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A geometrical construction of
the oval(s) associated with an a-flock

Matthew R. Brown and J. A. Thas

(Communicated by T. Penttila)

Abstract. It is known, via algebraic methods, that a flock of a quadratic cone in PG(3, ¢) gives
rise to a family of ¢ + 1 ovals of PG(2, ¢) and similarly that a flock of a cone over a translation
oval that is not a conic gives rise to an oval of PG(2, ¢). In this paper we give a geometrical
construction of these ovals and provide an elementary geometrical proof of the construction.
Further we also give a geometrical construction of a spread of the GQ 7,() for ¢ an oval
corresponding to a flock of a translation oval cone in PG(3, ¢g), previously constructed alge-
braically.

1 Introduction and definitions

The essence of this paper is a geometrical construction of an oval ¢ of PG(2,¢), ¢
even, from a flock of a translation oval cone in PG(3, ¢) and a spread of the corre-
sponding GQ T»(0). This construction, along with a geometrical proof that it does
indeed give an oval ¢ and a spread of 7T>((), can be found in Section 3 and prelimi-
nary results required can be found in Section 2. Much of this introduction gives the
known algebraic constructions of these objects while in Section 4 it is shown that the
geometrical construction we present here is the same as the algebraic one.

An oval 0 of PG(2, q) is a set of ¢ + 1 points no three of which are collinear. A line
of PG(2, g) is called an external line, a tangent line or a secant line of ¢ depending on
whether it is incident with zero, one or two points of ¢, respectively. From this point
we assume that ¢ is even. In the case where ¢ is even the tangents to () are concurrent
in a point N called the nucleus of O. A hyperoval of PG(2, g) is a set of ¢ + 2 points
no three collinear. An oval together with its nucleus forms a hyperoval of PG(2, g). If
an oval ¢ has a tangent line / such that there exists a group of ¢ elations of PG(2, ¢)
each element of which has axis / and fixes ), then O is called a translation oval.
The line 7 is called an axis of @. It was proved by Payne in [5] that each translation
oval is of the form 2 (a) = {(1,¢,t*): t € GF(q)} U{(0,0,1)}, for some generator o
of Aut(GF(g)). Note that in the case where o : x — x?, or abusing notation « = 2,
that the translation oval is the classical oval, the non-degenerate conic.

Let & be a quadratic cone in PG(3, ¢) with vertex V. A flock 7 of A" is a set of ¢
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planes of PG(3, ¢) partitioning the points of #"\{¥}. If we suppose that 7" is defined
by the equation xpx; = x12, then following Thas in [7] we may write the flock in the
form & = {r, : t e GF(q)} where

7 axo + bixp + ¢;xp + x3 = 0.

It follows that ¢ — a,, t — b, and t — ¢, are permutations of GF(g). Without loss of
generality the elements of the flock may be normalised to

7 f()xo + 2x + ag(t)x; +x3 =0,
for permutations f and g of GF(g) with f(0) =¢(0) =0 and f(1) =¢(1) =1 and
trace(a) = 1. In [3] the authors prove the following theorem concerning flocks of the

above form.

Theorem 1.1. Each of the sets

f(x) +asg(x) +5s'2x!/2
17t7
1+as+s/?

) xe GF(q)} U{(0,1,0), (0,0, 1)}

for s € GF(q) and
{(1,1,9(1)) : 1€ GF(q)} U{(0,1,0),(0,0,1)}
is a hyperoval of PG(2, q).

In [3] the set of ¢ + 1 functions defining the hyperovals as above is called a Aerd. In
[8] Thas gave a geometrical construction of these hyperovals from the flock (although
not a geometrical proof of the construction).

