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Abstract. We prove the existence of a four-class association scheme on the set of external lines
with respect to a hyperbolic quadric of PGð3; qÞ where qd 4 is a power of 2. This result is an
analogue of the one by Ebert, Egner, Hollmann and Xiang. Taking a quotient of this associa-
tion scheme yields a strongly regular graph of Latin square type. We show that this strongly
regular graph can also be obtained by a generalization of the construction given by Mathon.

1 Introduction

In the paper [5], Ebert, Egner, Hollmann and Xiang constructed a four-class sym-
metric association scheme by using the set of secant lines with respect to an ovoid O
of PGð3; qÞ for qd 4 a power of 2. We can regard this association scheme as defined
on the set of external lines by taking the null polarity with respect to O. In this paper,
we consider an analogous construction by a hyperbolic quadric. We construct a four-
class symmetric association scheme by using the set of external lines with respect to a
hyperbolic quadric of PGð3; qÞ. Each relation is invariant under the action of the
orthogonal group Oþð4; qÞ but the set of relations is not the set of orbitals on the set
of external lines. Indeed, there are more orbitals than relations. Moreover, a quo-
tient of this association scheme forms a strongly regular graph of Latin square type.
We also prove that this strongly regular graph is isomorphic to the one constructed
from a direct product of a pseudo-cyclic symmetric association scheme defined by the
action of SLð2; qÞ on the right cosets SLð2; qÞ=O�ð2; qÞ, which is a generalization of
the construction given by Mathon [10]. This isomorphism is obtained by an iso-
morphism between SLð2; qÞ2 and Wþð4; qÞ.

2 Association schemes, strongly regular graphs and projective spaces

Let X be a finite set and let fRig0cicd be relations on X , that is, subsets of X � X .
Then X ¼ ðX ; fRig0cicdÞ is called a d-class symmetric association scheme if the fol-
lowing conditions are satisfied.



1. fRig0cicd is a partition of X � X .

2. R0 is diagonal, that is, R0 ¼ fðx; xÞ j x A Xg.

3. fðy; xÞ j ðx; yÞ A Rig ¼ Ri for any i.

4. For any i; j; k A f0; 1; . . . ; dg, pk
ij :¼ jfz A X j ðx; zÞ A Ri; ðy; zÞ A Rjgj is independent

of the choice of ðx; yÞ in Rk.

For i A f0; . . . ; dg, let Ai be the adjacency matrix of the relation Ri, that is, Ai is
indexed by X and

ðAiÞxy :¼
1 if ðx; yÞ A Ri;

0 if ðx; yÞ B Ri:

�

Then we have

AiAj ¼
Xd
k¼0

pk
ijAk

for any i; j A f0; . . . ; dg. So A0;A1; . . . ;Ad form a basis of the commutative algebra
generated by A0;A1; . . . ;Ad over the complex field (which is called the Bose–Mesner
algebra of X). Moreover this algebra has a unique basis E0;E1; . . . ;Ed of primitive
idempotents. One of the primitive idempotents is jX j�1

J where J is the matrix whose
entries are all 1. So we may assume E0 ¼ jX j�1

J. Let P ¼ ðpjðiÞÞ0ci; jcd be the ma-
trix defined by

ðA0 A1 . . .AdÞ ¼ ðE0 E1 . . .EdÞP:

We call P the first eigenmatrix of X. Note that fpjðiÞ j 0c ic dg is the set of eigen-
values of Aj. The first eigenmatrix satisfies the orthogonality relation:

Xd
n¼0

1

kn
pnðiÞpnð jÞ ¼

jX j
mi

dij;

where ki ¼ p0ii and mi ¼ rankEi. We say that X is pseudo-cyclic if there exists an
integer m such that rankEi ¼ m for all i A f1; . . . ; dg. Note that in this case, jX j ¼
dmþ 1 and ki ¼ p0ii ¼ m for all i A f1; . . . ; dg (see [1, p. 76]).

Let G be a finite group and K be a subgroup of G. Then G acts naturally on the set
G=K � G=K with orbitals R0;R1; . . . ;Rd , where we let R0 ¼ fðgK; gKÞ j gK A G=Kg.
If all orbitals are self-paired, then X ¼ ðG=K ; fRig0cicdÞ forms a symmetric associa-
tion scheme. We denote this association scheme by XðG;KÞ.

