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SYMPLECTIC SPINOR VALUED FORMS AND INVARIANT

OPERATORS ACTING BETWEEN THEM

SVATOPLUK KRÝSL

Abstract. Exterior differential forms with values in the (Kostant’s) sym-
plectic spinor bundle on a manifold with a given metaplectic structure are de-
composed into invariant subspaces. Projections to these invariant subspaces
of a covariant derivative associated to a torsion-free symplectic connection
are described.

1. Introduction

While the spinor twisted de Rham sequence for orthogonal spin structures is
well understood from the point of view of representation theory (see, e.g., De-
langhe, Sommen, Souček [4]), its symplectic analogue seems to be untouched till
present days. In Riemannian geometry, a decomposition of spinor twisted de Rham
sequence (i.e., exterior differential forms with values in basic spinor bundles) into
invariant parts is well known. Suppose a principal connection on the frame bundle
of orthogonal repers (of the tangent bundle) is given. It induces in a canonical way
a covariant derivative on differential forms with values in the basic spinor bundles.
In this case, it is known, which parts of the covariant derivatives acting between
the spinor bundle valued forms are zero if we restrict it to an invariant part of the
sequence. Namely, the covariant derivative maps each invariant part only in at
most three invariant parts sitting in the next gradation (some degeneracies on the
ends of the sequence could be systematically described). In symplectic geometry,
the first question which naturally arises is, what are the spinors for a symplectic
Lie algebra. This question was successfully answered by Bertram Kostant in [14].
He offered a candidate for symplectic spinors. We will call these spinors basic
symplectic spinors and denote their underlying vector spaces S+ and S−. They
are analogous to the ordinary orthogonal spinors in at least two following ways.

First, they could be found in a symmetric algebra of an isotropic sub-
space, while the orthogonal spinors could be found in an exterior algebra
of certain isotropic subspace.
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Second, the highest weights of the basic symplectic spinors are also half
integral like the highest weights of orthogonal spinors (both with respect
to the usual basis of the dual of an appropriate Cartan subalgebra).

Unlike the orthogonal spinors, the symplectic ones are of infinite dimension,
thus not so easy to handle.

The main results of this article are the decomposition of the spinor twisted de
Rham sequence in the symplectic case and a theorem, which says that the image
of each covariant derivative (associated to a symplectic torsion-free connection
and restricted to an invariant subspace) lies in at most three invariant subspaces,
i.e., a similar theorem to that one, which is valid in Riemannian geometry. To
derive the first mentioned result, we need to decompose the ordinary exterior
forms into irreducible summands over the symplectic Lie algebra – a procedure,
which is well known. We also need to know, how to decompose a tensor product
of such irreducible summand and the basic symplectic spinor module S+. This
was done by Britten, Lemire, Hooper in [2] and by Britten, Lemire in [3] even
in a more general setting. To derive the second result (the description of the
image of the covariant derivative), we need one more ingredient. In particular, we
should know, how to decompose a tensor product of the defining representation
V of the symplectic Lie algebra and each infinite-dimensional representation of

the symplectic Lie algebra, which is an irreducible summand in the space
∧i

V ⊗
S. These irreducible summands belong to a broader class of infinite dimensional
modules over a symplectic algebra, so called higher symplectic spinor modules,
which are also known as harmonic spinor representations in the literature. To
describe the decomposition of the tensor product of the defining representation
and the mentioned irreducible summand, we shall use a theorem which was derived
by the author in [15].

Investigation of the decomposition of the twisted de Rham complex for meta-
plectic structures has been motivated by a search for symplectic analogues of an
(orthogonal) Dirac operator and its generalizations, which naturally appear in the
twisted de Rham sequence in the orthogonal setting. Namely, it is known that the
Dirac, Rarita-Schwinger and twistor operators could be found in the twisted de
Rham sequence for an orthogonal spin structure. The symplectic Dirac operator
has been found by B. Kostant, see [14], and and has been studied intensively by
many authors, see, e.g., Habermann [7], Klein [12] and Kadlčáková [10]. We will
recover all of these operators (Dirac, Rarita-Schwinger and twistor) in a more sys-
tematic way by an investigation of invariant differential operators appearing in the
symplectic spinor twisted de Rham sequence for metaplectic structures. No defini-
tion of the symplectic Rarita-Schwinger operator within mathematics is known to
the author. In physical literature, there are some references to symplectic Majo-
rana fields or symplectic Rarita-Schwinger fields, see Reuter [17] and Green, Hull
[6], in the context of super-gravity of strings.