Let o« be a generator of Aut(GF(gq)), ¢ = 2¢. Following Cherowitzo in [2] define
an o-cone A of PG(3,g) to be a cone with point vertex V' and base an oval equiva-
lent to Z (o). If X is a point of the base oval on an axis, then the line <X, V') is called
an axial line of A,. A flock of A,, also known as an a-flock, is a set of ¢ planes of
PG(3,q) partitioning the points of A \{V}. If #, is defined by the equation
Xy = xoxfl and %, a flock of .%,, then similarly to the case of a flock of a quadratic
cone we may write the elements of %, as

o f(0)x0 + % x) +ag(t)xa +x3 =0 for t € GF(g),
where f and g are permutations of GF(g) with f(0) = g(0) =0 and f(1) =¢(1) =

1 and trace(a) = 1. Then Cherowitzo ([2]) proves the following result concerning
o-flocks.

Theorem 1.2. The set {(1,t, f(¢)) : t e GF(q)} U{(0,1,0),(0,0,1)} is a hyperoval of
PG(2,q).
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In Section 3 we give a generalisation of a construction in [8] that each pair (axial
line of 7, flock of ;) gives rise to an oval of PG(2,¢). In the case where %, is
a quadratic cone it was shown in [8] that in this way a flock gives rise to the ¢ + 1
hyperovals of the corresponding herd, while in Section 4 we show that for a general
a-flock the oval completes to the hyperoval of Theorem 1.2. In this way we have a
geometric proof of Theorem 1.1 and Theorem 1.2.

We now consider the Generalized Quadrangle (GQ) T»(0) of Tits; see [4]. Let ¢
be an oval in PG(2, ¢) and embed PG(2, ¢) in PG(3, ¢), then T>(0) is a GQ of order
¢ and is constructed in the following manner. Points are (i) the points of PG(3,¢)\
PG(2,¢), (ii) the planes of PG(3,¢g) which meet PG(2, ¢) in a single point of ¢ and
(iif) a symbol (o0); lines are (a) the lines of PG(3,¢), not in PG(2,¢), which meet
PG(2,¢) in a single point of (), and (b) the points of @; with incidence inherited from
PG(3,¢) plus (o0) is incident with all lines of type (b). Note that 75(0) is the clas-
sical GQ Q(4,q) if and only if O is a conic; see [6, 3.2.2]. A spread & of T>(0) is a
set of lines such that each point of 75>(0) is incident with a unique element of ..
It follows that .% has size ¢*> + 1. In [1] the authors show that % must consist of
a point P of O and the ¢ lines not in PG(2,q) of ¢ oval cones, #y, X € O\{P};
where Ay has vertex X, contains P and has nuclear line (X, N), with N the nu-
cleus of the oval (. The following theorem, in an equivalent form, also appears in

(1].

Theorem 1.3. Let O = {(¢,1,f(¢)):teGF(q)} U{(0,0,1)}, with f(0)=0 and
f(1) =1, be an oval of PG(2, q), q even. Embed PG(2,q) in PG(3,q) as x» = 0 and let
o be a generator of Aut(GF(q)). Let A, be the cone with vertex (t,1,0, f(t)) and base
{(s*+a"g(1)*,0,1,s) : s€ GF(q)} U{(0,0,0,1)}, with trace(a) = 1. Then (0,0,0,1)
plus the g* lines not in PG(2, q) of the cones A, form a spread of T»(0) if and only if
{f(6)xo + tY%x) +ag(t)xa +x3 = 0: t e GF(q)} is an o-flock of Hy: x¥ = xoxi~ !,
with g(0) = 0 and ¢(1) = 1.

In this way the ovals corresponding to an «-flock, as in Theorem 1.2, are charac-
terised as those for which the corresponding Tits GQ admits a spread of the form
above. Our geometrical construction in Section 3 characterises these ovals in the same
way and by attaching coordinates in Section 4 we see that it gives a non-algebraic
proof of Theorem 1.3.

Now we state our main theorem.

