. According to (2) and (3), the following equality holds
in E: FJþUfi; jgFJ� ¼ FJ�

FJþUfi; jg. In order to prove the first part of (6), we must
show that FJþUfi; jg VFJ� ¼ Fq, namely: Given a chamber C0 ¼ ðCþ

0 ;C
�
0 Þ A Z, if

Zþ ¼ ½C0�J
þUfi; jg and J� ¼ ½C0�J

�
, then Zþ VJ� ¼ fC0g. Let C ¼ ðCþ;C�Þ be a

chamber of Zþ VJ�. Then either of Zþ and J� contains a gallery from C0 to C.
As C0 and C are joined by a gallery of J�, (2) forces Cþ ¼ Cþ

0 and C� A ½C�
0 �

J�
. On

the other hand, as C0 and C are joined by a gallery of Zþ, (2) and (3) imply that the
chambers C�

0 and C� are joined by a gallery of E� contained in a residue V of E� of
type fi; jg. Let V be the ðfi; jgU J�Þ-residue of E� containing V. By Proposition

3.8, V is isomorphic to E�
X A S�

0 for an fi; jg-residue X of G�
0 . However, the sheaf S�

0

is geometric. Hence the chamber system E�
X is geometric. Therefore, V is geometric

and, as 2� separates fi; jg from J� in ðDn;mÞ2;m, V splits as a direct product of V

and ½C�
0 �

J� . So, C� ¼ C�
0 , since C� belongs to ½C�

0 �
J� and is joined with C0 by a

gallery of V. Accordingly, C ¼ C0.
We now turn to the second claim of (6). In view of the first claim, pþ induces

an injective morphism from Zþ to a residue U of Eþ of type Jþ U fi; jg. We shall
now prove that p�1

þ preserves adjacencies. Given chambers C0 ¼ ðCþ
0 ;C

�
0 Þ and C ¼

ðCþ;C�Þ of Zþ, suppose that Cþ
0 @k C

þ for k A Jþ U fi; jg. Note firstly that, by
(2) and (3), C�

0 and C� belong to the same fi; jg-residue V of E� and we have
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c�ðC�
0 Þ ¼ cþðCþ

0 Þ and c�ðC�Þ ¼ cþðCþÞ by (1). If k A Jþ, then cþðCþ
0 Þ ¼ cþðCþÞ,

namely c�ðC�
0 Þ ¼ c�ðC�Þ. So, C� A ½C�

0 �
J� and we get C� ¼ C�

0 , as in the previous
part of the proof. Hence C@k C0. Let now k A fi; jg. Then cþðCþ

0 Þ@k cþðCþÞ,
namely c�ðC�

0 Þ ¼ c�ðC�Þ. As 2� separates k from J� in ðDn;mÞ2;m, we can pick a
chamber C�

1 A ½C�
0 �

J� such that C�
1 @k C

�. So, C�
1 A ½C�

0 �
J�

belongs to the same
residueV containing C�

0 and C�. By the previous part of the proof, C�
1 ¼ C�

0 . Hence
C�

0 @k C
�. Consequently, C0 @k C. Claim (6) is proved.

(7) For i A Jþ U f2þg and j A J� U f2�g, all fi; jg-residues of E are generalized
digons.

Proof. In the sequel, when dealing with a residue X of G e
0, it will be more conve-

nient to refer to the flag F ¼ FX of Ge
0 such that X ¼ ResG e

0
ðFÞ, denoting the

extension of X in Se
0 by the symbol E e

F instead of Ee
X. We recall that the type of X is

the cotype of F . When i A Jþ and j A J�, (7) immediately follows from (2). Suppose
that at most one of i; j belongs to f2þ; 2�g and let C0 ¼ ðCþ

0 ;C
�
0 Þ, C1 ¼ ðCþ

1 ;C
�
1 Þ

and C2 ¼ ðCþ
2 ;C

�
2 Þ be chambers of E such that C0 @i C2 @j C1. We shall prove

that C0 @j C3 @i C1 for a suitable chamber C3. We firstly consider the case where
only one of i or j belongs to f2þ; 2�g. Let i ¼ 2þ and j A J�, to fix ideas. Then
Cþ

0 @i C
þ
2 ¼ Cþ

1 and C�
0 @i C

�
2 @j C

�
1 . As 2� separates i ¼ 2þ from j A J� in the

diagram of E�, there exists a chamber C�
3 A E� such that C�

0 @j C
�
3 @i C

�
1 . Clearly,

C3 :¼ ðCþ
0 ;C

�
3 Þ is a chamber of E and C0 @j C3 @i C1.

