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Abstract. The fundamental theorem of projective geometry is generalized for projective spaces
over rings. Let gk M and ¢N be modules. Provided some weak conditions are satisfied, a mor-
phism g : Z(M)\E — 2(N) between the associated projective spaces can be induced by a
semilinear map f : M — N. These conditions are satisfied for instance if .S is a left Ore domain
and if the image of g contains three independent free points. No assumptions are made on the
module M, and both modules may have some torsion.

Introduction

Two different approaches to projective spaces associated to modules are usually
considered. One may choose as set of points the set of all submodules generated by a
unimodular element, as defined in [20], or one may choose the lattice of all sub-
modules, as defined in [3]. In the first approach one avoids the pathology (?) of small
points contained in big points. But the price to pay is important.

Following [9] it would be desirable if one had a functor from the category of
modules and semilinear maps to a category of projective spaces and morphisms. But
this is impossible with the first approach. Consider the ring R := Z/4Z and the linear
map f : R® — R? defined by f(x,y,z) = (x + »,x + 3y,z). One easily shows that f
cannot induce a map 2(R?) — 2(R?) that preserves the incidence relation. So with
this first approach we must restrict our attention to semilinear maps that preserve
unimodular elements, and this is not natural.

In the present paper the projective space (M) associated to a module M is de-
fined as the set of all cyclic (i.e. one-generated) submodules. This is equivalent to the
second approach. Using axioms of Faigle and Herrmann [5] we propose a definition
of projective spaces based on a single operator v.

Morphisms of projective spaces are defined in the second section. It is shown that
one has a functor from the category of modules and semilinear maps to the category
of projective spaces and morphisms (this implies that a morphism must be a partially
defined map between the point sets).
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The main result of this paper is a generalization of the fundamental theorem of
projective geometry. It is proved in Section 3 by following mainly the lines of the
proof given in [6]. Let gk M and sN be modules and g : P(M)\E — P (N) a morphism
between the associated projective spaces. We suppose that the ring S is directly finite,
and that the image of g contains three independent free points By, By, By satisfying a
weak condition (C3). Then there exists a semilinear map [ : M — N which induces g.
Moreover, the map f is unique up to multiplication with a unit.

This condition (C3) requires that for any C;, C; € 2(N), there exists a point B;
which is independent from all the points of the line C; v C,. In Section 4 we show
that this condition is satisfied provided S is a left Ore domain. In Section 5 we show
that it is satisfied provided S is a right Bezout domain and B;, B, B3 generate a direct
summand.

In the literature, most generalizations of the fundamental theorem deal with iso-
morphisms. See for instance [18], [13], [12], [4] and [15]. Several interesting results
in that direction (and others) can be found in [10]. Closer to our theorem is the result
of Brehm [2]. His triangle-property resembles condition (C3), but it applies to the
module M, not to N. The reason is that Brehm’s homomorphisms preserve disjoint-
ness. Since we do not make such assumptions, our Theorem 3.2 generalizes Theorem
1 in [2]. On the other hand, Brehm’s result is very general, because homomorphisms
do not preserve cyclic submodules.

For classical projective spaces (over division rings), the present version of the fun-
damental theorem was first proved in [8] and independently by Havlicek [11]. It
generalized a former version due to Brauner [1] on /inear maps. In the case of pro-
jective lattice geometries, these linear maps are discussed in [14]. Recently, a further
generalization of the fundamental theorem for classical projective spaces appeared in
[7]. It is possible that this generalization also applies to the case of projective spaces
associated to modules.

The author wishes to thank Professor Lashkhi for several valuable discussions on
projective geometry over rings.

1 Projective spaces

Definition 1.1. A projective space is a set P of points together with a binary operator
v : P x P — 2% which satisfies (at least) the following axioms:

(Pl) aebvaforallabeP,

(P2) ifaebve,thenavb = bve,

(P3) ifava=>bvb, then a = b,

(P4) if ae bv pand p e cvd, then there exists ge bv e withaegvd,
(P5) ifaebvcandad¢bvb, then there exists d e cve withavb =bvd.

