
Adv. Geom. 4 (2004), 61–73 Advances in Geometry
( de Gruyter 2004

An analogue of convexity for complements of amoebas of
varieties of higher codimension,

an answer to a question asked by B. Sturmfels
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1 Introduction and statement of result

Let V H ðC�Þn be a variety and let Log denote the logarithmic moment map
Log : ðC�Þn ! Rn, ðz1; . . . ; znÞ 7! ðlogjz1j; . . . ; logjznjÞ. The amoeba A of the variety
V H ðC�Þn is its image under that map. Amoebas were introduced by Gelfand,
Kapranov and Zelevinsky in [6]. They show that for varieties of codimension 1, the
complement cA of the amoeba A in Rn is a disjoint union of convex regions.

If V is of codimension k þ 1 and cA is its amoeba complement, we consider ori-
ented ðk þ 1Þ-planes p in Rn. Let us call a class in the reduced homology group1
~HHmðpV cAÞ non-negative if its image in ~HHkðpnfpgÞFZ is non-negative for all
p A pVA. We show that such a class is never sent to zero in ~HHkðcAÞ, except if it is
already zero. In other words, the maps ~HHkðpV cAÞ ! ~HHkðcAÞ induced by the inclu-
sions pV cA ! cA never send non-zero non-negative classes to zero. The author
expects these maps on homology to actually be injective, but this is only known for
k ¼ 0. In that case, the result specializes to the one mentioned above and proven
in [6].

Indeed, when k ¼ 0, we are looking at lines l and at the maps on ~HH0 induced by
lV cA ! cA. Assuming our result, we want to show that cA is a disjoint union of
convex sets. Suppose by contradiction that X is a component of cA that is not con-
vex. Choose p; q A X such that the interval joining them is not contained in X , and let
l be the oriented line pq!. It is then clear that 00 ½q� � ½ p� A ~HH0ðlV cAÞ is a non-
negative class that is sent to zero in ~HH0ðcAÞ. On the other hand, if all components of
cA are convex, then the map H0ðlV cAÞ ! H0ðcAÞ is always injective, and so is the
map ~HH0ðlV cAÞ ! ~HH0ðcAÞ.

1See [1] chapter IV, pages 172 and 181 for a nice introduction to the homology groups and
reduced homology groups of a space X . The reduced homology is denoted ~HH�ðX Þ and di¤ers
from H�ðX Þ only in degree zero, where ~HH0ðXÞ is the kernel of a map H0ðX Þ ! Z.



l
p X

q

Amoebas have been studied by Passare, Rullgård, Forsberg and Tsikh, see [3], [13],
[4] and [11], where they explain in what sense they are dual to Newton polytopes. See
also [9] and [7] for an application to the topology of real algebraic curves. A good
survey of the subject is provided by Mikhalkin [8]. In Chapter 9 of his book [15],
Sturmfels explains the close relationship between amoebas and some piecewise linear
objects called ‘‘tropical varieties’’. Some additional references are [12], [10], [14] and
[16].

2 Various kinds of chains

For technical reasons it is convenient to define our homology groups using some
kinds of chains other than the familiar singular chains singC�. Our chains will be
defined on triangulated spaces X (see [2] chapter II, Section 5), but we will only use
them for open subsets of a real vector space p (complements of amoebas). We shall
show that all these chains give rise to the same homology groups as singular chains
with Z coe‰cients.

Let Dk, kd 0, be the standard k-simplex. Let plCkðXÞ and psCkðX Þ be the sub-
groups of singular k-chains generated by piecewise linear, respectively piecewise
smooth maps Dk ! X . Let WkðXÞ be the space of piecewise smooth k-forms, smooth
on the cells of some triangulation of X and compatible with restrictions to faces. We
call two k-chains s ¼

P
lisi and t ¼

P
miti geometrically equivalent, and denote it

by s@ t, if they are not distinguished by k-forms. More precisely s@ t if

ð
s

a ¼
X

li

ð
Dk

s�
i ðaÞ ¼

X
mi

ð
Dk

t�i ðaÞ ¼
ð
t

a for all a A WkðXÞ;

where s�
i ðaÞ denotes the pullback of a along si : Dk ! X . Note that a chain is always

geometrically equivalent to one of its subdivisions.