For a strongly regular graph with parameters ðn; k; l; mÞ, one of the eigenvalues of
its adjacency matrix is k, and the others y1; y2 are the solutions of x2 þ ðm� lÞxþ
ðm� kÞ ¼ 0. We can identify the pair of a strongly regular graph and its complement
with a two-class symmetric association scheme whose first eigenmatrix is
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2
64
1 k n� k � 1

1 y1 �1� y1

1 y2 �1� y2

3
75 ð1Þ

In the paper [10], Mathon constructed a strongly regular graph from the pseudo-
cyclic symmetric association scheme XðSLð2; 8Þ;O�ð2; 8ÞÞ. The next lemma is a gen-
eralization of this construction, due to Brouwer and Mathon [2]. Godsil [7] remarks
that it can also be proved by Koppinen’s identity [9] (see also [6, Theorem 2.4.1]).

Lemma 2.1. Let X ¼ ðX ; fRig0cicdÞ be a pseudo-cyclic symmetric association scheme

on dmþ 1 points. Then the graph DðXÞ whose vertex set is X � X , where two distinct

vertices ðx; yÞ and ðx 0; y 0Þ are adjacent if and only if ðx; x 0Þ; ðy; y 0Þ A Ri for some i0 0,
is a strongly regular graph of Latin square type with parameters

ðjX j2;mðjX j � 1Þ; jX j þmðm� 3Þ;mðm� 1ÞÞ:

Proof. The direct product of X is ðX � X ; fRijg0ci; jcdÞ, where

Rij :¼ fððx; yÞ; ðx 0; y 0ÞÞ j ðx; x 0Þ A Ri; ðy; y 0Þ A Rjg:

If P is the first eigenmatrix of X, then PnP is the first eigenmatrix of ðX � X ,
fRijg0ci; jcdÞ. The edge set of DðXÞ is defined to be 6d

j¼1
Rjj . Then the eigenvalues of

the adjacency matrix of DðXÞ are

�Xd
j¼1

pjðiÞpjði 0Þ j 0c i; i 0 c d

�
:

Since X is psuedo-cyclic, k0 ¼ m0 ¼ 1, kj ¼ mi ¼ m for i; j0 0. Hence the ortho-
gonality relation implies

Xd
j¼1

pjðiÞpjði 0Þ ¼
mjX j
mi

dii 0 �m ¼
mðjX j � 1Þ if i ¼ i 0 ¼ 0;

jX j �m if i ¼ i 0 0 0;

�m if i0 i 0:

8<
:

Therefore DðXÞ has three eigenvalues. This implies that DðXÞ is strongly regular. The
parameters of DðXÞ can easily be calculated. r

In Lemma 2.1, if X ¼ XðG;KÞ for some finite group G and its subgroup K , then
DðXÞ has the following geometric interpretation.

Lemma 2.2. Suppose that a finite group G and its subgroup K form a pseudo-cyclic

symmetric association scheme X ¼ XðG;KÞ. Then the graph DðXÞ of Lemma 2.1 is

isomorphic to the collinearity graph of the coset geometry ðG 2=K 2;G 2=DðGÞ; �Þ where
DðGÞ :¼ fðx; xÞ j x AGg and for x1; x2; y1; y2 AG, ðx1; x2ÞK 2 � ðy1; y2ÞDðGÞ if and only

if ðx1; x2ÞK 2 V ðy1; y2ÞDðGÞ ¼ q.
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Proof. Since each relation of XðG;KÞ is an orbital of the action of G on G=K � G=K ,
two pairs ðx1K ; y1KÞ, ðx2K ; y2KÞ are adjacent in the graph DðXðG;KÞÞ if and only if
there exists w A G such that y1K ¼ wx1K , y2K ¼ wx2K . On the other hand, two pairs

ðx1; y1ÞK 2, ðx2; y2ÞK 2 are adjacent in the collinearity graph of ðG 2=K 2;G 2=DðGÞ; �Þ
if and only if ðx�1

1 x2; y
�1
1 y2Þ is in K 2DðGÞK 2 (cf. [4, p. 15]).