Finally, let i ¼ 2þ and j ¼ 2�. Then, for e A fþ;�g, C e
0 and C e

1 are chambers of
the same f2þ; 2�g-residue Ze of Ee

F , for a given f0; 1g-flag F of Ge
0. Thus, we can

find a chamber C e
3 of Z such that C e

0 @j C
e
3 @i C

e
1. The isomorphism ae : TrJ eðE eÞ !

G induces an isomorphism from TrJ eðE e
F Þ to ResGðFÞ which maps C e

0, C
e
1, C

e
2 and C e

3

onto f2þ; 2�g-flags F0 ¼ fx0; y0g, F1 ¼ fx1; y1g, F2 ¼ fx1; y0g and F3 ¼ fx0; y1g of
G. As cþðCþ

k Þ ¼ c�ðC�
k Þ ¼ F UFk for k ¼ 0; 1; 2, the flags F0;F1 and F2 do not

depend on whether e ¼ þ or e ¼ �. Hence F3 does not depend on that either. As a
consequence, cþðCþ

3 Þ ¼ c�ðC�
3 Þ ¼ F UF3. So, C3 :¼ ðCþ

3 ;C
�
3 Þ is a chamber of E and

C0 @j C3 @i C1. Claim (7) is proved.
It follows from (6), (7) and the diagrams of Eþ and E� that E belongs to Dn;m. By

(5), E is a Dn;m-extension of G. It remains to prove that E is covered by a building.
This will follow from Theorem 2.1 as soon as we have proved the following:

(8) All residues of E of rank 3 are 2-covered by buildings.

Proof. Let U be a residue of E of rank 3. If tðUÞ is not contained in f0; 1; 2þ; 2�g,
then U is a subresidue of a residue Z as considered in (6). Accordingly, U splits as a
direct product of a geometry of rank 1 and a geometry of rank 2 or two geometries of
rank 1. In any case, U is a building. When tðUÞH f0; 1; 2þ; 2�g, then we can apply
an argument similar to that used in the proof of Theorem 5.1, exploiting (6) to regard
panels of U as panels of Eþ or E�. We leave the details for the reader. r

Remark. Theorem 5.3 has been suggested to me by the reading of a paper of Onofrei
[14]. Onofrei aims to construct a Dn;m-extension of a geometry G of type ðDn;mÞ2;2,
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m ¼ 3 or 4. In her paper, G is a parapolar space with point-residues isomorphic
to projective grassmannians and with maximal singular subspaces as elements of
type 2þ and 2�. Instead of defining a sheaf directly on G, she firstly constructs new
objects, of type 3þ, called symps, which are isomorphic to half-spin geometries of
type Dmþ2;mþ2. So, she gets an extension G 0 of G belonging to the following diagram:

nþj � � �
4þj 3þ

�
2þ

�
1

�
2�

�
3�j � � �

m�j�
�
�
�
�

� 0

At that stage, she considers a sheaf for G 0, the completion of which is the required
Dn;m-extension. However, as Onofrei wants a complete sheaf for G 0 too, namely a
sheaf defined over the set of all proper residues of G 0, including those of cotype con-
taining 3þ or 2�, one can hardly understand why defining such a sheaf on G 0 should
be easier than on G. In fact it isn’t. We should rather play the back-and-forth game,
going back to G and defining a sheaf S on it. As Onofrei assumes that the f2þ; 1; 2�g-
residues of G are truncations of projective geometries, we can define S geometrically,
hanging it at the new elements (the symps), as we have got them. Otherwise, we can
proceed as in the proof of Theorem 5.3.
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