Theorem 1.4. For o a generator of GF(q), q even, let A be a cone in PG(3,q) over
a translation oval equivalent to 9 (o) = {(1,¢,t*) : t e GF(¢)}U{(0,0,1)}. If %, is a
[flock of A, then to each pair (F,,a), where a is an axial line of A, there corresponds
an oval O of PG(2,q). Further, there also corresponds a spread & of the generalized
quadrangle T>(O) which consists of one point Y of O and the ¢* lines not in PG(2, q) of
q a-cones Ay, where Ay has vertex X € O\{Y}, base oval equivalent to 9 («) and is
tangent to PG(2,q) at the axial line {Y,X ).

Conversely, if a GQ T»(O) has such a spread &, then there corresponds an o-flock
giving rise to the oval 0.
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In Section 2 we shall state some basic properties of translation ovals and flocks of
translation oval cones which shall be used in the proof of Theorem 1.4 in Section 3.
In Section 4 we apply coordinates to the construction in the proof of Theorem 1.4 to
show that it gives both Theorem 1.2 and Theorem 1.3.

2 Preliminaries

In this section we give some basic results on translation ovals and a-flocks to be used
in the proof of our main theorem.

By Payne ([5]) we know that any translation oval of PG(2,2") is equivalent to
an oval of the form 2(«) = {(1,¢,1%) : t € GF(¢q)} U {(0,0, 1)} with nucleus (0, 1,0),
where o is a generator of Aut(GF(g)). From this form it is clear that Z(«) is a conic
if and only if « = 2. In the case where Z(a) is a conic each tangent to Z(«) is an axis
of Z(a) and the group of the conic is transitive on the axes. In the case where Z(«) is
not a conic then 2(«) has a unique axis [1,0, 0]. From the canonical form of a trans-
lation oval it is also straight-forward to see that for a given line / of PG(2,¢) and
distinct points P, N incident with / that there are exactly ¢(¢ — 1) ovals equivalent to
Z(0) containing P and with nucleus N, such that / is an axis of the oval. If R is a
fixed point of PG(2, ¢)\/, then there are ¢(¢ — 1) ovals equivalent to Z(«) with axis /
and containing the points P and R.

Another notion that we shall need is that of compatibility of ovals. Let (¢/; and ),
be two ovals of PG(2,¢) and let P be a point of PG(2, g) not on either of the ovals
and distinct from their nuclei. Then ¢} and @, are compatible at P if they have the
same nucleus, they have a point Q in common, the line {P, Q) is a tangent to both
(01 and O, and every secant line to ¢; on P is external to (/. As a consequence every
external line to (; on P is a secant line to (/;. In particular we will need information
regarding points of compatibility in the case where ¢} and (), are both ovals equiv-
alent to Z (o) with a common axis 7, common nucleus N, /N ¢, = /N O, = {Q} and
such that (/; is the image of () under an elation with axis / and centre Q. Without
loss of generality we may assume that ¢y = {(1,u,u”) : ue GF(¢)} U{(0,0,1)} and
that O, = {(1,¢,"+ B) : te GF(¢)}U{(0,0, 1)} for Be GF(q). A point (0,1, s), s #0,
on the common axis of @} and O, is a point of compatibility of ¢; and (), if and only
if trace(B/s*/(*~1)) = 1, which has ¢/2 solutions for s € GF(gq). Hence (/; and (), have
q/2 points of compatibility on the common axis.

Now consider a cone 7, in PG(3, ¢) with vertex V" and base an oval equivalent to
(o). Let £ be an axial line of the cone and let P be any point incident with / distinct
from V and let 7 be any plane of PG(3, ¢) not containing P. If we project the ¢ — ¢>
oval sections of %, not containing P, from P onto 7z, then we obtain a one-to-one
correspondence between this set and the ¢?(¢ — 1) ovals of 7 equivalent to Z(«) that
contain the point Y =/ Nz and have axis n = n, Nz, where 7, is the plane tangent
to A, at /. Similarly, the ¢g> oval sections of .#, containing P are in one-to-one cor-
respondence with the ¢ lines of 7 not incident with Y. This correspondence is the
planar representation of #,. If we consider a set of g oval sections of #, that are
mutually tangent at a point of <P, V)\{P, V'}, then in the planar representation this
set of ¢ ovals is called an axial linear pencil of ovals. Equivalently, such a set of ovals
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may be described as the images of an oval equivalent to Z (o) under the group of ela-
tions with axis the axis of the oval and centre the point of the oval on the axis.