For x1; x2; y1; y2 A G,

ðx�1
1 x2; y

�1
1 y2Þ A K 2DðGÞK 2 , x�1

1 x2; y
�1
1 y2 A KwK for some w A G;

, x�1
1 x2 A Ky�1

1 y2K

, y1kx
�1
1 ¼ y2k

0x�1
2 for some k; k 0 A K ;

, y1 A wx1K ; y2 A wx2K for some w A G;

Hence the mapping G=K � G=K C ðxK ; yKÞ 7! ðx; yÞK 2 A G 2=K 2 is an isomorphism
between the above two graphs. r

For the rest of this section, we recall some terminology on finite projective spaces.
In this paper, let q be a power of 2 and let PGð3; qÞ be the three-dimensional projec-
tive space over GFðqÞ. For a non-degenerate quadratic form Q on GFðqÞ4, we say
that a point p ¼ hvi is singular if QðvÞ ¼ 0, and we call the set of singular points a
quadric. For a set of points X , we say that a line l is external (respectively secant) to
the set X if the number of points in l VX is 0 (respectively 2).

It is well known that there are two types of non-degenerate quadratic forms on
GFðqÞ4, which are called elliptic type or hyperbolic type. For a point p, denote by p?

the orthogonal complement of p with respect to the symmetric bilinear form obtained
from Q. Define for a line l or a plane p, l? :¼ 7

p A l p
?, p? :¼ 7

p A p p
?.

For a hyperbolic quadric in PGð3; qÞ, since q is even, the polarity ? is a null po-
larity, that is, if p is a point, then p A p?. More precisely, if p is on the hyperbolic
quadric, then p? is the plane determined by the two generators of the quadric through
p. If p is not on the quadric, then through p there are qþ 1 tangent lines to the
quadric and these qþ 1 lines are coplanar. The plane determined by these qþ 1 tan-
gent lines is p?. For a line l, we have l? ¼ fp? j lJ pg. If l is external, then since
every plane p containing l satisfies the point p? is nonsingular and not on l, the line
l? is also external to the quadric and skew to l. On the other hand, for an external line
l to an ovoid, the line l? is skew to l and secant to the ovoid (see [8, pp. 24–26]).

A canonical form of the quadratic form of hyperbolic type is

Qðx1; x2; x3; x4Þ ¼ x1x4 þ x2x3:

Denote by Wþð4; qÞ the commutator group of the orthogonal group defined from the
above Q.

3 Main results

A four-class symmetric association scheme on the set of secant lines with respect to
any ovoid was constructed:
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Theorem 3.1 ([5]). Let q ¼ 2 f d 4. Then the following relations on the set of secant

lines of PGð3; qÞ with respect to an ovoid

R1 ¼ fðl;mÞ j l Vm is a singular pointg

R2 ¼ fðl;mÞ j l Vm is a nonsingular pointg

R3 ¼ fðl;mÞ j l? Vm0qg

R4 ¼ fðl;mÞ j l Vm ¼ q; l? Vm ¼ qg

and the diagonal relation R0 define a four-class symmetric association scheme.

We can regard the above association scheme as defined on the set of external lines.
The relations R1;R2;R3 and R4 correspond to the following relations on the set of
external lines

fðl;mÞ j hl;mi? is a singular pointg;

fðl;mÞ j hl;mi? is a nonsingular pointg;

fðl;mÞ j l? Vm0qg;

fðl;mÞ j l Vm ¼ q; l? Vm ¼ qg;

respectively.
In the paper [5], a plane p is called tangent if its orthogonal complement is a sin-

gular point.
For a hyperbolic quadric, we can construct a four-class symmetric association

scheme similar to the above one. Let L be the set of external lines with respect to a
hyperbolic quadric in PGð3; qÞ.

Theorem 3.2. Let q ¼ 2 f d 4. Then the following relations on the set L of external

lines of PGð3; qÞ with respect to a hyperbolic quadric

R1 ¼ fðl;mÞ j l Vm is a pointg

R2 ¼ fðl;mÞ jm ¼ l?g

R3 ¼ fðl;mÞ j l? Vm is a pointg

R4 ¼ fðl;mÞ j l Vm ¼ q; l? Vm ¼ qg

and the diagonal relation R0 define a four-class symmetric association scheme.