Definition 2.1. Let

DC�ðXÞ :¼ plC�ðXÞ=geometric equivalence;

yC�ðX Þ :¼ psC�ðX Þ=geometric equivalence:

The chains DC�ðX Þ where introduced by Whitney in [17] under the name polyhedral

chains, but for completely di¤erent purposes.
The boundary map qk :

singCkðXÞ ! singCk�1ðXÞ induces boundary maps on all
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the above chains, making them naturally into complexes. Indeed, if a chain s is in
plC�ðX Þ or psC�ðXÞ, so will be qs. Moreover, if s@ t and a A W�ðXÞ, then

ð
qs

a ¼
ð
s

da ¼
ð
t

da ¼
ð
qt

a;

therefore qs@ qt and the boundary maps are well defined on DC�ðXÞ and yC�ðX Þ.
Define augmented versions a ~CC�ðXÞ of these complexes2, a A fsing;D;yg by letting

a ~CCkðXÞ ¼ aCkðXÞ if kd 0, a ~CC�1ðXÞ ¼ Z, and a ~CCkðXÞ ¼ 0 if k < �1. The boundary
map q0 :

a ~CC0ðX Þ ! Z is induced by
P

lisi 7!
P

li.
Let singH�ðXÞ; DH�ðX Þ;yH�ðX Þ be the homology groups associated to the chain

complexes singC�ðXÞ; DC�ðXÞ;yC�ðX Þ and let sing ~HH�ðX Þ; D ~HH�ðXÞ;y ~HH�ðXÞ be the re-
duced homology groups (see [1] page 181) associated to the corresponding aug-
mented complexes.

Lemma 2.2. For a A fsing;D;yg we have a ~HHkðXÞF aHkðX Þ for k > 0 and a ~HH0ðXÞ ¼
KerðoÞ, where o : aH0ðXÞ ! aH0ðpointÞFZ is the map induced by the projection.

Proof. This is a consequence of the long exact sequence in homology associated to the
short exact sequence of complexes

0 ! Z½�1� ! a ~CC�ðXÞ ! aC�ðXÞ ! 0;

where Z½�1� is the complex . . . 0 ! Z ! 0 . . . concentrated in degree �1. r

Proposition 2.3. If X is a triangulated space, then singH�ðX ÞF DH�ðXÞFyH�ðXÞ and
sing ~HH�ðXÞF D ~HH�ðXÞFy ~HH�ðX Þ.

Proof. By Lemma 2.2 it is enough to show that singH�ðXÞF DH�ðXÞFyH�ðX Þ. We
shall apply the uniqueness theorem which says that any ordinary homology theory
defined on the category of pairs of triangulated spaces is naturally isomorphic to
singH�, see [2] chapter III Theorem 10.1 and chapter VII Section 10.

We first need to extend the definition of DH� and yH� to pairs of triangulated
spaces and then show that they satisfy the Eilenberg–Steenrod axioms for an ordi-
nary homology theory, see [2] chapter I Section 3. Let aC�ðX ;AÞ ¼ aC�ðX Þ=aC�ðAÞ,
a A fD;yg and let aH�ðX ;AÞ be the associated homology groups. We need to show
functoriality, homotopy invariance, exactness of the long exact sequence of a pair,
the excision axiom and the dimension axiom.

The dimension axiom is trivial. The long exact sequence comes from the short
exact sequence of complexes 0 ! aC�ðAÞ ! aC�ðX Þ ! aC�ðX ;AÞ ! 0, see [1] chap-
ter IV Example 5.7. To prove excision one can apply verbatim the argument of [2]

2Everything also works for plC� and
psC� but we will not need these notions.
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chapter VII Section 9, everything is just much easier since our chains are not only
homologous but actually equal to their subdivisions. Functoriality is defined using
simplicial approximations of maps of triangulated spaces, see [2] chapter II Section 7.
For the sake of simplicity, we will only treat the case of spaces and leave the case of
pairs to the reader. Given a continuous map of triangulated spaces f : X ! Y and a
class ½s� ¼ ½

P
lisi� A aC�ðXÞ, we choose a simplicial approximation g and let f�½s� ¼

½
P

liðg � siÞ�. To show this is well defined, assume s@ t and let a A W�ðY Þ. We
have

ð
g�s

a ¼
ð
s

g�a ¼
ð
t

g�a ¼
ð
g�t

a;

therefore g�s@ g�t. We still need to show that this does not depend on the choice of
the simplicial approximation. This is achieved by showing homotopy invariance with
respect to simplicial homotopies. The argument is the same as the one used in prov-
ing homotopy invariance of singular homology and can be found in [2] chapter VII
Section 7. r

For s ¼
P

lisi A plCkðX Þ, li 0 0, define its support by suppðsÞ :¼ 6 ImðsiÞ, for c ¼
½s� A DCkðXÞ, let suppðcÞ :¼ 7

t@s
suppðtÞ.

