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COINCIDENCE FREE PAIRS OF MAPS

ULRICH KOSCHORKE

Abstract. This paper centers around two basic problems of topological coin-
cidence theory. First, try to measure (with the help of Nielsen and minimum

numbers) how far a given pair of maps is from being loose, i.e. from being ho-
motopic to a pair of coincidence free maps. Secondly, describe the set of loose
pairs of homotopy classes. We give a brief (and necessarily very incomplete)
survey of some old and new advances concerning the first problem. Then we
attack the second problem mainly in the setting of homotopy groups. This
leads also to a very natural filtration of all homotopy sets. Explicit calcula-
tions are carried out for maps into spheres and projective spaces.

1. Introduction

Let M be a closed smooth m-dimensional manifold.
In the first half of the 1920’s S. Lefschetz established his celebrated results on

fixed point theory which, in particular, yield the following.

Theorem 1.1. Let f : M → M be a map. If L(f) 6= 0, then every map f ′

homotopic to f has at least one fixed point x ∈ M (i.e. f ′(x) = x).

Here the Lefschetz number L(f) can be defined to be the intersection number
of the graph of f with the diagonal ∆ in M × M .

The theorem of Lefschetz was a groundbreaking achievement. Still, it left several
questions open.

Question I. What is the minimum number of fixed points of maps which are
homotopic to f?

This is the principal problem of topological fixed point theory (cf. [1], p. 9).

Question II. What can we say about the set of homotopy classes [f ] which contain
a fixed point free selfmap f of M (apart from the necessary condition L(f) = 0)?

In 1927 the Danish mathematician J. Nielsen achieved decisive progress con-
cerning the first of these questions by decomposing the fixed point set of f as
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follows. Two fixed points are called (Nielsen) equivalent if they can be joined by a
path σ in M which is homotopic to f◦σ by a homotopy which keeps the endpoints
fixed. Each of the resulting Nielsen equivalence classes of fixed points contributes
(trivially or nontrivially) to the Lefschetz number L(f). Define N(f) to be the
number of essential Nielsen classes (i.e. of those classes whose contribution to L(f)
is not zero). This Nielsen number N(f) is a lower bound for the minimum number
of fixed points

(1.2) MF (f) := min
f ′∼f

(
#{x ∈ M | f ′(x) = x}

)

and agrees with it except when m = 2 and the Euler number χ(M) of M is strictly
negative; however, in this exceptional case MF (f)−N(f) can be arbitrarily large
for suitable f (compare [18], [20], [7], [8], [9], and [10]; an excellent survey is given
by R. Brown [1]).

Fixed point questions allow a very natural and interesting generalization. Given
a pair of maps f1, f2 : M → N between smooth connected manifolds (where M is
closed), let

(1.3) C(f1, f2) :=
{
x ∈ M | f1(x) = f2(x)

}
⊂ M

denote its coincidence set. Here the relevant minimum number of coincidence
points is

(1.4) MC(f1, f2) := min
{
#C(f ′

1, f
′
2) | f ′

1 ∼ f1, f
′
2 ∼ f2} .

According to a result of R. B. S. Brooks [3] the same minimum number is
achieved if we vary only one of the maps f1 or f2 by a homotopy; in particular,
MF (f) = MC(f, identity map) (compare 1.2).

Unlike fixed point theory, coincidence theory allows the domain M and the
target N to be different manifolds of arbitrary positive dimensions m and n, resp.
If m > n, then MC(f1, f2) will be often infinite. Thus it makes sense to consider
also the minimum number of coincidence components

(1.5) MCC(f1, f2) := min
{
#π0

(
C(f ′

1, f
′
2)

)
| f ′

1 ∼ f1; f
′
2 ∼ f2

}

which is always finite.

Remark 1.6. (i) As one can see rather easily the values of the minimum numbers
MC and MCC remain unchanged if we replace the base point free maps and
homotopies in 1.4 and 1.5 by base point preserving ones (requiring e.g. that f1(∗) =
∗1 6= ∗2 = f2(∗) where ∗ ∈ M and ∗1, ∗2 ∈ N are given base points; cf. e.g. the
appendix of [16]).