In the algebraic part of this article (part 2), some basic and known facts on
higher symplectic spinor modules and decomposition of the mentioned tensor prod-
ucts are written (Lemma 1, Theorem 1, Theorem 2). Besides these theorems, the
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first main result (the decomposition of the symplectic spinor twisted de Rham se-
quence) is described (Lemma 2) together with the theorem on the decomposition
of the tensor product of the defining representation and a higher symplectic spinor
module (Theorem 3). In this part, an information on intersection of g-modules is
written (Lemma 3). Third part of this article is the geometrical one. It contains
a general lemma on an image of a covariant derivative (Lemma 4) and the second
main result (Theorem 4), namely the characterization of the image of a covariant
derivative associated to a torsion-free symplectic connection.

2. Higher symplectic spinor modules

Let (V, ω) be a complex symplectic space of complex dimension 2l, l ∈ N. Let
G = Sp(V, ω) ≃ Sp(2l, C) be a complex symplectic group of (V, ω) and g =
sp(V, ω) ≃ sp(2l, C) its Lie algebra.1 Consider a Cartan subalgebra h of the
symplectic Lie algebra is given together with a choice of positive roots Φ+ of the
system of all roots Φ. The set of fundamental weights {̟i}

l
i=1 is then uniquely

determined. For later use, we shall need an orthogonal basis (with respect to the

Killing form on g), {ǫi}
l
i=1, for which ̟i =

∑i
j=1 ǫj for i = 1, . . . , l.

For λ ∈ h∗, let L(λ) be the (up to a g-isomorphism uniquely defined) irreducible
module with the highest weight λ. If λ happens to be integral and dominant (wr.
to the choice (h, Φ+)), i.e., L(λ) is finite dimensional, we shall write F (λ) instead
of L(λ). Let L be an arbitrary (finite or infinite dimensional) weight module over
a complex simple Lie algebra. We call L module with bounded multiplicities, if
there is a k ∈ N0, such that for each µ ∈ h∗, dimLµ ≤ k, where Lµ is the weight
space of weight µ.

Let us introduce the following set of weights

A :=
{

λ =
l

∑

i=1

λi̟i | λl−1 + 2λl + 3 > 0, λi ∈ N0, i = 1, . . . , l − 1, λl ∈ Z +
1

2

}

Definition 1. For a weight λ ∈ A, we call the module L(λ) higher symplectic
spinor module. We shall denote the module L(− 1

2̟l) by S+ or simply by S and

the module L(̟l−1 − 3
2̟l) by S−. We shall call these two representations basic

symplectic spinor modules.

The next theorem says that the class of higher symplectic spinor modules is
quite natural and broad in a sense.

Theorem 1. Let g ≃ sp(2l, C) and λ ∈ h∗. Then the following are equivalent

1) L(λ) is a module with bounded multiplicities;

2) L(λ) is a direct summand in the completely reducible tensor product S ⊗
F (ν) for some integral dominant ν ∈ h∗;

3) λ ∈ A.

Proof. See Britten, Hooper, Lemire [2] and Britten, Lemire [3]. �

1Different choices of the symplectic form lead to isomorphic symplectic groups and algebras.
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In this paper, we shall first study the irreducible decomposition of spaces
∧i

V∗⊗

S for i = 0, . . . , 2l. To do it, we need to decompose the wedge powers
∧i

V into
irreducible modules. In the symplectic case (contrary to the orthogonal one), the
wedge powers are not irreducible generically. This decomposition is well known
and we state it as Lemma 1.

Lemma 1. Let V be the 2l dimensional defining representation of the symplectic
Lie algebra sp(V, ω), then

i
∧

V ≃

[i/2]
⊕

p=0

F (̟i−2p)

for i = 0, . . . , l, where [q] is the lower integral part of an element q ∈ R.

Proof. See Goodman, Wallach [5], pp. 237. �

In the next theorem, the decomposition of the tensor product of an irreducible
finite dimensional sp(V, ω)-module and the basic symplectic spinor module S is
described.

Theorem 2. Let g ≃ sp(2l, C) and ν =
∑l

i=1 νi̟i ∈ h∗ be an integral dominant

weight for (h, Φ+). Let us define a set Tν :=
{

ν −
∑l

i=1 diǫi | di ∈ N0,
∑l

i=1 di ∈

2Z, 0 ≤ di ≤ νi, i = 1, . . . , l − 1, 0 ≤ dl ≤ 2νl + 1
}

. Then

F (ν) ⊗ S =
⊕

κ∈Tν

L(κ −
1

2
̟l) .