According to axioms (P1) and (P2) one has av b = bva. The last two axioms were
introduced by Faigle and Herrmann in [5] as properties (A7) and (A6).
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In an equivalent way, a projective space can be defined as a partially ordered set
together with a binary operator satisfying suitable axioms. The partial order asso-
ciated to a projective space P is given by ¢ < b if and only if a € b v b.

Proposition 1.2. Let M be a (left) module over an arbitrary ring R (with 1). On the set
P (M) of all nonzero cyclic submodules of M we define an operator v by A€ Bv C if
and only if A < B+ C. Then #(M) becomes a projective space.

Proof. We verify axiom (P5). Let A,B,C e (M) with A = B+ C and 4 ¢ B. Say
A = Ra, B= Rb and C = Rc. There exist 1, u € R such that a = Ab + uc and uc # 0.
Putting D = Ruc one easily shows that 4 + B = B+ D. O

Definition 1.3. A subspace of a projective space P is a subset £ = P with the property
that a, b € E implies a v b < E. Trivially, the set £ (P) of all subspaces of P is closed
under arbitrary intersections and directed unions. Therefore £ (P) is a complete alge-
braic lattice for the inclusion order.

Lemma 1.4. Let P be a projective space. Then for any points a,b € P the set av b is the
smallest subspace containing a and b (this justifies the notation). In particular, av a is
the smallest subspace containing a.

Proof. Let p,qeavb and re pvq. By axiom (P4) there exists s € p v a such that
resvb. Since peavb implies pva = avb by (P2), one gets s € bva. Therefore
resvb < bva, and this shows that a v b is a subspace. |

Lemma 1.5. Let E,F be two subspaces of a projective space P. Then the set G :=
\J{avb|aeEandbe F} is also a subspace of P.

Proof. Let p e p;v p, where pi, p» € G. There exist a;,a, € E and by, b, € F with
p1 €a1vby and p; € a; v by. We now apply three times axiom (P4):

1) Since p € p1 v p2 and p; € ap v by, there exists ¢ € p; v a; with p e g v bs.

2) Since g € ay v py and p; € a; v by, there exists a € a, va; with ge av b;.

3) Since p € b, vq and ¢ € b; v a, there exists b € b, v by with pe bva.

Therefore p € G, and this shows that G is a subspace. O

Proposition 1.6. For any projective space P the lattice L (P) of all subspaces of P is
modular.

Proof. Let E,F,G be three subspaces of P with £ = G. We have to show that
(EVF)AG < Ev (F AG) (the other inclusion holds trivially). We may assume that
E and F are not empty. This implies Ev F = ( J{avb|a e E and b € F} by the pre-
vious lemma. Let p € (Ev F) A G. There exist a € E and b € F such that peav b. If
peava,then pe E = Ev (F A G). Otherwise, axiom (P5) implies that there exists a
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point ¢ e bv b such that pva=avec. One thus gets ce (bvb)N(pva) € FAG,
and hence peave = Ev (FAG). O

Proposition 1.7. Let M be a module over a ring R. Then the lattice £ (M) of all sub-
modules of M is isomorphic to the lattice L(P(M)).

Proof. For every submodule N = M the set p(N) :={4 e P(M)|A = N} is a sub-
space of 22(M), and we thus get a monotone map ¢ : L (M) — L(P(M)). Its in-
verse is the map y defined by y/(E) = | E if E # & and /(&) = {0}. O

2 Morphisms

Definition 2.1. Let P, Q be two projective spaces. A morphism from P into Q is a
partially defined map g : P\E — Q satisfying the following axioms:

(M1) a,b,c¢ Eand ae bv cimply ga € gh v gc,
(M2) a,b¢ E, xe Eand ae b v x imply ga € gb v gb,
(M3) E is a subspace of P, called the kernel of g.

The following lemma gives an equivalent (and shorter) definition of a morphism:

Lemma 2.2. A partially defined map g : P\E — Q between projective spaces is a mor-
phism if and only if g~'(F) U E is a subspace for every subspace F < Q.