Moreover we can construct a strongly regular graph from this symmetric association
scheme by taking a quotient.
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Theorem 3.3. Let G ¼ Gq ðq ¼ 2 f d 4Þ be the graph with vertex set ffl; l?g j l A Lg,
where two distinct vertices of G, fl; l?g, fm;m?g are adjacent if and only if l Vm0q
or l Vm? 0q. Then G is a strongly regular graph of Latin square type with param-

eters

v ¼ 1

4
q2ðq� 1Þ2; k ¼ 1

2
ðq� 2Þðqþ 1Þ2; l ¼ 1

2
ð3q2 � 3q� 4Þ; m ¼ qðqþ 1Þ:

Note that l Vm0q is equivalent to l? Vm? 0q, and l Vm? 0q is equivalent to
l? Vm0q. So the adjacency in G is well-defined.

4 Proof of Theorem 3.2

To prove Theorem 3.2, we recall some facts about PGð3; qÞ with a hyperbolic quadric
from Hirschfeld’s book [8, §15–III]. From now on, put q ¼ 2 f d 4. Let P be the set
of planes whose orthogonal complement is a nonsingular point.

Proposition 4.1. For a hyperbolic quadric in PGð3; qÞ, the following statements hold.

(i) A plane containing an external line is in P.

(ii) The number of external lines is q2ðq� 1Þ2=2 and there are qþ 1 planes of P
containing a given external line.

(iii) The number of planes in P is qðq2 � 1Þ and there are qðq� 1Þ=2 external lines in a

given plane of P.

(iv) For p A P, there is no external line through p? on p. For a nonsingular point p of

p distinct from p?, there are q=2 external lines through p on p.

(v) There are qðq� 1Þ=2 external lines through a given nonsingular point.

(Remark: when q is an odd prime power, (i), (ii), (iii) and (v) also hold. For a plane
p of P, p? is not in p.)

First we show that the relations R0; . . . ;R4 form a partition of L� L. It is clear
that any pair ðl;mÞ of L� L is in one of fRig0cic4. Since any external line l is skew
to l?;R1 and R2 have no intersection. Suppose that l;m A L satisfy that l meets m.
Then the point hl;mi? is on l?, so m is skew to l? by Proposition 4.1 (iv). Hence R1

and R3 have no intersection. Therefore fRig0cic4 is a partition of L� L.
Next we show that each relation is symmetric. It is clear that R1;R2 and R4 are

symmetric. If ðl;mÞ A R3, then hl?;mi forms a plane and hl?;mi? ¼ l Vm?, hence
ðm; lÞ A R3. Therefore R3 is also symmetric.

Finally we show that for any i; j; k A f0; . . . ; 4g,

pk
ij ¼ jfn A L j ðl; nÞ A Ri; ðn;mÞ A Rjgj

is independent of the choice of ðl;mÞ A Rk. The assertion is clear when k ¼ 0. For
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the moment, we put pijðl;mÞ ¼ jfn A L j ðl; nÞ A Ri; ðn;mÞ A Rjgj. We can easily see
that when ðl;mÞ A Rk, p0jðl;mÞ ¼ djk. Since each relation is symmetric, pjiðl;mÞ ¼
pijðm; lÞ. Since R0; . . . ;R4 form a partition of L� L, we have

X4

i¼0

p0ii ¼ jLj ¼ 1

2
q2ðq� 1Þ2;

and

X4

j¼0

pijðl;mÞ ¼ p0ii

for any i A f0; . . . ; 4g and for any pair ðl;mÞ. Let s be the permutation ð0; 2Þð1; 3Þ on
f0; . . . ; 4g. Then since ðl;mÞ A Ri if and only if ðl;m?Þ A RsðiÞ,

pijðl;mÞ ¼ pisð jÞðl;m?Þ ¼ psðiÞsð jÞðl;mÞ: ð2Þ

Hence we only need to show that pk
11 ð1c kc 4Þ are independent of the choice of

ðl;mÞ A Rk.