Proof. See Britten, Lemire [3], Theorem 1.2. �

We use the two last written claims to decompose the tensor products
∧i

V∗ ⊗
S, for i = 0, . . . , l. We shall introduce the following convention. For a weight
∑l

i=1 λi̟i, we shall write (λ1λ2 . . . λl) briefly instead of L(
∑l

i=1 λi̟i).

Lemma 2. The following decompositions hold:

For 2i + 1 ≤ l − 1,

2i+1
^

V
∗ ⊗ S ≃

2l−2i−1
^

V
∗ ⊗ S ≃

“

10 . . . 0 −
1

2

”

⊕
“

0010 . . . 0 −
1

2

”

⊕ . . . ⊕
“

0 . . . 012i+10 . . . 0 −
1

2

”

⊕
“

0 . . . 01 −
3

2

”

⊕
“

010 . . . 01 −
3

2

”

⊕ . . . ⊕
“

0 . . . 012i0 . . . 01 −
3

2

”

.

For 2i ≤ l − 1,

2i
^

V
∗ ⊗ S ≃

2l−2i
^

V
∗ ⊗ S ≃

“

0 . . . 0 −
1

2

”

⊕
“

010 . . . 0 −
1

2

”

⊕ . . . ⊕
“

0 . . . 012i0 . . . 0 −
1

2

”

⊕
“

10 . . . 01 −
3

2

”

⊕
“

0010 . . . 01 −
3

2

”

⊕ . . . ⊕
“

0 . . . 012i−10 . . . 01 −
3

2

”

.
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For l even,

l
^

V
∗ ⊗ S ≃

“

0 . . . 0 −
1

2

”

⊕
“

010 . . . 0 −
1

2

”

⊕ . . . ⊕
“

0 . . . 010 −
1

2

”

⊕
“

0 . . . . . . 0
1

2

”

⊕
“

10 . . . 01 −
3

2

”

⊕
“

0010 . . . 01 −
3

2

”

⊕ . . . ⊕
“

0 . . . 0101 −
3

2

”

⊕
“

0 . . . 02 −
3

2

”

.

For l odd,

l
^

V
∗ ⊗ S ≃

“

10 . . . 0 −
1

2

”

⊕
“

0010 . . . 0 −
1

2

”

⊕ . . . ⊕
“

0 . . . 010 −
1

2
) ⊕ (0 . . . 0

1

2

”

⊕
“

0 . . . 001 −
3

2

”

⊕
“

010 . . . 01 −
3

2

”

⊕ . . . ⊕
“

0 . . . 0101 −
3

2

”

⊕ . . .
“

0 . . . 02 −
3

2

”

.

Proof. Since ω : V × V → C is a non degenerate g-invariant bilinear form, it
gives a g-module isomorphism V ≃ V∗. Thus the decomposition of the product
∧i

V∗ ⊗ S is equivalent to the decomposition of
∧i

V ⊗ S. For obtaining a further
isomorphism, choose a symplectic basis {ej}

2l
j=1 of (V, ω) and define a mapping

φ :

i
∧

V ×

2l−i
∧

V → C

for i = 0, . . . , 2l on homogeneous elements by a formula φ(v1 ∧ . . . ∧ vi, w1 ∧ . . . ∧
w2l−i) =: q ∈ C, if and only if qe1∧ . . .∧ e2l = v1 ∧ . . .∧vi ∧w1∧ . . .∧w2l−i, where
v1, . . . , vi, w1, . . . , w2l−i ∈ V. Obviously, one extends the definition by linearity.
Since the symplectic group G = Sp(V, ω) is a subgroup of the special linear group
SL(V), we have φ(gv, gw) = gv ∧ gw = det (g)v ∧ w = v ∧ w = φ(v, w) for each

v ∈
∧i

V and w ∈
∧2l−i

V and g ∈ Sp(V, ω), i.e., the mapping φ is Sp(V, ω)-

and also sp(V, ω)-invariant in the appropriate manners. Thus
∧i

V ≃ (
∧2l−i

V)∗,

which is naturally isomorphic to
∧2l−i

V∗, which is in turn isomorphic to
∧2l−i

V.

Thus we need to decompose the spaces
∧i

V ⊗ S for i = 0, . . . , l only. After a
straightforward but tedious application of Lemma 1 and Theorem 2 we would get
the decompositions written in the statement of this lemma. �

For sake of brevity, let us introduce the following notation. First, let us define
a finite subset Ξ of pairs of non-negative integers.

Ξ := {(i, j)|i = 0, . . . , l; j = 0, . . . , i} ∪ {(i, j)|i = l + 1, . . . , 2l, j = 0, . . . , 2l − i} .