(ii) Clearly MC(f1, f2) = MCC(f1, f2) = 0 whenever m < n (use an approxi-
mation of (f1, f2) : M → N × N which is transverse to the diagonal).

In a series of recent papers (see, in particular, [16] and [17]) we studied the
minimum numbers MC and MCC in arbitrary codimensions m − n. For this
purpose we introduced a “strong”Nielsen number N#(f1, f2) which generalizes
Nielsen’s original definition. Our approach is based on a careful analysis of the
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case when the pair (f1, f2) is generic. Here the coincidence locus C(f1, f2) is a
smooth closed (m − n)–dimensional submanifold of M , equipped with

(i) a canonical description of its (nonstabilized) normal bundle; and
(ii) the map g̃ from C(f1, f2) to the path space

(1.7) E(f1, f2) :=
{
(x, θ) ∈ M × P (N) | θ(0) = f1(x), θ(1) = f2(x)

}

defined by

g̃(x) =
(
x, constant path at f1(x) = f2(x)

)
,

x ∈ C(f1, f2), (where P (N) denotes the space of all continuous paths θ : I → N).
The space E(f1, f2) has a very rich topology. Already its set π0

(
E(f1, f2)

)

of pathcomponents can be huge (it is bijectively related to a wellstudied “Reide-
meister set”; cf. [13], 2.1). The corresponding decomposition of C(f1, f2) into the
inverse images (under g̃) of these pathcomponents generalizes the Nielsen decom-
position of fixed point sets. But in higher codimensions m − n > 0 the map g̃
into E(f1, f2) can capture much further and deeper geometric information (which
– surprising often – is related to various strong versions of Hopf invariants; see e.g.
[13], 1.14, or [16], 7.2 and (64)).

Details of the definition of N#(f1, f2) can be found in [16] where we proved
also the following result.

Theorem 1.8. Let f1, f2 : Mm → Nn be (continuous) maps between smooth
connected manifolds of the indicated dimensions, M being closed. Then:

(i) The Nielsen number N#(f1, f2) = N#(f2, f1) is finite and depends only
on the homotopy classes of f1 and f2.

(ii) 0 ≤ N#(f1, f2) ≤ MCC(f1, f2) ≤ MC(f1, f2) ≤ ∞; if n 6= 2 then also
MCC(f1, f2) ≤ #π0

(
E(f1, f2)

)
; if (m, n) 6= (2, 2) then MC(f1, f2) ≤

#π0

(
E(f1, f2)

)
or MC(f1, f2) = ∞.

(iii) If M = N and f2 = identity map, then N#(f1, f2) coincides with
the Nielsen number of f1 as defined in classical fixed point theory.

This allows us to compute our minimum numbers explicitly in various concrete
cases.

Example 1.9. Spherical maps into spheres (compare e.g. [16], 1.12). Con-
sider maps f1, f2 : Sm → Sn where m, n ≥ 1, and let A denote the antipodal
involution. Then

N#(f1, f2) = MCC(f1, f2) =

{
0 if f1 ∼ A◦f2 ;

#π0

(
E(f1, f2)

)
else .

If f1 6∼ A◦f2 then #π0

(
E(f1, f2)

)
equals 1 (and |d0(f1)−d0(f2)|, resp.) accord-

ing as n 6= 1 (or m = n = 1, resp.; here d0(fi) denotes the usual degree).
Clearly MC(f1, f2) ≤ 1 whenever [f1] − [A◦f2] lies in E

(
πm−1(S

n−1)
)
, the

image of the Freudenthal suspension. On the other hand, it is wellknown that
MC(f1, f2) is infinite if [f1] − [A◦f2] 6∈ E

(
πm−1(S

n−1)
)

and (m, n) 6= (1, 1).
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Example 1.10. Spherical maps into projective spaces (cf. [17], 1.17). Let
K = R, C or H denote the field of real, complex or quaternionic numbers, and let
d = 1, 2 or 4 be its real dimension. Let KP (n′) and Vn′+1,2(K), resp., denote the

corresponding space of lines and orthonormal 2-frames, resp., in Kn′+1. The real
dimension of N = KP (n′) is n := d · n′. Consider the diagram

(1.11)

· · · → πm

(
Vn′+1,2(K)

) pK∗

−−−−→ πm(Sn+d−1)
∂K−−−−→ πm−1(S

n−1) → · · ·
yp∗

yE

πm(KP (n′)) πm(Sn)

determined by the canonical fibrations p and pK; E denotes the Freudenthal sus-
pension homomorphism.