Lemma 4.2. For 1c kc 4, pk
11 is independent of the choice of ðl;mÞ A Rk and

p011 ¼
1

2
ðq� 2Þðqþ 1Þ2; p111 ¼ q2 � 3

2
q� 2;

p211 ¼ 0; p311 ¼
1

2
q2; p411 ¼

1

2
qðqþ 1Þ:

Proof. Fix l A L. Any line which meets l in a point is in a plane through l, and con-
versely any line in a plane through l meets l in a point. Hence by Proposition 4.1 (ii)
and (iii),

p011 ¼ jfn A L j ðl; nÞ A R1gj

¼
X
p APl

jfn A L j nH p; n0 lgj

¼ ðqþ 1Þ � 1

2
qðq� 1Þ � 1

� �

¼ 1

2
ðq� 2Þðqþ 1Þ2

where Pl :¼ fp A P j lH pg.
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For ðl;mÞ A R1, if n A L meets both l and m, then n has a point l Vm or n is in the
plane hl;mi. Hence by Proposition 4.1 (iii)–(v),

p111 ¼ jfn A L j ðl; nÞ; ðn;mÞ A R1gj

¼ jfn A L j nJ hl;mi; n0 l;mgj þ jfn A L j l Vm A nU hl;migj

¼ 1

2
qðq� 1Þ � 2

� �
þ 1

2
qðq� 1Þ � 1

2
q

� �

¼ q2 � 3

2
q� 2:

From (2), we have p211 ¼ 0. For ðl;mÞ A R3 UR4, we have

jfn A L j ðl; nÞ; ðn;mÞ A R1gj ¼
X
p APl

jfn A L jmV p A nJ pgj:

If ðl;mÞ A R3, then there is just one plane p0 ¼ hl; l?Vmi A Pl such that p?0 ¼ mV p0.
By Proposition 4.1 (iv), there is no line of L through mV p0 and in p0, and for other
plane p, there are q=2 lines of L through mV p and in p. Hence

p311 ¼ jfn A L j ðl; nÞ; ðn;mÞ A R1gj

¼
X

p APlnfp0g
jfn A L jmV p A nJ pgj

¼ q� 1

2
q:

For ðl;mÞ A R4, any plane p of Pl has q=2 lines of L through mV p. So

p411 ¼ jfn A L j ðl; nÞ; ðn;mÞ A R1gj ¼ ðqþ 1Þ � 1

2
q: r

Therefore ðL; fRig0cic4Þ becomes a symmetric association scheme. For i A
f0; . . . ; dg, let Bi :¼ ðpk

ij Þ0cj;kc4. Then B0 is the identity matrix,

B1 ¼

0 1 0 0 0

p011 q2 � 3=2q� 2 0 q2=2 qðqþ 1Þ=2
0 0 0 1 0

0 q2=2 p011 q2 � 3=2q� 2 qðqþ 1Þ=2
0 q2ðq� 3Þ=2 0 q2ðq� 3Þ=2 s

0
BBBBB@

1
CCCCCA
;

where s ¼ ðqþ 1Þðq2 � 3q� 2Þ=2,
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B2 ¼

0 0 1 0 0

0 0 0 1 0

1 0 0 0 0

0 1 0 0 0

0 0 0 0 1

0
BBBBB@

1
CCCCCA
;

B3 ¼

0 0 0 1 0

0 q2=2 p011 q2 � 3=2q� 2 qðqþ 1Þ=2
0 1 0 0 0

p011 q2 � 3=2q� 2 0 q2=2 qðqþ 1Þ=2
0 q2ðq� 3Þ=2 0 q2ðq� 3Þ=2 s

0
BBBBB@

1
CCCCCA
;

and

B4 ¼

0 0 0 0 1

0 q2ðq� 3Þ=2 0 q2ðq� 3Þ=2 s

0 0 0 0 1

0 q2ðq� 3Þ=2 0 q2ðq� 3Þ=2 s

p044 qðq� 3Þðq2 � 3q� 2Þ=2 p044 s t

0
BBBBB@

1
CCCCCA
;

where p044 ¼ qðq� 2Þðq� 3Þðqþ 1Þ=2 and t ¼ qðq� 3Þðq2 � 3q� 2Þ=2. The first ei-
genmatrix of this association scheme is given by