Proof. (=) Let b,ce g ' (F)UE and a e b v c. We show that a e g~'(F) U E by con-
sidering the cases 1) b,ce g"'(F),2)be g '(F)and ce E, 3) b,c € E.
(<) Choose the subspaces F| = gbv gc, F» = gbv gb and F; = (. O

Definition 2.3. Let g, : P/\E; — P> and g, : P,\E; — P; be two morphisms of pro-
jective spaces. The composite g, o g; is defined as follows: its kernel is the subspace
E = g7 (E;) UE) and any element a ¢ E is mapped to gogia. It is a morphism be-
cause one has (g2 0 1) (F)UE = g7 (g5 (F)UEy) UE;.

Remark 2.4. Morphisms from P to P, are in one-to-one correspondence with maps
L(P)) — &L (P,) preserving arbitrary joins and cyclic subspaces (where the empty
subspace is considered as a cyclic one).

Definition 2.5. Let gk M and gN be modules and ¢ : R — S a homomorphism of rings.
A map f: M — N is called g-semilinear if it is additive and if one has f(lx) =
a(4)f(x) forall xe M and 1 € R.

Proposition 2.6. Let g M and sN be modules and f : M — N a ag-semilinear map.
Then the map Pf : P(M)\P(ker ) — P(N) defined by Pf(Rx) = Sf(x), where
x ¢ ker f, is a morphism of projective spaces.
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Proof. The map 2f is well defined, because Rx = Ry implies Sf(x) = Sf(y). The
conditions of Definition 2.1 (or Lemma 2.2) are easily verified. O

Proposition 2.7. If fi : My — M, and f, : My, — M3 are two semilinear maps between
modules, then P(f> o f1) = Pf> o Pfi. This means that P is a functor from the cate-
gory of modules to the category of projective spaces.

Proof. One has 2(ker(f> o f1)) = 2f {(P(ker f5)) U2 (ker f1). O
Definition 2.8. Let M be a module over R. We recall that an element a € M is free if
Aa = 0 implies A = 0. A family of n elements ay,...,a, € M is called

1) w-independent if Ayay + - - - + A,a, = 0 implies Lja; = -+ = A,a, =0,

2) linearly independent if 11a; + - - + Ay,a, = 0 implies 4; = --- = 4, = 0.

One trivially shows that a family a, ..., a, is linearly independent if and only if it is

w-independent and each g; is free.

Theorem 2.9. Let g M and sN be modules and f,h: M — N two semilinear maps
satisfying Pf = Ph. We suppose that the image of f contains two linearly independent
elements y1, y» with the following condition:

(C2) for every non-zero z € N there exists i such that y;,z are w-independent.

If S is a directly finite ring (that is, Au =1 implies ul = 1), then there exists a unit
e € S such that h(c) = ¢f (c) for every c € M.

Proof. Let x; € M with f(x;) = y;. Since Sf(x;) = Sh(x)), there exist J,¢ € S such
that f(x;) = oh(x1) and h(x;) = &f (x1). So one obtains f(x;) = def (x1), which im-
plies o¢ = 1. Therefore ¢ is a unit. We want to show that i(x) = &f (x) for every x ¢
ker f = ker h. We first suppose that f(x;), f(x) are w-independent. Since 2f = 2h,
there exist two elements 4, u € S such that 4(x) = Af(x) and h(x; + x) = uf (x1 + x).
From the equality

# (1) + 1 (x) = h(x1 + x) = &f (x1) + 41 (x)

it follows that u = ¢ and uf (x) = 1f(x). Hence A(x) = ¢f (x). We now suppose that
f(x1), f(x) are cw-dependent. Then f(x;), f(x) are w-independent, and we can apply
the same argument (one has /(x;) = ¢f (x2) by the first case). O

Condition (C2) clearly implies Greferath’s condition (A). However, the other as-
sumptions of Proposition 2.10 in [10] are stronger.

3 The fundamental theorem

Definition 3.1. Let N be a module and 22(N) the associated projective space. A
point B € 2(N) is called free if B= Sb for some free element b € N. A family of n
points By, ..., B, € 2(N) is called independent if one has
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(Bi)N{By,...,Bi_1,Biy1,....B,> =

for every i = 1,...,n (where {.&/) denotes the subspace generated by a set .o/). One
easily shows that a family by,...,b, € N is w-independent in N if and only if
Sby, ..., Sb, is independent in 2(N).