Lemma 2.4. If p is a vector space, then any class c ¼ ½s� A DCkðpÞ has a representative

in plCkðpÞ that realizes suppðcÞ.

Proof. To construct such a representative, one first subdivides the pl-chain s so that
the simplices are all represented by linear maps. This is possible by definition of plCk.
We then omit the degenerate simplices because they pair trivially with WkðXÞ. Our
next goal is to make the images of the si’s only intersect in dimension less than k. We
first treat the case when all the si’s span the same a‰ne k-plane E. For every i, let Ti

be a triangulation of E that contains ImðsiÞ, and let T be a common refinement of
the Ti ’s. For every k-simplex of T, choose an a‰ne map tj : Dk ! E onto it. We can
now replace every si by the linear combination of tj ’s to which it is geometrically
equivalent. For an arbitrary chain s, we need to repeat the above construction for
every k-plane E spanned by the si’s. It is then clear that the resulting chain t will not
have any ImðtiÞV ImðtjÞ of dimension k. We claim that the support of t cannot be
decreased further.

Suppose t 0 @ t. Given p A ImðtiÞ, we want to show p A suppðt 0Þ. Since suppðt 0Þ is
closed, it is enough to show that any neighborhood V of p intersects it non-trivially.
Let p 0 A ImðtiÞVV be such that p 0 B ImðtjÞ if j0 i. Such a point exists because the
ImðtjÞ’s were assumed to intersect in dimension no more than k � 1. Let V 0 HV be
a neighborhood of p 0 that does not meet ImðtjÞ for j0 i. Finally, let a be a form
supported in V 0 with the property that

Ð
ti
a0 0. We have 00

Ð
ti
a ¼

Ð
t
a ¼

Ð
t 0 a,

therefore suppðt 0ÞV suppðaÞ0q, which implies suppðt 0ÞVV0q and we are
done. r
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s1

s2

s3
t1

t3

t4

t5

t2

s1 þ s2 þ 2s3 @ ðt1 þ t3Þ þ ðt2 þ t3Þ þ 2ð�t3 � t4 � t5Þ

¼ t1 þ t2 � 2t4 � 2t5:

suppð½s�Þ ¼ suppðtÞ ¼

Remark 2.5. The statement of Lemma 2.4 is true when replacing p by any triangu-
lated space, but false when replacing DC� by

yC�.

From now on, let X be an open subset of a real vector space p.

Corollary 2.6. For X H p, the group DCkðX Þ can be identified with the set of chains

c A DCðpÞ satisfying suppðcÞHX .

Proof. Let A ¼ fc A DCkðpÞ j suppðcÞHXg. By Lemma 2.4 the map DCkðX Þ ! A is

onto. To show it is injective suppose ½s� 7! 0, namely
Ð
s
a ¼ 0 for all a A WkðpÞ. We

want to show that
Ð
s
b ¼ 0 for all b A WkðX Þ. Let b be such a form. Choose a smooth

cut o¤ function j that takes the value 1 on suppðsÞ and 0 outside of a compact set
of X, and let g A WkðpÞ be the extension of jb by zero outside of X . One has

Ð
s
b ¼Ð

s
jb ¼

Ð
s
g ¼ 0. r

Let D ~ZZkðX Þ denote the kernel of qk : D ~CCkðX Þ ! D ~CCk�1ðX Þ.

Lemma 2.7. Let nd 1, p be an n-dimensional real vector space and let X H p be an

open subset of it. Let c A D ~ZZn�1ðX Þ. There is a unique C A DCnðpÞ such that qC ¼ c.
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Moreover ½c� is non-trivial in ~HHn�1ðXÞ if and only if there is a point p A pnX in the

support of C.