P ¼

1 ðq� 2Þðqþ 1Þ2=2 1 ðq� 2Þðqþ 1Þ2=2 p044
1 ðq� 2Þðqþ 1Þ=2 �1 �ðq� 2Þðqþ 1Þ=2 0

1 �ðqþ 1Þ �1 qþ 1 0

1 �ðqþ 1Þ 1 �ðqþ 1Þ 2q

1 ðq2 � 3q� 2Þ=2 1 ðq2 � 3q� 2Þ=2 �qðq� 3Þ

0
BBBBB@

1
CCCCCA
:

5 Proof of Theorem 3.3

In this section, we prove Theorem 3.3 by using Theorem 3.2. The number of vertices
of the graph G is jLj=2 ¼ q2ðq� 1Þ2=4. For a pair fl; l?g A VG,

ffm;m?g A VG j fm;m?g is adjacent to fl; l?gg

¼ ffm;m?g A VG jm meets l in a pointg

¼ ffm;m?g A VG j ðl;mÞ A R1g:

So, the size of this set is p011 ¼ ðq� 2Þðqþ 1Þ2=2, which is just k in the definition of
strongly regular graph. Next choose fl; l?g; fm;m?g A VG which are adjacent in G.
We may suppose that l meets m in a point. Then
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ffn; n?g A VG j fn; n?g is adjacent to both fl; l?g and fm;m?gg

¼ ffn; n?g A VG j n meets both l and m in a pointg

U ffn; n?g A VG j n meets both l and m? in a pointg

¼ ffn; n?g A VG j ðl; nÞ A R1; ðm; nÞ A R1 UR3g:

Hence the size of this set is p111 þ p113 ¼ ð3q2 � 3q� 4Þ=2. This is just l in the defini-
tion of strongly regular graph.

Similarly, for fl; l?g; fm;m?g A VG which are not adjacent in G, since ðl;mÞ A R4,

jffn; n?g A VG j fn; n?g is adjacent to both fl; l?g and fm;m?ggj

¼ p411 þ p413 ¼ qðqþ 1Þ:

This is just m in the definition of strongly regular graph.
Alternatively, we can prove Theorem 3.3 by using the quotient association scheme

(cf. [1, p. 139, Theorem 9.4]). In the association scheme of Theorem 3.2, R0 UR2 is an
equivalence relation on L. So we can define a quotient association scheme on the set
of equivalence classes ffl; l?g j l A Lg whose relations are

fðfl; l?g; fm;m?gÞ j ðl;mÞ A R1 UR3g ¼ the edge set of G;

fðfl; l?g; fm;m?gÞ j ðl;mÞ A R4g;

and the diagonal relation. The first eigenmatrix of this association scheme can be
computed from P (cf. [1, p. 148]):

1 ðq� 2Þðqþ 1Þ2=2 qðq� 2Þðq� 3Þðqþ 1Þ=4
1 �ðqþ 1Þ q

1 ðq2 � 3q� 2Þ=2 �qðq� 3Þ=2

0
B@

1
CA:

The first relation forms a strongly regular graph whose parameters are calculated
from the second column of the above first eigenmatrix.

6 Another construction of Gq

In this section, we will give another construction of the strongly regular graph Gq.
This construction uses a method which generalizes a construction of Mathon ([10, p.
137], see also [3, pp. 96–97]).

Let G ¼ SLð2; qÞ, K ¼ O�ð2; qÞ. Then XðG;KÞ is a ðq� 2Þ=2-class pseudo-cyclic
symmetric association scheme (cf. [3, p. 96]). By Lemma 2.1, we can construct a
strongly regular graph DðXðG;KÞÞ with parameters

1

4
q2ðq� 1Þ2; 1

2
ðq� 2Þðqþ 1Þ2; 1

2
ð3q2 � 3q� 4Þ; qðqþ 1Þ

� �

which are the same as those of Gq. We shall prove that these graphs are isomorphic.
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To show this, we use the isomorphism G 2 FWþð4; qÞ which maps ðX ;Y Þ to
X nY (see [11, p. 199]). Let l0 be the external line generated by v1 ¼ tð0; 1; 1; 0Þ, v2 ¼
tð1; 1; 0; aÞ, where a is an element of Fq such that the polynomial x2 þ xþ a is irre-
ducible over Fq. For an external line l, there are 2ðqþ 1Þ bases ðu1; u2Þ of l such that
Qðxu1 þ yu2Þ ¼ x2 þ xyþ ay2 for any x; y A Fq. Indeed, by Witt’s Theorem, K acts
regularly on the set of bases ðu1; u2Þ of l with the above condition. It follows that the
size of this set is equal to jK j ¼ 2ðqþ 1Þ. Let P be the set of nonsingular points in
PGð3; qÞ and let L ¼ fl U l? j l A Lg. Then the following lemma holds.