We want to determine the minimum numbers of all pairs of maps f1, f2 : Sm →
KP (n′), m, n′ ≥ 1. In view of Example 1.9 and Remark 1.6 (ii) we need not
consider the cases where n′ = 1 (or m = 1).

Lemma 1.12. Assume m, n′ ≥ 2. Then p∗ (cf. 1.11) is injective and

πm

(
KP (n′)

)
= p∗

(
πm(Sn+d−1)

)
⊕ πc

m

(
KP (n′)

)

where πc
m

(
KP (n′)

)
:= incl∗

(
πm(KP (n′) − {∗})

)
and incl denotes the inclusion of

KP (n′), punctured at some point ∗. Hence, given [fi] ∈ πm

(
KP (n′)

)
, there is a

unique homotopy class [f̃i] ∈ πm(Sn+d−1) such that p∗([f̃i]) − [fi] ∈ πc
m

(
KP (n′)

)
,

i = 1, 2. (Since πc
m

(
KP (n′)

)
∼= πm−1(S

d−1), we may assume that f̃i is a genuine
lifting of fi when K = R or when m > 2 and K = C).

We see this by comparing the exact homotopy sequences of the fibrations

(1.13) p : Sn+d−1 −→ KP (n′)

and p |: Sn−1 → KP (n′ − 1)
(
∼
⊂

KP (n′) − {∗}
)
.

Theorem 1.14. Assume m, n′ ≥ 2. Each pair of homotopy classes [f1], [f2] ∈
πm

(
KP (n′)

)
satisfies precisely one of the seven conditions which are listed in table

1.15, together with the corresponding Nielsen and minimum numbers. (Here we

use the language of Lemma 1.12 and define also [f ′
i ] := [p◦f̃i] ∈ πm

(
KP (n′)

)
,

i = 1, 2; moreover A denotes the antipodal map on Sn+d−1).

Condition N#(f1,f2) MCC(f1 ,f2) MC(f1,f2)

1) f ′

1 ∼ f ′

2, [ ef2] ∈ ker ∂K 0 0 0

2) f ′

1 ∼ f ′

2, [ ef2] ∈ ker E◦∂K − ker ∂K 0 1 1

3) K = R, f ′

1 ∼ f ′

2, ef2 6∼ A◦
ef2 1 1 1

4) K = R, f ′

1 6∼ f ′

2, [ ef1] − [ ef2] ∈ E (πm−1(Sn−1)) 2 2 2

5) K = R, [ ef1] − [ ef2] 6∈ E (πm−1(Sn−1)) 2 2 ∞

6) K = C or H, [ ef1] = [ ef2] 6∈ ker E◦∂K 1 1 1

7) K = C or H, [ ef1] 6= [ ef2] 1 1 ∞
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Table 1.15. Nielsen and minimum coincidence numbers of all pairs of maps f1, f2 :
Sm → KP (n′), m, n′ ≥ 2: replace each (possibly base point free) homotopy class
[fi] by a base point preserving representative and read off the values of N# and
M(C)C. (Here f ′

1 ∼ f ′
2 means that f ′

1, f ′
2 are homotopic in the base point free

sense. For proofs see [17]).

This concludes our brief (and necessarily rather incomplete) survey of some of
the developments triggered by our initial Question I. �

In this paper we start investigating a natural generalization of Question II.

Definition 1.16. Let M and N be smooth connected manifolds, M being closed.
A pair of maps f1, f2 : M → N is called loose if it is homotopic to a coincidence
free pair; in other words, if MC(f1, f2) = 0 or, equivalently MCC(f1, f2) = 0.