The aim of the present section is to prove the following result:

Theorem 3.2. Let g M and sN be modules and g : P(M)\E — P (N) a morphism be-
tween the associated projective spaces. We suppose that the image of g contains three
independent free points By, By, By with the following condition:

(C3) for any Cy, Cy € P(N) there exists i such that (B;v B;))N(C1v C3) = &.

If S is a directly finite ring, then there exists a semilinear map f : M — N such that
g = Pf. Moreover, the map f is unique up to multiplication with a unit.

Remarks 3.3. 1) If C;, C, are independent, then condition (C3) implies that B;, C;, C»
are also independent.

2) If Sy is free, then y is free. By hypothesis one has Sy = Sz for some free element
z € N, and since S is directly finite, the element y differs from z by a unit.

Condition (C3) clearly implies condition (1) of Brehm’s triangle-property [2], but
not condition (2). It is possible that this assumption in Theorem 3.2 can be weakened
by following Brehm’s idea. However, since all points have to be chosen in the image
of g, the game is not worth the candle.

Lemma 3.4. Let g(Rx;) and g(Rx,) be two independent points, and suppose that
g(Rxy) = Sy, is free. Then there exists a unique element y, € N such that g(Rx;) =
Sy and g(R(x1 + x2)) = S(y1 + »2).

Proof. Let z; € N with g(Rx;) = Sz,. One first remarks that R(x; + x;) ¢ E, because
otherwise Rx| € Rx; v R(x| + x2) would imply Sy; = Sz; by (M2), in contradiction
to the hypothesis. Let z € N with g(R(x; + x»)) = Sz. We apply three times condition
(M1):

1) R(x; + x2) € Rx1 v Rx; implies z = 41 y; + Axz2,

2) Rx| € R(x| + x2) v Rx; implies y| = uz — py27,

3) Rx; € R(x; + x3) v Rx; implies z, = vz — vy yy.

From the equality y; = uld;y1 + (12 — 15)z2 one obtains 4, = 1 (because y; is free)
and ulyzy = pyzp. We put 3 = p,2;. Since 4 is a unit of S, one gets g(R(x; + x3)) =
Suz = S(y1 + y2) according to condition 2). From the equality z; = (vA; — vi)y; +
vipzy one obtains z; = vAyzy. So it follows that vijy, = viju,zo = vAijudszo =

vApzp = z. Therefore Sy, = Sz, and the assertion is proved. The uniqueness of y; is
obvious. |
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Lemma 3.5. Let g(Rx1),g(Rx2) and g(Rx3) be three independent points. If there exist
Y1, ¥2, ¥3 € N such that

1) g(Rx1) = Sy is free, g(Rx2) = Syz and g(Rx3) = Sys,
2) g(R(x1 + x2)) = S(y1 + y2) and g(R(x1 + x3)) = S(y1 + »3),
then g(R(x1 + x2 +x3)) = S(¥1 + y2 + y3) and g(R(x2 + x3)) = S(y2 + 33).

Proof. One first remarks that g(R(x; + x2)),g(Rx3) are independent, because
g(R(x1 + x2)) € g(Rx1) v g(Rxz) by (MI). Since g(R(x1 + x2)) = S(y1 + y2) Is free,
there exists by Lemma 3.4 a unique z3 € N such that g(Rx3) = Sz3 and g(R(x; +
X2+ x3)) = S(»1 + y2 + z3). And by symmetry there exists a unique z, € N such that
g(Rxz) = Sz and g(R(x; + x2 + x3)) = S(y1 + z2 + »3). So one obtains y, = z; and
y3 = z3, which proves the first assertion.

Now one considers the points g(R(x; + x, + x3)) and g(R(x2 + x3)). They are
independent, because g(R(x2 + x3)) € g(Rx2) v g(Rx3). Moreover, the first point is
free. So there exists a unique z € N such that g(R(x, + x3)) = Sz and g(Rx)) =
S(y1 + y2 + y3 + z). Obviously, this implies z = —y, — y3, and hence g(R(x; + x3))
= S(y2 + y3), which proves the second assertion. O

By hypothesis the image of the morphism ¢ contains three independent free points
By, By, B;. We choose A1, A, A3 € 2(M)\E such that B, = ¢g(4;), and a1,a2,a3 € M
such that 4; = Ra,.