Lemma 6.1. The group Wþð4; qÞ ¼ fX nY jX ;Y A Gg is flag-transitive on the inci-

dence structure ðP;L; AÞ. Under the isomorphism G 2 FWþð4; qÞ, the groups DðGÞ;K 2

are the stabilizers of an element of P;L, respectively.

Proof. Let X ¼ ðxijÞ1ci; jc2, Y ¼ ðyijÞ1ci; jc2 A G. Since

X nY ¼

x11y11 x11y12 x12 y11 x12 y12

x11y21 x11y22 x12 y21 x12 y22

x21y11 x21y12 x22 y11 x22 y12

x21y21 x21y22 x22 y21 x22 y22

0
BBB@

1
CCCA;

X nY fixes v1 if and only if

x11y12 þ x12y11 ¼ x21y22 þ x22y21 ¼ 0;

x11y22 þ x12y21 ¼ x21y12 þ x22y11 ¼ 1:

This implies

Wþð4; qÞv1 ¼ fX nX jX A GgFDðGÞ: ð3Þ

For X A G, X nX fixes v2 if and only if

x2
11 þ x11x12 þ ax2

12 ¼ 1;

x11x21 þ x12x21 þ ax12x22 ¼ 0;

x2
21 þ x21x22 þ ax2

22 ¼ a:

From these, we have

Wþð4; qÞv1; v2 ¼ X nX jX ¼ a b

ab aþ b

� �
A G

� �

which is of order qþ 1. Hence

jfðMv1;Mv2Þ jM A Wþð4; qÞgj ¼ jWþð4; qÞj=ðqþ 1Þ

¼ q2ðq� 1Þ2ðqþ 1Þ:
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Since Qðxv1 þ yv2Þ ¼ x2 þ xyþ ay2 for any x; y A Fq,

jfðu1; u2Þ jQðxu1 þ yu2Þ ¼ x2 þ xyþ ay2 for all x; y A Fqgj

¼ jLj � 2ðqþ 1Þ

¼ q2ðq� 1Þ2ðqþ 1Þ:

Hence Wþð4; qÞ acts transitively on the set of pairs ðu1; u2Þ such that

Qðxu1 þ yu2Þ ¼ x2 þ xyþ ay2 for any x; y A Fq. In particular, Wþð4; qÞ is flag-
transitive on ðP;L; AÞ.

The equality (3) means that the stabilizer of hv1i A P is isomorphic to DðGÞ. Let

A :¼ 1 0

1 1

� �
; B :¼ a0 b0

ab0 a0 þ b0

� �
A G

such that B is of order qþ 1. Then the group hA;Bi is isomorphic to K. An I ,
I nA interchange l0 and l?0 , while Bn I , I nB fix l0 and l?0 . So fX nY jX ;Y A
hA;Big is a subgroup of Wþð4; qÞl0Ul?0 . Since W

þð4; qÞl0Ul?0 has order 4ðqþ1Þ2 ¼ jK j2,
we have that Wþð4; qÞl0Ul?0 is isomorphic to K 2. r

Theorem 6.2. The graph Gq is isomorphic to DðXðSLð2; qÞ;O�ð2; qÞÞÞ.

Proof. The graph Gq is isomorphic to the collinearity graph of the dual of the inci-
dence structure ðP;L; AÞ. From Lemma 6.1, the dual of ðP;L; AÞ is isomorphic to
the coset geometry ðG 2=K 2;G 2=DðGÞ; �Þ defined in Lemma 2.2. From Lemma 2.2,
the collinearity graph of ðG2=K 2;G 2=DðGÞ; �Þ is isomorphic to DðXðG;KÞÞ. There-
fore Gq is isomorphic to DðXðG;KÞÞ. r
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