Further, let us define

E0,2j :=
(

0 . . . 0 − 1
2

)

, (0, 2j) ∈ Ξ − {(l, l), (l, l − 1)},

E0,2j+1 :=
(

0 . . . 01 − 3
2

)

, (0, 2j + 1) ∈ Ξ − {(l, l), (l, l − 1)},

E2i,2j :=
(

0 . . . 012j0 . . . 0 − 1
2

)

, (2i, 2j) ∈ Ξ − {(l, l), (l, l − 1)},

E2i+1,2j :=
(

0 . . . 012j0 . . . 01 − 3
2

)

, (2i + 1, 2j) ∈ Ξ − {(l, l), (l, l − 1)},

E2i,2j+1 :=
(

0 . . . 012j+10 . . . 01 − 3
2

)

, (2i, 2j + 1) ∈ Ξ − {(l, l), (l, l − 1)},

E2i+1,2j+1 := (0 . . . 012j+10 . . . 0− 1
2 ), (2i+1, 2j+1) ∈ Ξ−{(l, l), (l, l−1)},

El,l−1 :=
(

0 . . . 02 − 3
2

)

, El,l = (0 . . . 0 1
2 ).
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Let us remark, that a little bit more systematic way of defining the modules Ei,j

for (i, j) ∈ Ξ would be that one, in which the basis {ǫi}
l
i=1 is used.

Using this notation, we can reformulate the lemma 2 in the following way

2l−i
∧

V∗ ⊗ S ≃

i
∧

V∗ ⊗ S ≃

i
⊕

j=0

Ei,j

for i = 0, . . . , l or

i
∧

V∗ ⊗ S ≃
⊕

(i,j)∈Ξ

Ei,j

for i = 0, . . . , 2l.

To visualize the system described by Lemma 2, we display a picture for rank

l = 3. The ith column corresponds to the space
∧i

V∗ ⊗ S and each member of a

column corresponds to an irreducible representation in
∧i

V∗⊗S with a displayed
highest weight.

“

00 −
1

2

” “

01 −
3

2

” “

00 −
1

2

” “

01 −
3

2

” “

00 −
1

2

” “

01 −
3

2

” “

00 −
1

2

”

“

10 −
1

2

” “

11 −
3

2

” “

10 −
1

2

” “

11 −
3

2

” “

10 −
1

2

”

“

01 −
1

2

” “

02 −
3

2

” “

01 −
1

2

”

“

00 −
1

2

”

In the next theorem, a decomposition of a tensor product of a higher symplec-
tic spinor module and the defining representation V ≃ F (̟1) over sp(V, ω) ≃
sp(2l, C) is described.

Theorem 3. Let g ≃ sp(2l, C) and λ ∈ A. Then

L(λ) ⊗ F (̟1) =
⊕

µ∈Aλ

L(µ) ,

where Aλ := A ∩ {λ + ν|ν ∈ Π(̟1)} and Π(̟1) is the saturated set of weights of
the defining representation.2

Proof. See Krýsl, [15] or [16]. �

Let us remark, that the proof of this theorem is based on the so called Kac-
Wakimoto formal character formula of Kac and Wakimoto published in [9] and
on some results of Humphreys, see [8], who specified results of Kostant from [13]
on tensor products of finite and infinite dimensional modules admitting a central
character.

In the next lemma, a property is formulated, which is valid for an arbitrary
simple Lie algebra g.

2One can easily compute,that Π(̟1) = {±ǫi|i = 1, . . . , l}.



SYMPLECTIC SPINOR VALUED FORMS 285

Lemma 3. Let X be a g-module and V, W ⊆ X its two g-submodules (of finite
or infinite dimension). Suppose V = V1 ⊕ . . . ⊕ Va and W = W1 ⊕ . . . ⊕ Wb

are decompositions into irreducible g-submodules. Define a subset I of the set
{1, . . . , a} by the prescription I :=

{

i ∈ {1, . . . , a} | ∃j ∈ {1, . . . , b} : Vi ≃ Wj

}

.
Then

V ∩ W ⊆
⊕

i∈I

Vi .