It makes no difference whether we use base point free or base point preserving
homotopies in this definition (provided f1(∗) 6= f2(∗) when ∗ is a given base point
of M ; cf. 1.6).

Question II′. What can we say about the set of homotopy classes of loose pairs?

We will concentrate on the case M = Sm, m ≥ 1. Let ∗ ∈ Sm and ∗1 6= ∗2 ∈ N
be given base points.

Consider the subgroups

πc
m(N, ∗i) ⊂ π(2)

m (N, ∗i) ⊂ πm(N, ∗i) , i = 1, 2 ,

where

(1.17)
πc

m(N, ∗i) := {[f ] ∈ πm(N, ∗i) | (f, ∗i±1) is loose} = incl∗(πm(N − {∗i±1}, ∗i))

and

π(2)
m (N, ∗i) := {[f ] ∈ πm(N, ∗i) | ∃[f ] ∈ πm(N, ∗i±1)s. t. (f, f) is loose}.

Here ∗i denotes also the constant map with the indicated value, and incl stands
for the obvious inclusion. (Compare also Remark 3.7 below).

Theorem 1.18. For m ≥ 1 there is a welldefined group isomorphism

c : π(2)
m (N, ∗1)

/
πc

m(N, ∗1) −→ π(2)(N, ∗2)
/
πc

m(N, ∗2)

which takes the coset [[f ]] of [f ] ∈ π
(2)
m (N, ∗1) to the coset of any element [f ] ∈

π
(2)
m (N, ∗2) such that (f, f) is loose.

A pair ([f1], [f2]) ∈ πm(N, ∗1)×πm(N, ∗2) is loose if and only if [fi] ∈ π
(2)
m (N, ∗i),

i = 1, 2, and c([[f1]]) = [[f2]].
In particular, if πc

m(N, ∗i) = πm(N, ∗i) then all pairs of maps f1, f2 : Sm → N
(base point preserving or not) are loose; this is the case e.g. when N is not compact
or when m < n.

Special case 1.19. If N allows a fixed point free selfmap A : N → N such that

A(∗1) = ∗2 then π
(2)
m (N, ∗i) = πm(N, ∗i) for all m ≥ 1, and c is induced by A (i.e.

c([[f ]]) = [[A◦f ]]).
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Thus (the nontriviality of) πm(N, ∗1)/π
(2)
m (N, ∗1) is an obstruction to the exis-

tence of such a fixed point free selfmap. On the other hand, such selfmaps occur
e.g. on the total space of every nontrivial covering map.

Example 1.20. (N = Sn) : A pair of maps f1, f2 : Sm → Sn (base point preserv-
ing or not) is loose if and only if f1 ∼ A◦f2 where A denotes the antipodal map.
Indeed, πc

m(Sn) = {0} and

c = A∗ : πm(Sn, ∗1)
∼=

−−−−→ πm

(
Sn, A(∗1)

)

(compare also [4], 2.10).

Corollary 1.21. If N allows a nowhere vanishing vector field (e.g. if N is odd);
then

π(2)
m (N, ∗i) = πm(N, ∗i) for all m ≥ 1 , i = 1, 2 ,

and c is induced by a map A (as in 1.19) which is homotopic to the identity.

Indeed, the flow of the vector field yields the required fixed point free map A.
Theorem 1.18 and Corollary 1.21 suggest that Question II′ may be most inter-

esting when N is a closed even-dimensional manifold.

Example 1.22. (Projective spaces). Consider the case N = KP (n′), K = R,
C or H, m, n′ ≥ 2, as in 1.10 (and use the language of Lemma 1.12). Then a
pair of maps f1, f2 : Sm → KP (n′) is loose precisely if the corresponding pair

(p◦f̃1, p◦f̃2) is loose or, equivalently, if the maps p◦f̃1, p◦f̃2 are homotopic and

f̃i : Sm → Sn+d−1 can be lifted to the Stiefel manifold Vn′+1,2(K), i = 1 or 2
(compare 1.11). Thus here the isomorphism c (cf. 1.18) is induced by a selfmap A
of KP (n′) which is homotopic to the identity map but which can be fixed point free
only when K = R and n is odd, i.e. when the Lefschetz number L(A) = χ

(
KP (n′)

)

vanishes.