Proof. The chain groups DC�ðpÞ vanish3 above the top dimension n, and hence
the boundary map qn :

DCnðpÞ ! DCn�1ðpÞ is injective. Indeed ~HHnðpÞ ¼ 0, hence
KerðqnÞ ¼ Imðqnþ1Þ ¼ 0. We also have4 that ~HHn�1ðpÞ ¼ 0, therefore any ðn� 1Þ-
cycle c A D ~ZZn�1ðpÞ bounds exactly one n-chain C in DCnðpÞ. Our class ½c� is trivial
in ~HHn�1ðXÞ if and only if C A DCnðXÞ, that is, if and only if suppðCÞHX . Con-
versely ½c� is non-trivial if and only if suppðCÞnX 0q. r

3 Analogue of convexity

For kd 0, and p an oriented ðk þ 1Þ-dimensional vector space with volume form dv,
let us introduce the following notation:

Definition 3.1. We say that C A DCkþ1ðpÞ is non-negative if
Ð
C
f dvd 0 for all f d 0,

and that qC A D ~ZZkðpÞ is non-negative if C is. The set of all such chains (respectively
cycles) will be denoted DCþ

kþ1ðpÞ (respectively D ~ZZþ
k ðpÞ).

Note that, by Lemma 2.7, the cycle qC determines C, and therefore D ~ZZþ
k ðpÞ is well

defined. For X H p, let D ~ZZþ
k ðXÞ be DCkðXÞV D ~ZZþ

k ðpÞ.

Lemma 3.2. Let kd 0, and p be an oriented vector space of dimension k þ 1. A cycle

c A D ~ZZkðpÞ is non-negative if and only if, for all p B suppðcÞ, the class ½c� is non-negative
in ~HHkðpnfpgÞFZ.

Proof. Without loss of generality, we may assume that p ¼ Rkþ1. Let c be an element
of D ~ZZkðRkþ1Þ. We know from [5] p. 327 that for kd 1, the form

1

ok

Xk

i¼0

ð�1Þ i xi

kxkkþ1
dx05� � �5cdxidxi5� � �5dxk ð1Þ

represents the standard generator of the De Rahm cohomology group Hk
DRðRkþ1n

f0gÞFR, where ok ¼ volðSkÞ, k � k denotes the euclidian norm and ^means that
the term is omitted. If k ¼ 0, then (1) is the function that takes the value �1=2 on the
negatives and 1=2 on the positives. It represents the generator of the reduced5 De
Rahm cohomology group ~HHk

DRðRnf0gÞFR.
Putting all the cases together and replacing 0 by a point p B suppðcÞ, the generator

of ~HHDRðRkþ1nfpgÞ is therefore represented by the form

3This is the crucial property that motivates the introduction of DC�.
4This would fail if we used H� instead of ~HH�.
5The reduced De Rahm cohomology of X is given by ~HHk

DRðX Þ ¼ Hk
DRðXÞ if k > 0 and

~HH 0
DRðX Þ ¼ H 0

DRðX Þ/constant functions.
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ap ¼
1

ok

Xk

i¼0

ð�1Þ i xi � pi

kx� pkkþ1
dx05� � �5cdxidxi5� � �5dxk

for any kd 0. The functional ½c� 7!
Ð
c
ap gives the standard isomorphism ~HHkðRkþ1n

fpgÞ ! Z. To check that ½c� is non-negative in ~HHkðRkþ1nfpgÞ, it is thus enough to
check that

Ð
c
ap d 0. Now let C be the unique chain such that qC ¼ c. If we call d the

euclidian distance between p and suppðcÞ and let m : Rþ ! ½0; 1� be a non-decreasing
function, vanishing on a neighborhood of the origin and one on ½d;yÞ, we can
compute ð

c

ap ¼
ð
qC

mðkx� pkÞap ¼
ð
C

dðmðkx� pkÞapÞ

¼
ð
C

h
dðmðkx� pkÞÞ5ap þ mðkx� pkÞ dap|{z}

¼0

i
since ap is closed

¼
ð
C

m 0ðkx� pkÞ dðkx� pkÞ5ap

¼
ð
C

m 0ðkx� pkÞ
X
i

ðxi � piÞ dxi
kx� pk

5
1

ok

X
i

ð�1Þ i xi � pi

kx� pkkþ1
dx05� � �5cdxidxi5� � �5dxk

¼ 1

ok

ð
C

m 0ðkx� pkÞ
X
i

ðxi � piÞ2

kx� pkkþ2
dx05� � �5dxk

¼
ð
C

m 0ðkx� pkÞ
okkx� pkk|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

d0

dx05� � �5dxk:

The right hand side is non-negative for all p and m if and only if C A DCþ
kþ1, i.e.

c A D ~ZZþ
k . On the other hand,

Ð
c
ap is non-negative for all p if and only if ½c� is in

~HHþ
k ðR

kþ1nfpgÞ for all p. This proves our lemma. r

Definition 3.3. Let p be an oriented vector space of dimension k þ 1 and X H p an
open subset. A class ½c� A ~HHkðXÞ is called non-negative if its image in ~HHkðpnfpgÞFZ
is non-negative for all p B X . The set of such classes will be denoted ~HHþ

k ðXÞ.