Lemma 3.6. There exist by,by,bs € N such that g(Ra;) = Sh; for each i, and
g(R(a; + aj)) = S(bi + b;) for all i # j.

Proof. Let by € N with g(Ra;) = Sh;. By Lemma 3.4 there exist b, € N such that
g(Ray) = Sby and g(R(a) + a2)) = S(b1 + b2), and b € N with the same properties.
According to Lemma 3.5 one has g(R(a, + a3)) = S(by + b3). O

Definition 3.7. According to Proposition 1.7 the kernel E can be written in a unique
way as E = 2(M,) where M, is a submodule of M. The map f: M — N is now
defined as follows. For each element x € My we put f(x)=0. If x¢ M, then
by condition (C3) there exists i such that g(Ra;),g(Rx) are independent. We put
f(x) = ywhere y € N is the unique element satisfying g(Rx) = Sy and g(R(a; + x)) =
S(b; + y) (cf. Lemma 3.4).

Lemma 3.8. The definition does not depend on the choice of the element a;.

Proof. Suppose that g(Ra; ), g(Rx) and g(Raz), g(Rx) are independent pairs of points.
We consider y € N with g(Rx) = Sy and g(R(a; + x)) = S(b1 + »), and we want to
show that g(R(ay + x)) = S(b2 + »). If g(Ra1),9(Raz),g(Rx) are independent, then
the conclusion holds by Lemma 3.5. Otherwise, condition (C3) implies that g(Ra,),
g(Ra3),g(Rx) and g(Ras),g(Ray),g(Rx) are both independent triples of points. So
we apply twice the preceding argument. O
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Proposition 3.9. f(x; + x2) = f(x1) + f(x2) for all x1,x, € M.

Proof. Put y; = f(x1) and y, = f(x2). Obviously, we may assume that x; # 0 and
x> ¢ My. Three different cases will be considered.

Case 1: Rx; € E. Choose i such that g(Ra;),g(Rx;) are independent. Since
R(a; + x2) € R(a; + x1 + x3) v Rxj, one gets

S(bi + y2) = g(R(a; + x2)) = g(R(a; + x1 + x2))

by (M2). Similarly, Sy» = g(Rx2) = g(R(x1 + x2)). By definition of the map f this
shows that /(x| + x2) = f(x2).

Case 2: Rx; ¢ E and g(Rx;),g(Rx,) are independent. By condition (C3) one can
choose i such that g(Ra;), g(Rx1), g(Rx,) are independent. One obtains

g(R(ai +x1 4+ x2)) = S(bi+ y1 + y2) and  g(R(x1 + x2)) = S(y1 + »2)
by Lemma 3.5, and this shows that f(x; + x2) = f(x1) + f(x2).

Case 3: Rx; ¢ E and g(Rx)),g(Rx;) are dependent. By condition (C3) there exists i
such that (Sb; v .Sbh;) N (Sy1 v Sy2) = . If R(x1 +x2) € E, then f(a; + x1 + x3) =
f(a;) according to the first case. And if R(x; + x2) ¢ E, then g(R(x; + x2)) €
Sy1 v Sy, implies that the points g(Ra;), g(R(x1 + x2)) are independent, and one thus
gets f(a; +x1 + x2) = f(a;) + f(x1 + x2) by the second case. So this equality holds
in any cases. On the other hand, one obtains f(a; + x1 + x2) = f(a; + x1) + f(x2) =
f(a;)+ f(x1) + f(x2) by applying twice Case 2, and one deduces that f(a;)+
J(x1+x2) = flai) + f(x) + f(x2). O

Proposition 3.10. There exists a map o : R — S such that f(ix) = a()f(x) for all
A€eRand xe M.