Problem 1.23. Is the group isomorphism c in Theorem 1.18 always induced by
a selfmap of N?

It seems to be very desirable to determine πc
∗(N), π

(2)
∗ (N), c and hence the sets

of loose pairs of homotopy classes (cf. Theorem 1.18) for many more concretely
given closed sample manifolds, e.g. for Stiefel manifolds and Grassmannians. Here
is a partial result in this direction.

Example 1.24. For every even integer r ≥ 4, all pairs of maps f1, f2 : Sm →
Gr,2(R) into the Grassmann manifold of 2-planes in Rr are loose.

Details of the proof of Theorem 1.18 and of its consequences will be given in
Section 2.

Throughout our discussion a central role is played by the set of homotopy classes
of those maps which occur in loose pairs (i.e. which are not coincidence producing
in the terminology of Brown and Schirmer, cf. [2]). For arbitrary topological
spaces X and Y this set turns out to be the first interesting term of a very natural
descending filtration of the full homotopy set [X, Y ]. In section 3 we study this
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filtration and determine it e.g. for the homotopy groups of spheres and projective
spaces.

2. Loose pairs

Throughout this paper manifolds are required to be Hausdorff spaces having a
countable basis and no boundary.

Proof of Theorem 1.18. If the pairs (f, f), (f,
=

f) and (f̂ , ∗2) are loose, then

so are (∗1 ∼ f · f−1, f ·
=

f
−1

) and (f · f̂ , f · ∗2 ∼ f). Thus the coset [[f ]] = [[
=

f ]] is

determined by [f ] ∈ π
(2)
m (N, ∗1); it does not depend on the choice of the class [f ]

(which makes (f, f) loose) and not even on the choice of [f ] within its coset.

If the pairs (f, f) and (f ′, f
′
) are loose, then so is also (f · f ′, f · f

′
). Hence

the bijection c which interchanges the roles of f1 and f2 in a loose pair (f1, f2) is
compatible with the group structure.

If N is not compact or if m < n, then every map f : Sm → N can be deformed
into the complement of a given point in N via a suitable isotopy or via transverse
approximation. �

Next we turn to the situation of Example 1.22. Given arbitrary (not necessarily
base point preserving) maps fi : Sm → KP (n′), put ∗i := fi(∗) and choose

f̃i as in Lemma 1.12; then the summand [p◦f̃i] − [fi] plays no role in looseness

questions, i = 1, 2. If the pair (p◦f̃1, p◦f̃2) is coincidence free, then the unit vectors

f̃1(x), f̃2(x) in Kn′+1 are linearly independent for all x ∈ Sm; suitable rotations

yield both a homotopy f̃1 ∼ f̃2 and liftings to the Stiefel manifold of orthonormal
2-frames in K

n′+1.
This argument shows also that the isomorphism

(2.1) πm(KP (n′)) / πc
m(KP (n′)) ∼= πm(Sn+d−1)

induced by p (c.f. 1.12 and 1.13) makes π
(2)
m (KP (n′))/πc

m

(
KP (n′)

)
correspond

to im(pK∗) = ker∂K in diagram 1.11. This yields an alternative proof of the
calculations in Table 1.15 as far as Condition 1) is concerned. Furthermore there
are easy examples (e.g. when K = R and m = n′ ≡ 0(2), cf. 3.13) where ∂K and

hence πm

(
KP (n′)

)
/π

(2)
m

(
KP (n′)

)
is nontrivial so that every selfmap of KP (n′)

must have a fixed point (compare 1.19). Of course such questions can be settled
more systematically by the Lefschetz fixed point theorem.

Finally we prove the statement in Example 1.24. In view of 1.6 (ii) we may
assume that m ≥ 4. According to Theorem 1.18 our claim is established once we
see that

incl∗ : πm(Gr,2(R) − {point}) −→ πm

(
Gr,2(R)

)

is surjective. But this follows from

Lemma 2.2. For all m ≥ 3 and for all even integers r = 2r′ ≥ 4 we have the
isomorphism

e∗ + u∗ : πm

(
RP (r − 2)

)
⊕ πm

(
CP (r′ − 1)

) ∼=
−−−−→ πm

(
Gr,2(R)

)
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where e(λ) = λ ⊕ R(0, . . . , 0, 1), λ ∈ RP (r − 2), and u assigns the underlying real
plane to any complex line. (Note that both embeddings e and u have codimensions
r − 2 > 0).