It follows from Lemma 3.2 that the class of a cycle c A D ~ZZþ
k ðXÞ is always in

~HHþ
k ðXÞ. The converse also turns out to be true.

Lemma 3.4. Let p be an oriented vector space of dimension k þ 1 and let X be an open

subset. Then an element of ~HHþ
k ðXÞ can always be represented by a cycle in D ~ZZþ

k ðX Þ.
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Proof. Let ½c� A ~HHþ
k ðX Þ. By Lemma 2.7 there is a C A DCkþ1ðpÞ such that qC ¼ c.

One decomposes C ¼ Cþ � C�, with both Cþ and C� non-negative and having dis-
joint supports (up to a set of smaller dimension). If there were a point p A suppðC�Þn
X , then the same argument as in Lemma 3.2 would show that c represents a negative
element in ~HHkðpnfpgÞ, which contradicts our hypothesis. So suppðC�ÞHX and ½c�
can also be represented by cþ qC� ¼ qCþ A D ~ZZþ

k ðXÞ. r

Definition 3.5 (analogue of convexity). A subset X of a vector space is k-convex if, for
all oriented a‰ne ðk þ 1Þ-planes p, the map ~HHkðpVXÞ ! ~HHkðX Þ does not send non-

zero elements of ~HHþ
k ðpVXÞ to zero.

As explained in the introduction, a set is 0-convex if and only if it is a disjoint
union of convex sets.

When X is open, one can check k-convexity on a dense subset of plane directions.

Lemma 3.6. Let X be open in Rn. Then if X is not k-convex, there is a ðk þ 1Þ-plane
p with rational slope and a non-zero class in ~HHþ

k ðpVXÞ that is sent to zero under
~HHkðpVXÞ ! ~HHkðX Þ.

Proof. If X is not k-convex, there is an oriented ðk þ 1Þ-plane p0 and a class 00
a A ~HHþ

k ðp0 VXÞ that is sent to zero in ~HHkðX Þ. By Lemma 3.4, we may choose a rep-
resentative c A D ~ZZþ

k ðp0 VXÞ for the class a.
By Lemma 2.7 there is a chain C A DCþ

kþ1ðp0Þ such that qC ¼ c, and there is a
point p A suppðCÞnX . For a ðk þ 1Þ-plane p let pr : p0 ! p be the orthogonal pro-
jection. Because X is open and c compactly supported, it is possible to choose p con-
taining p with rational slope, and close enough to p0 so that ðtþ ð1� tÞ prÞ�ðcÞ stays
supported in X for all t A ½0; 1�.

p

pr�ðcÞ

c p0

p

Assuming p and p0 are not orthogonal, give p the orientation induced from p0

by pr. The cycles c and pr�ðcÞ are homotopic, therefore ½pr�ðcÞ� ¼ ½c� ¼ 0 in ~HHkðXÞ.
It only remains to show that pr�ðcÞ represents a non-zero element of ~HHþ

k ðpVXÞ.
The map pr� :

DCkðp0Þ ! DCkðpÞ sends isomorphically D ~ZZþ
k ðp0Þ onto D ~ZZþ

k ðpÞ, there-
fore pr�ðcÞ A D ~ZZþ

k ðpVXÞ and by Lemma 3.2 ½pr�ðcÞ� A ~HHþ
k ðpVXÞ. Now p ¼ prðpÞ A

suppðpr�ðCÞÞnX , so by Lemma 2.7, ½pr�ðcÞ� is non-zero in ~HHþ
k ðpVX Þ. r

André Henriques68



4 Amoeba complements

We can now state our main result.

Theorem 4.1. Let V H ðC�Þn be a variety of codimension k þ 1, let A ¼ LogðVÞ be
the amoeba of V and cA ¼ RnnA be the amoeba complement, where Logðz1; . . . ; znÞ ¼
ðlogjz1j; . . . ; logjznjÞ. Then cA is k-convex.