Now consider a flock # = {n1,...,n,} of A,. Without loss of generality suppose
that Pen,. Fori=1,...,q—1 let the projection of the oval n;N %, from P onto
7 be O; and let w denote the line 7, N 7. Then it follows that in the planar represen-
tation of #, that & is the set {¢y,...,0;,_1,w}. Thus O,...,0,_;,w partition the
points of 7\n, and it also follows that the nuclei of the (; are distinct points of
n\{Y} and that the line w intersects » in the remaining point of n\{Y}. Conversely,
any such set {Cy, ..., 0,_;,w} partitioning the points of 7\ {n} corresponds to a flock
of ;.

3 Proof of Theorem 1.4

Suppose 7, is a flock of 24, and « an axis of the base oval of J#,. If V' is the vertex of
Ay, then (V' a) contains the axial line / of .#,. Then, as in Section 2, if we project the
elements of %, from a non-vertex point P of / onto a plane 7, not containing P, we
obtain a planar representation {1, 0, ..., 0;,_1,w} of Z,. Let the common point of
the ovals @,..., 0, be Y, the common axis of the ovals be n and nNw = X".

Now consider two other planes PG(2,¢) and &, such that PG(2,¢) Nn =n, zN
PG(2,q)N¢={Y}, PG(2,q)N&=m and zN¢=wu. In & we consider an oval (]
equivalent to Z(«) such that (] has axis m, contains the point ¥ on m, and has
nucleus N. Let {0}, 03, ..., O} be the axial linear pencil containing ¢; with axis m.
The ovals (1, 05, .., (] partition {\m, and in particular the points of u\{Y}. Con-
sequently we may choose indices such that ¢;N O/ = {Y, W;}, with W, eu and i =
1,2,...,g—1.

We now show that for each i = 1,2,...,¢ — | there is a unique cone containing (;
and (/. Since n and m are tangents to (’; and ¢/ at Y, respectively, it follows that the
vertex of any cone containing the two ovals must be in the plane <n,m) = PG(2, q).
Now there are ¢(¢ — 1) cones containing (/] and with vertex in PG(2, ¢)\(nUm), and
also g(qg — 1) ovals of 7 equivalent to Z(a) with axis n and containing the points Y
and W;. Thus, if we can find a group fixing ¢}, Y and W) as well as acting regularly
on both the set of points of PG(2,¢)\(nUm) and the set of ovals of = equivalent to
2 (o) with axis n and containing the points Y and W, then it follows there must
be exactly one cone containing (] and such an oval. To show the existence of such
a group we (briefly) apply coordinates. Let PG(2,¢q) : x, =0, m: x3 =0, & : x; = 0.
We may assume that (] has the form {(¢%,0,1,7) : 1 € GF(¢)} U{(1,0,0,0)}. The re-
quired group has elements of the form

A p 00
0 1 0 O
0 0 1 0 for p € GF(g) and A € GF(¢)\{0}.
0 0 0 4

By the above there is a unique cone #] containing ¢/; and (’{ which has vertex X,
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say, in PG(2, ¢). Similarly we have cones #;, i = 1,2,...,¢q — 1, where #; contains (;
and ¢/ and has vertex X;. We also define .#; to be the cone containing (), and with
vertex X'. For convenience we will relabel the point X’ as Xj.