Proof. Scalar multiplication with the complex number i on Cr′ ∼= Rr determines
a section s of the fibration Sr−2 ⊂ Vr,2(R) → Sr−1.

Thus the exact homotopy sequence splits and yields the isomorphism

ẽ∗ + s∗ : πm(Sr−2) ⊕ πm(Sr−1) −→ πm

(
Vr,2(R)

)
.

This implies our claim since the fiber O(2) of the projection Vr,2(R) → Gr,2(R) is
aspherical. �

Problem 2.3. What is known about the groups πc
∗ and π

(2)
∗ of arbitrary Grass-

mannians Gr,k(K), r − 1 > k > 1 ?

Note that in the special case r = 2k there is the fixed point free involution ⊥ on

G2k,k(K), K = R, C or H (take orthogonal complements). Thus π
(2)
∗

(
G2k,k(K)

)
is

the full homotopy group.

3. A filtration of homotopy sets

In this section we extend the definition of the group π
(2)
∗ (N) (formed by those

maps which occur in loose pairs) and obtain a very natural infinite descending
filtration of arbitrary homotopy sets [M, N ].

Given any topological space N , consider the commuting diagram

(3.1) N = C̃1(N)

id=p1

&&M
M

M
M

M
M

M
M

M
M

M

C̃2(N)oo

p2

��

· · ·oo C̃q(N)oo

pq

uulllllllllllllllll

· · ·oo

N

of configuration spaces

C̃q(N) =
{
(y1, . . . , yq) ∈ N q | yi 6= yj for 1 ≤ i 6= j ≤ q

}

q ≥ 1, and of projections which drop the last component(s) of an (ordered) con-
figuration (y1, . . . , yq). For any topological space M this leads to the filtration

(3.2)

[M, N ] = [M, N ](1) ⊃ [M, N ](2) ⊃ · · · ⊃ [M, N ](q) := pq∗([M, C̃q(N)]) ⊃ . . .

Thus [M, N ](q) consists of the homotopy classes of those maps which fit into a
q-tuple f1, . . . , fq : M → N of maps without any (pairwise) coincidences.

Next, given a base point ∗ ∈ M and an infinite sequence (∗1, ∗2, . . . ) of pairwise

distinct points in N , equip C̃q(N) with the base point (∗1, ∗2, . . . , ∗q) and consider
also the base point preserving version of the filtration 3.2.
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Example 3.3 (N = Sn, n ≥ 1). For every point y ∈ Sn use the stereographic
projection σy from Sn − {y} to the orthogonal complement of the line Ry in
Rn+1 (i.e. to the tangent space Ty(S

n)) and obtain the following fiber preserving
homeomorphisms and homotopy equivalences over Sn:

C̃2(S
n) = Sn × Sn − ∆ ∼= TSn

and

C̃3(S
n) ∼ TSn − zero section

⊃
∼ Vn+1,2 .

Here e.g. the vectors 0 and v 6= 0 in Ty(Sn) correspond to the configurations

(y,−y) ∈ C̃2(S
n) and (y,−y, σ−1

y (v)) ∈ C̃3(S
n).

When q ≥ 3 the projection C̃q(S
n) → C̃3(S

n) has a section which corresponds
to the map v → (v, 2v, . . . , (q − 2)v).

Thus both in the base point free and in the base point preserving setting we
have for every topological space M and q ≥ 3

[M, Sn] = [M, Sn](2) ⊃ [M, Sn](3) = pR∗([M, Vn+1,2(R)]) = [M, Sn](q) .

As in 1.11 pR : Vn+1,2(R) → Sn denotes the standard projection from the Stiefel

manifold ST (Sn) of unit tangent vectors. If n is odd it has a section and [M, Sn](q) =
[M, Sn] for all q ≥ 1. However, if n is even and e.g. M = Sn, then [M, Sn](2) 6=
[M, Sn](3).