Proof. First note that, since Log is proper and cA is open, we can compute homology
groups using polyhedral chains DC�. Let p be an oriented ðk þ 1Þ-plane and a A
~HHþ
k ðpV cAÞ be a non-zero class. We want to show that the image of a in ~HHkðcAÞ

is non-zero. By Lemma 3.6 it is enough to show it when p has rational slope. We
may by Lemma 3.4 represent a by a non-negative cycle c A D ~ZZþ

k ðpV cAÞ. Finally,
by Lemma 2.7 there is a chain C A DCþ

kþ1ðpÞ bounded by c and a point p A
suppðCÞVA.

Before going on, it is convenient to identify ðC�Þn with Rn � Tn under the map

LogC : ðC�Þn !F Rn � Tn

z 7! ðLogðzÞ;ArgðzÞÞ;

where Argðz1; . . . ; znÞ ¼ z1
jz1j

; . . . ; zn
jznj

� �
. Put onRn � Tn the complex structure induced

from ðC�Þn by the isomorphism LogC. For ðx; yÞ A Rn � Tn, the tangent space Tðx;yÞ �
ðRn � TnÞ splits as a direct sum TxRn lTyTn of two totally real subspaces that
are exchanged under multiplication by i. Let pr1 (resp. pr2) be the projection to Rn

(resp. Tn). The point p being in A, one can choose a point v A LogCðVÞ such that
pr1ðvÞ ¼ p. Let q ¼ pr2ðvÞ. Now, let us consider the sequence of maps

Tpp R��! TpRn R��! TpRn lTqTn TpRn lTqTn ��!��! TqTn ��!exp Tn;����o
����o

Tðp;qÞðRn � TnÞ ��!�i Tðp;qÞðRn � TnÞ

where exp : TqTn !! Tn is the (riemannian) exponential map that presents the (flat)
torus Tn as a quotient of the vector space TqTn by the lattice L ¼ exp�1ðqÞ. Let Tp

be the image of Tpp under the above sequence of maps. Since p was assumed to have
rational slope in Rn, the image of Tpp in TqTn has rational slope with respect to L,
and Tp is therefore a closed subtorus of Tn (as opposed to a dense leaf of some foli-
ation).

Let pC ¼ p� Tp JRn � Tn. By definition of Tp, the tangent space Tðp;qÞpC F
TpplTqTp is invariant under i. This implies that all tangent spaces Tðx;yÞpC are
invariant under i, and therefore pC is a complex submanifold of Rn � Tn. Indeed pC
can be identified with a coset of a subgroup of the complex Lie group Rn � Tn, and
translation in the group gives a complex isomorphism of Tðx;yÞðRn � TnÞ with Tðp;qÞ �
ðRn � TnÞ sending Tðx;yÞpC to Tðp;qÞpC.
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For the rest of the proof, the important properties of pC are that it is complex and
that v A LogCðVÞV pC.

q ¼ pr2ðvÞ

Tp

Tn

v

pC

p ¼ pr1ðvÞ
p

Rn

We orient Tp in the way that makes the product orientation on pC ¼ p� Tp agree
with the orientation inherited from its complex structure. With that orientation, the
torus Tp defines an element ½Tp� A yCkþ1ðTnÞ. Let j be the composed homomor-
phism

j : DC�ðcAÞ ����!�½Tp� yC�þkþ1ðcA� TnÞ

����! yC�þkþ1ððRn � TnÞnLogCðVÞÞ

����!ðLog�1
C Þ� yC�þkþ1ððC�ÞnnVÞ

����! yC�þkþ1ðCnnVÞ;

where the second and fourth maps are induced by the inclusions and V is the closure
of V in Cn. The map j is compatible with q, and therefore induces a map j on
homology groups

j : H�ðcAÞ ! H�þkþ1ðCnnVÞ:

Recall that we are trying to show that a ¼ ½c� is not sent to zero in ~HHkðcAÞJ
HkðcAÞ. It su‰ces to show that a is not sent to zero under the maps

~HHkðpV cAÞ !i� ~HHkðcAÞJHkðcAÞ !j H2kþ1ðCnnVÞ;

where i denotes the inclusion.
We shall give a heuristic argument why ji�ðaÞ ¼ ½jðcÞ� should be non-zero in