Proof. For any A€ R and x ¢ M, we remark that there exists x€ S such that
S (Ax) = uf (x). This is trivial if Ax € My. And if Ax ¢ My, then (M1) implies that
Sf(2x) = g(R(Ax)) < g(Rx) = Sf(x). We now define o(1) as the unique element of S
with the property that f(la;) = a(A) f(a;). We have to show that f(1x) = a(1) f(x)
for all x ¢ My and 4 € R.

Case 1: g(Ra;),g(Rx) are independent. Let u,ve S with f(Ax) = puf(x) and
f(Ala + x)) = vf(a; + x). From the equality

a(A)f (@) +uf (x) = [ (dar + 7x) = vf (ar) +vf (x)

one obtains g(4) = v and uf (x) = vf(x). Therefore f(ix) = a(4)f(x).
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Case 2: By condition (C3) we may assume that g(Ra»), g(Rx) are independent points.
Since f(laz) = o(4)f(az) according to the first case, one can apply the preceding
argument. O

From the equalities o(1 + p)f(a1) = f(Aa; + uay) = () f(a1) + o(w) f(a;) and
o) f(ar) = o(A)f(uar) = o(A)a(u) f(a1) one deduces that ¢ is a homomorphism
of rings. Therefore f is a semilinear map. By definition of the map f one has g = 2f.
The fact that f is unique up to multiplication by a unit follows from Theorem 2.9. So
the proof of Theorem 3.2 is complete.

4 Modules over left Ore domains

Let N be a module over a directly finite ring S. We suppose given two linearly inde-
pendent elements b, b, € N. Then condition (C2) can be written as follows:

(C2) for any ¢ € N there exists i such that Sh; N Sc = {0}.

Now let by,b2,b3 € N be three linearly independent elements. Condition (C3) in
Theorem 3.2 can be written as follows:

(C3) for any ¢, c; € N there exists i such that Sh; N (Se; 4+ Scy) = {0}.

We show that these conditions are satisfied provided S is a left Ore domain. We recall
that a ring S is left Ore if SAN Su # {0} for all non-zero A, u € S.

Proposition 4.1. If S is a left Ore domain, then condition (C2) is satisfied.
Proof. Assume it is not. There exist 41, A, 4y, 1, € S such that
/l]b] = Kl c # 0 and )sz = UyC # 0.

Since S is left Ore, there exist «,f € S such that ou; = fu, # 0. So adiby = au ¢ =
Pusc = Plabsr implies aky = flr = 0, a contradiction. O

Remark 4.2. Suppose that S is a domain. If condition (C2) holds for any two linearly
independent elements by,b, € N and if N contains some free element x, then, con-
versely, S is left Ore.

Proof. Assume on the contrary that there exist non-zero elements A,u e S with
SANSu = {0}. Then Ax and wx are linearly independent, but SAxN Sx # {0} and
Sux N Sx # {0}, which yields a contradiction. O
Proposition 4.3. If S is a left Ore domain, then condition (C3) is satisfied.

Proof. Assume it is not. For each i = 1,2, 3 there exist 4;, i;, v; € S such that

Aibi = picr + viey # 0.
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We may assume that vivy # 0 or vivs # 0 or vav3 # 0, because otherwise the preced-
ing proposition yields a contradiction. Suppose that v;v, # 0. There exist oy, 0, € S
such that oyv; = vy # 0. So we obtain

OC]/l]b] — O(z/lzbz = (OC],ul — Otz,uz)(‘].

If v3 # 0, a similar argument gives a second equality

priiby — P3Asbs = (B — Baps)cr.

And if v3 = 0, we consider the equality 4353 = p;c;. So in both cases we obtain two
equalities d2d> = p,c¢1 and d3ds = y;¢1, where dy, ds are two linearly independent ele-
ments. By the preceding proposition this is impossible. O

Corollary 4.4. Let xkM and sN be modules and g : P(M)\E — P(N) a morphism
between the associated projective spaces. If the image of g contains three independent
free points, and if the ring S is a left Ore domain, then there exists a semilinear map
f M — N such that g = Pf. Moreover, the map f is unique up to multiplication with
a unit.