We now show that X;, X;, Y, i # j, are not collinear and that the two cones J¢; and
A, i # J, intersect in exactly Y. Without loss of generality we will consider #; and
5. First suppose that Y, X}, X, are collinear on a line o (which is necessarily a gen-
erator of both #] and #3). Of the ¢ + 1 planes of PG(3, g) on 0, PG(2, ¢) is a tangent
plane to both 2#] and 45 while each of the other ¢ planes contains a second generator
of both #] and #; and so a second point of #] N #3. Hence |#] N #3| = g+ 1. Now
we consider the planes on the line m. The plane PG(2, ¢) is tangent to both 2#] and
5 while each of the other ¢ planes intersects both .#] and J#5 in an oval equivalent
to Z(o) with axis m, containing the point ¥ and with nucleus N. Two such ovals may
intersect in either 0, 1,2 or ¢ + 1 points. Suppose that there exists a plane # distinct
from PG(2,q) on m for which N #; = nN .43 = O, O an oval. Now since O is the
set of common points of #] and #3 it follows that zN O = ¢; N U, = {Y}. Hence
the line zN# is tangent to both #] and #5 at Y and so must be n. This implies that
m,n < 5 and so n = PG(2,¢), a contradiction. It follows that each plane on m dis-
tinct from PG(2, ¢) contains exactly two points of #] N #5, Y and one other. How-
ever this must also hold for &, a contradiction. Therefore Y, X7, X, are not collinear.

If N e {X1,X>), then ; and O, have a common nucleus and so it follows that
N, X1, X, are not collinear. So the line <X7, X>) contains a point P of m\{Y,N}. If
A1 and A5 are to meet in exactly Y, then no line of ¢ distinct from m and incident
with P can contain a point of both @] and (. Hence (/] and (%} are compatible at
P. From this we see that the number of cones containing (), with vertex in PG(2, q),
that meet #] in exactly Y is the number of points on m at which O] and ¢} are
compatible, multiplied by ¢ — 2 for the possible vertices in (X7, P)\{X7, P} not on n,
for each such point of compatibility P. By Section 2 this is ¢(¢ — 2)/2. In the planar
representation of 7, in 7, this is the same as the number of ovals equivalent to Z(x)
meeting () in exactly Y, containing W,, and with nucleus distinct from that of ¢;. It
follows that the cones #] and #; meet in exactly Y.

We now show that the cone #; and any cone %;, i € {1,2,...,q — 1} intersect in
exactly Y. If we consider a plane 7’ such that u = #/, but m,n & 7/, then we have the
same situation as above except that .#; Nz’ is an oval and not a line. By choosing 7’
appropriately we see that #; N4 ={Y} fori=1,2,...,q— L.

Since the cones .#; intersect pairwise in exactly Y it follows that they partition the
points of PG(3, ¢)\PG(2, q).

We now show that the set ¢ = {Y,X;,X>,...,X,} is an oval with nucleus N.
Consider the three points X;, X;, Xj for distinct 7,7,k in {1,2,...,¢g — 1}. Suppose
that X;, X;, X are collinear on the line /. There are g planes on 7 distinct from
PG(2,¢), and the ¢ lines of 2#;\<{Y, X;) lic on these planes with at most two per
plane; and similarly for X; and Xj. It follows that there is a plane on ¢ which con-
tains a line from at least two of the cones J;, #;, #;, which implies two cones inter-
secting in a point other than Y, a contradiction. Hence X;, X;, Xi cannot be collinear.
Similarly, X, X;, X; are not collinear for distinct 7, j in {1,2,...,¢g— 1} and O = {7,
X1, X5,...,X,} is an oval. Since the lines (N, X;»,i=1,2,...,q— 1 and (N, X,> are
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the nuclear lines of the cones #;, i = 1,2,..., ¢, respectively, and these lines intersect
n in distinct points it follows that N is the nucleus of the oval {Y, X7, X5,..., X, }.

If we construct the GQ T>(0) in PG(3, g), then the set & = {Y} U {#\KY, X;>:
i=1,2,...,q}is a spread of T»(0), and the cone .#; has base oval equivalent to Z(«)
and axial line <Y, X;).