H2kþ1ðCnnVÞ by claiming that the linking number lkðjðcÞ;VÞ is strictly positive.
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Since qðjðCÞÞ ¼ jðcÞ, that linking number is by definition (see [1] pages 117–118) the
number of intersections of jðCÞ and V , counted with multiplicities. We need to know
that all intersections give positive contributions, and that there is at least one. The
first claim is true because suppðjðCÞÞ and V are complex. Indeed jðCÞ was con-
structed by taking the chain C � ½Tp�, which was supported on pC, and mapping it
to CnnV via the holomorphic map Log�1

C . Also, because of the non-negativity of C
and of the good choice of orientation of Tp, we know that the ‘‘orientation’’ of jðCÞ
coincides with the orientation coming from the complex structure of suppðjðCÞÞ.
One then uses the fact that the intersection of two complex submanifolds always
comes with positive sign. The last piece of information needed is that Log�1

C ðvÞ A
suppðjðCÞÞVV . As there is at least one intersection, lkðjðcÞ;VÞ > 0.

Unfortunately, the above argument about linking numbers is not entirely rigorous
(the main problem being that V is not compact), so let us start again. First note that
when k þ 1 ¼ n, k-convexity is the empty condition, so we may assume k þ 1 < n.

Consider the sphere Cn U fyg and let V be the closure of V in it. Since V is compact,

oriented and smooth in real codimension one, it has a fundamental class ½V � A
H2ðn�k�1ÞðVÞFZ ([1] page 338). By Poincaré–Alexander–Lefschetz duality ([1] sec-
tion VI Theorem 8.3)

H2ðn�k�1ÞðVÞFH 2ðkþ1ÞðCn U fyg; ðCn U fygÞnVÞ

FH 2ðkþ1ÞðCn U fyg;CnnVÞ:

Now, by the long exact sequence in homology ([1] page 180)

0 ¼ H2ðkþ1ÞðCn U fygÞ ! H2ðkþ1ÞðCn U fyg;CnnVÞ

!q H2kþ1ðCnnVÞ ! H2kþ1ðCn U fygÞ ¼ 0

we know that H2ðkþ1ÞðCn U fyg;CnnVÞFH2kþ1ðCnnVÞ. Since qðjðCÞÞ ¼ jðcÞ we

have that ½jðCÞ� 7! ½jðcÞ� under that isomorphism. We want to evaluate ½jðCÞ� A
H2ðkþ1ÞðCn U fyg;CnnVÞ on the dual6 of ½V � in H 2ðkþ1ÞðCn U fyg;CnnVÞ. This can
be computed by counting with multiplicities the intersections of suppðjðCÞÞ and V

(see [1] section VI Theorem 11.9), but first we need to make jðCÞ and V transverse
to each other. To do this, we apply to jðCÞ a small a‰ne unitary transformation
u, centered at Log�1

C ðvÞ. The chain ujðCÞ is still complex in Cn, therefore all the
points of suppðujðCÞÞVV will give a positive contribution to the intersection num-

ber ½ujðCÞ� � ½V �. On the other hand, Log�1
C ðvÞ is both in suppðujðCÞÞ and in V , so

½ujðCÞ� � ½V � > 0.
We have shown that the class ½ujðCÞ� ¼ ½jðCÞ� is non-zero in H2ðkþ1ÞðCn U fyg;

CnnVÞ, which implies that ½jðcÞ� ¼ ji�ðaÞ is non-zero in H2kþ1ðCnnVÞ, which in turn
implies that i�ðaÞ is non-zero in ~HHkðcAÞ. r

6This is essentially the same as computing lkðjðcÞ;VÞ.
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Log�1
C ðpCÞ

Log�1
C ðvÞ

jðCÞ

jðcÞ

V

Cn

p

C
p c

A

Rn

The lower half of the above picture represents the amoeba A in Rn and the
cycle 00 ½c� A ~HHkðpV cAÞ. The chain C is bounded by c and intersects A at the
point p.

The upper half represents the variety V in Cn and the cycle jðcÞ linked around V .
The chain jðCÞ is bounded by jðcÞ and lies on the complex manifold Log�1

C ðpCÞ
(which is actually a variety). It intersects V in Log�1

C ðvÞ, and because both jðCÞ and
V are complex, this gives a positive contribution to the linking number lkðjðcÞ;VÞ.
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