Proposition 3.4. Both in the base point free and base point preserving setting we
have

[M, N ](q) = [M, N ] for all q ≥ 1

if at least one of the following condition holds:
(i) M is compact, but N is not – in the base point preserving setting we assume
also that N is a connected topological manifold; or
(ii) N is a smooth manifold which allows a nowhere vanishing vector field; or
(iii) M and N are smooth manifolds such that dim M < dimN .

Proof. (i) For every map f : M → N the complement N − f(M) contains
infinitely many points. Thus for q ≥ 2 there exist (e.g. constant) maps f2, . . . , fq

which, together with f1 = f , define the required map into C̃q(N). If N is a
connected topological manifold we may assume that fi(∗) = ∗i, i = 1, . . . , q, e.g.
after suitable isotopies.
(ii) We use the resulting flow ϕ and a suitable function ε : N −→ (0,∞) to define
the pairwise coincidence-free selfmaps id = A1, A2, . . . , Aq of N by

Ai(x) = ϕ(x, (i − 1) · ε(x)/q) , x ∈ N .

Then (f, A2◦f, . . . , Aq◦f) is a lifting of f to C̃q(N); suitable modifications (e.g. by
finger moves) allow us to make it base point preserving.
(iii) After a transverse approximation f maps M into N − {∗2, . . . , ∗q}. �
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We will be mainly interested in the case M = Sm, m ≥ 1 (studied in the base
point preserving setting). We obtain the nested sequence of subgroups

πm(N, ∗1) = π(1)
m (N, ∗1) ⊃ π(2)

m (N, ∗1) ⊃ · · · ⊃ π(q)
m (N, ∗1) ⊃ . . .(3.5)

defined by

π(q)
m (N, ∗1) := pq∗

(
πm(C̃q(N), (∗1, . . . , ∗q))

)
, q ≥ 1 .(3.6)

For q = 2 this agrees with the definition in 1.17 since p2 is the first projection

on C̃2(N) = N × N − ∆.

Remark 3.7. Assume that N is a topological manifold of dimension n ≥ 1.
Then all the arrows in diagram 3.1 are projections of locally trivial fibrations

(compare [5]). It follows from the homotopy lifting property that, given a loose
pair (f1, f2), only one of the maps fi, say f2, has to be deformed to f ′

2 so that
(f1, f

′
2) is coincidence free (compare [3]). In particular for all m ≥ 1

(3.8) πc
m(N, ∗1) = incl∗(πm(N − {∗2}, ∗1)) ⊂

⋂

q≥1

π(q)
m (N, ∗1) =: π(∞)

m (N, ∗1)

(compare 1.17 and 3.5; here incl denotes the inclusion of N −{∗2} ∼= N–small ball
around ∗2).

Moreover we have the exact sequence
(3.9)

· · · → πm

(
N × N − ∆, (∗1, ∗2)

) p2∗
−−−−→ πm(N, ∗1)

δm−−−−→ πm−1(N − {∗1}, ∗2)

where p2 denotes the projection (y1, y2) → y1. Thus

(3.10) π(2)
m (N, ∗1) = ker δm .

In view of proposition 3.4 we will be particularly interested in the case where N
is a closed connected manifold of even dimension n ≤ m.

Example 3.11. N = KP (n′) where K = R, C or H (compare 1.10). In view of
3.3 and 3.4 (iii) we need to consider only the case m, n′ ≥ 2. Thus we can (and
will) use the terminology of 1.11 and 1.12.

Proposition 3.12. Assume n′ ≥ 2. Then for all q ≥ 2 ( and m ≥ 1)

π(q)
m (KP (n′)) = π(2)

m (KP (n′)) = p∗(ker ∂K) ⊕ πc
m(KP (n′)) ;

the analogous result holds for base point free homotopy classes of arbitrary maps
f : Sm → KP (n′).