Conversely, suppose that we have such a spread % of T>(0). If we take any plane
7 on Y, distinct from the plane PG(2, g) of ¢, that intersects ¢’ in a secant, then the
intersection of the cones of . with 7 yields an a-flock in the planar representation; if
we take any plane ¢ on Y and N, distinct from PG(2, ¢), then the intersection of the
cones of . with ¢ yields ovals 0, 03, ..., 0. It is clear that the above construction
gives us the oval 0.

Note that this result characterises the ovals ¢ that may be constructed from an o-
flock by the existence of the corresponding spread of 75((). (This result was first
proved algebraically in [1].)

4 Algebraic description of ¢ and &

In this section we add coordinates to the construction of Theorem 1.4 to show that
the hyperoval completion of ¢ is the same as the hyperoval constructed from an o-
flock by Cherowitzo and that the spread % of T,(() is the same as that constructed
by Brown, O’Keefe, Payne, Penttila and Royle. Note that in [8] Thas showed that in
the case of a flock of a quadratic cone that the ¢ + 1 (flock, axis to base oval of cone)
pairs gave rise to the ¢ + 1 herd hyperovals constructed from a flock as formalised in
Theorem 1.1.

Adding coordinates as in the proof of Theorem 1.4, let PG(2,¢) : x, =0, 7: x3 =0,
E:x;=0.Thusn:x, =x3=0,m:x; =x, =0and u: x3 = x; = 0 with Y(1,0,0,0).

Let #; : x? = xox5 ! and let 7, be a flock of #,. From Section 1 we may assume
that 7, has elements 7, : f(¢)xo + ¢"/*x; + ag(f)x2 + x3 = 0, t € GF(q), where f and
g are permutations such that f(0) = g(0) =0 and f(1) = g(1) = 1 and trace(a) = 1.
Let ¢/ denote the oval 4, N7, and so

O ={(s%5, 1, f(1)s” + 1'/"s + g(1)) : s € GF(q)}U{(1,0,0, £ (1))}
with nucleus (0,1,0,7/%). We now choose to project these ¢/ from the point
U =(1,0,0,1) on the axial line x; = x, = 0 of 7, onto the plane 7. As f(1) = 1 the
point U is contained in 7; and so
O —w:x3=x0+x1 +x=0.
For ¢t # 1
O — O, = {(1 + f(2))s* + 1'% + agy(t),5,1,0) : se GF(¢q)} U{ Y}

with nucleus (z!/%,1,0,0). Thus the planar representation of the a-flock is {¢; :
t € GF(g)\{1}} U{w}. For ¢ # 1 define W, to be the second point (other than Y) of
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O, on u, that is, W, = (ag(?),0,1,0) and define W to be the intersection of w and u,
that is W, = (1,0, 1,0).

Next, in the plane & we choose the axial linear pencil of ovals equivalent to &(«) to
be

Op ={(r*+aB,0,1,r): re GF(q)} U{Y}, BeGF(g), withnucleus (0,0,0,1).

The second point (other than Y) of the oval O on u is (aB,0,1,0) = W, 1.

For ¢ # 1 the unique cone on ¢ and (;,, has vertex (11/2,1,0, (1 + f(£))"/*). Thus
by Theorem 1.4 we have that

{("7,1,0, (14 f(1))'"") : 1€ GF(g)} U{(1,0,0,0)}

is an oval of PG(2, ¢) with nucleus (0,0,0, 1).
Applying the collineation xj = x3 + x; and then the automorphic collineation
induced by o, the oval is equivalent to

O ={(,1,0,1(r)) : te GF(q)} U{(1,0,0,0)} with nucleus (0,0,0,1).

This implies that the hyperoval completion of the oval is indeed the same hyperoval
as that in Theorem 1.2.

Now considering the corresponding spread of 75>((), we see that the cone with
vertex (¢,1,0, f(¢)) intersects the plane ¢ in the oval

{r* +a%g()*,0,1,r) : r e GF(q)} U{(1,0,0,0)} with nucleus (0,0,0,1).
This is the same as the spread given in Theorem 1.3.
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