Remark 4.5. If each ¢ € N is a multiple of a free element (and if the image of g con-

tains three independent free points), then it is enough to assume that S is a left Ore
ring. This is left as an easy exercise.

5 Modules over right Bezout domains

Definition 5.1. We say that a ring S satisfies the 2-diagonal condition (D2) if

()er 25 2)

with 1; # 0 and 4, # 0. We say that S satisfies the 3-diagonal condition (D3) if

M V1 11 0 0
o1 Oy O3

oot (ﬁl)’ﬂ># 0l

pyovy) L2 0 0

with 41 # 0, 1, # 0 and 43 # 0.

Remark 5.2. If a ring satisfies condition (D2), then its only idempotents are 0 and 1.
In particular, it is directly finite.

2 ;L ] — - i 0
Proof. If J _A,then(l_}L)(A 1 /1)—(0 1_2). O
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As in the preceding section, we suppose given two (or three) linearly independent
elements by, b, (and b3) in N.

Proposition 5.3. If S satisfies condition (D2) and N = Shy @ Sh, @ N', then condition
(C2) is satisfied.

Proof. Assume it is not. There exist 41, A2, 441, 4, € S such that
/l]b] = Kl c # 0 and )sz = UyC # 0.

Put ¢ = o1by 4+ a2by + ¢3. Then A1b) = u,c implies A; = py0q and 0 = y, 0, and sim-
ilarly Axby = pyc implies 0 = p,0q and Ay = u,0n, in contradiction to the 2-diagonal
condition. |

Proposition 5.4. If S satisfies condition (D3) and N = Shy ® Sb, ® Sbs ® N, then
condition (C3) is satisfied.

Proof. Same argument. ]

Lemma 5.5. If' S is directly finite, and if the module S? satisfies the following intersec-
tion condition:

(I2) x,y e S? and SxN Sy # {0} imply x, y € Sz for some z € S?,
then the ring S satisfies both conditions (D2) and (D3).

Proof. We first show that S is a domain. Let a, f € S with off = 0 and o # 0. Since
a(1,$) = «(1,0) # (0,0), one obtains (1,f) =y(A,u) and (1,0) = (4, 1). One has
04 =1 and hence 20 = 1. Thus f = yu = yAdu = 0, and the assertion is proved. Con-
dition (D2) then easily follows. In order to verify condition (D3), we suppose on the
contrary that

MoV A0 0
o1 Oy O3

R VA

M3 V3 ! 2 3 0 0 ;L}

with 1) #0, 4, #0 and A3 #0. From (o, 03) +vi(f,,f3) = (0,0) one gets
(00, 03) = —vi(f,,f3), and one can easily show that u(op,a3) # (0,0). By hy-
pothesis one obtains (o, o3) = a(y,,73) and (f,, 3) = B(y, y3)- Then

(,uzac—l—vzﬁ)( )_</lz 0)
,u3O(+V3ﬁ yz y} 0 /’L3 Y

in contradiction to condition (D2). So condition (D3) is verified. O
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We show that the intersection condition (I2) is satisfied provided S is a right
Bezout domain. We recall that a ring S is right Bezout if for any «, f € S there exist
7,0,€& A, i€ S such that o = yd, f = ye and y = ad + fu.

Proposition 5.6. If S is a right Bezout domain, then the module S* satisfies the condi-
tion (12). In particular, S satisfies both conditions (D2) and (D3).

Proof. Suppose that A(&(, &) = u(ny,1,) # (0,0). We put @) = A&, = un; and w, =
A&y = un,. By hypothesis one can write w; = v{; and w, = v{, for some v = wa; +
wyo. Since A(¢p, &) = A(¢1u + &2)(1,(2), one concludes that (&),&r) = (& +
&0)(81,8) = <6, ). Similarly, (7y,7,) = n(41, ). O

Corollary 5.7. Let xkM and sN be modules and g : P(M)\E — P(N) a morphism
between the associated projective spaces. If the image of g contains three free points
Bi, By, By such that N = By @ B, ® B; ® N', and if the ring S is a right Bezout do-
main, then there exists a semilinear map f : M — N such that g = 2Pf. Moreover, the
map [ is unique up to multiplication with a unit.
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