Moreover let M be any paracompact space. If K = R and H1(M ; Z2) = 0, or if
K = C and H2(M ; Z) = 0, then for all q ≥ 2

[M, KP (n′)](q) = [M, KP (n′)](2) ;

this set coincides with the full homotopy set [M, KP (n′)] if in addition n′ is odd.



COINCIDENCE FREE PAIRS OF MAPS 115

Proof. In each case we need to consider only maps f which allow a lifting f̃ :

M → Sn+d−1, i.e. f = p◦f̃ (compare 1.13). If M = Sm this follows from 3.8;
otherwise use characteristic classes to see that the pullback of the canonical line
bundle over KP (n′) is trivial.

Given liftings f̃ ,
≃

f such that the pair (p◦f̃ , p◦
≃

f ) is coincidence free, f̃(x),
≃

f (x)

are linearly independent unit vectors in Kn′+1 for all x ∈ M . Thus p◦f̃ is the
starting term of an (arbitrarily long) sequence of pairwise coincidence free maps
fi : M → KP (n′) defined by

fi(x) = K
(
f̃(x) + (i − 1)

≃

f (x)
)
, x ∈ M, i ≥ 1 .

We conclude that [M, KP (n′)](2) ⊂ [M, KP (n′)](q).
If n′ is odd and K = R or C, then pK (cf. 1.11) allows a section (via the complex

or quaternionic scalar multiplication on Kn′+1) and every map f = p◦f̃ occurs in
a coincidence free pair as above. �

In contrast, when n′ is even then [M, KP (n′)](2) often turns out to be strictly
smaller than the full homotopy set [M, KP (n′)] (or, in the terminology of Brown
and Schirmer, there are coincidence producing maps from M to KP (n′), cf. [2]).
Let us illustrate this for K = R.

Lemma 3.13. For all m, n > 1 the diagram

πm(Sn)
∂R //

(1+(−1)n)E∞

))SSSSSSSSSSSSSSSS
πm−1(S

n−1)

E∞

��

πS
m−n

commutes up to a fixed sign. (Here E∞ denotes stable suspension.)
In particular, in the stable dimension range m < 2n − 2 (where both arrows

labelled E∞ are isomorphisms) we have

ker∂R =
{
z ∈ πm(Sn) | (1 + (−1)n) · z = 0

}
.

Proof. Given [f ] ∈ πm(Sn), the Freudenthal suspension of ∂R([f ]) equals the
selfintersection invariant ±ω(f, f) (cf. [17], 5.6 and 5.7). In turn

E∞
(
ω(f, f)

)
= ω(f, f) = ±χ(Sn) · E∞

(
[f ]

)

in Ωm−n(Sm; ϕ) ∼= πS
m−n (cf. [12], 1.4, 1.6, and 2.2; here we use the canonical stable

trivializations of the tangent bundle TSn and of the virtual coefficient bundle
ϕ = f∗(TSn) − TSm). �

Example 3.14.

πc
9

(
RP (6)

)
= 0 ⊂ π

(2)
9

(
RP (6)

)
∼= Z2 ⊂ π9

(
RP (6)

)
∼= Z24

and

πc
17

(
RP (10)

)
= 0 ⊂ π

(2)
17

(
RP (10)

)
∼= Z2 ⊂ π17

(
RP (10)

)
∼= Z240
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This follows from our results 1.12, 3.12, 3.13, and Toda’s tables [19].

Remark 3.15. Assume that N is a topological manifold. For i = 1, 2 consider the
fiber inclusion and the projection

(N − {∗i}, ∗i±1)
⊂

−−−−→
ji

(C̃2(N), (∗1, ∗2)) −−−−→
p2,i

(N, ∗i)

of the locally trivial fibration defined by p2,i(y1, y2) = yi; its exact homotopy
sequence (cf. 3.9) yields the isomorphism

p2,i∗ : πm(C̃2(N), (∗1, ∗2))/(im j1∗ + im j2∗)
∼=

−−−−→ π
(2)
m (N, ∗i)/πc

m(N, ∗i).

Then the composite p2,2∗◦p
−1
2,1∗ equals the group isomorphism c (cf. theorem 1.18)

which is so central to our study of loose pairs of maps.
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