Proof. Let us consider the projections pi : V → Vi, i = 1, . . . , a and qj : W → Wj ,
j = 1, . . . , b. Suppose, that we have defined the projections pi also on the space W

in the following way. One can easily show, that a finite direct sum of g-modules
is actually completely reducible (see, e.g., Krýsl [15]). Thus there is a (generally
non-unique) g-submodule U, such that (V ∩ W) ⊕ U = W is a direct sum of g-
modules. Therefore given any x ∈ W, we can write it as a sum x = v + u, where
v ∈ V ∩ W and u ∈ U, in a unique way and define pi(x) := pi(v). Now, take an

element x ∈ V ∩ W. We have x =
∑a

i=1

∑b
j=1 pi

(

qj(x)
)

. To get a contradiction,

suppose there are elements i /∈ I and j ∈ {1, . . . , b} such that pi

(

qj(x)
)

6= 0. Thus
we have a g-module homomorphism R := pi ◦ qj |Wj

: Wj → Vi, which is nonzero.
The classical Schur lemma type argument shows that R is an isomorphism of Wj

and Vi, which contradicts the condition i /∈ I. �

Remark. The proof of the above written lemma does not use any information
about the Lie algebra over which we took the module X , thus it could be gen-
eralized to each module over a general algebraic structure (group, commutative,
associative, super-Lie algebra e.t.c.), which admits modules over itself. Let us
note, that the statement of the lemma can be improved in an easy way. To see the
weakness of the lemma, consider two nonzero equivalent representations V1 and
V2, form their direct sum V = V1 ⊕ V2 and suppose a submodule W ≃ V1 ≃ V2,
for which V1 6= W 6= V2, is given. Then clearly V ∩ W = W ( V1 ⊕ V2, but the
lemma gives only V∩W ⊆ V1⊕V2. We will not try to improve this lemma, because
first we shall need it only in the above written form and second the reformulation
would be a bit inefficient because of its increased length.

3. Spin symplectic geometry

We shall begin with a short observation about covariant derivatives on vector
bundle valued forms and then we are going to consider basic aspects of metaplectic
structures.

Lemma 4. Let p : F → M be a smooth vector bundle equipped by a vector

bundle connection ∇F . Consider a subbundle E ⊆
∧i

T ∗M ⊗ F → M for some
i = 0, . . . , dimM and a section s ∈ Γ(M, E). Since s could be viewed as an exterior

differential form with values in F, the covariant derivative d∇
F

could be applied.
Then

d∇
F

s ∈ Γ
(

M, (T ∗M ⊗ E) ∩
(

i+1
∧

T ∗M ⊗ F
))

.
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Proof. This is an easy observation. We know that s ∈ Γ(M,
∧i

T ∗M ⊗ F ) and

therefore d∇
F

s ∈ Γ
(

M,
∧i+1 T ∗M ⊗ F

)

. The assumption s ∈ Γ(M, E) implies

d∇
F

s ∈ Γ(M, T ∗M ⊗ E). Summing up, we obtain d∇
F

s ∈ Γ
(

M, (T ∗M ⊗ E) ∩

(
∧i+1

T ∗M ⊗ F )
)

. �

To define a metaplectic structure, we will use a definition of Katharina Haber-
mann from [7], which is quite analogous to the Riemannian case. Now, let (V0, ω)

be a real symplectic space of dimension 2l. Let G̃0 be a nontrivial 2-fold covering
of the group G0 = Sp(V0, ω) ≃ Sp(2l, R), thus G̃0 ≃ Mp(2l, R) (the metaplectic

group) and fix a 2:1 covering λ : G̃0 → G0.

Definition 2. Let (M, ω) be a symplectic manifold of dimension 2l. Let
(

p1 :

P → M, Sp(2l, R)
)

be a principal fiber bundle of symplectic repers (in TM) and
(

p2 : Q → M, Mp(2l, R)
)

be a principal fiber bundle with a structure group
Mp(2l, R). We call a surjective bundle homomorphism Λ : Q → P (over the
identity on M) metaplectic structure, if the following diagram commutes.

Mp(2l, R)×Q

λ×Λ

��

// Q

Λ

��

p2

��@
@@

@@
@@

@

M

Sp(2l, R) × P // P

p1

??~~~~~~~~

Let (M, ω) be a symplectic manifold of dimension 2l. It is well known that
there is no unique symplectic connection. Symplectic connection is a torsion-free
connection ∇ on the tangent bundle which preserves the symplectic structure ω,
i.e.,

ω(∇XY, Z) + ω(Y,∇XZ) = Xω(Y, Z)

for each X, Y, Z ∈ Γ(M, TM), see, e.g., Habermann [7]. Nevertheless, we may take
any symplectic connection ∇ and associate to it a principal bundle connection ZP :
TP → g0. For this connection, there is a lifted connection ZQ : TQ → g̃0 ≃ g0

on the metaplectic structure. To this connection, ZQ we can associate a linear
connection ∇S on the spinor bundle p : S → M . By the spinor bundle p : S → M
we mean the associated vector bundle S := Q ×G̃0

S to the principle G̃0-bundle
via the basic symplectic spinor representation S. In this way we may construct the

covariant derivative d∇
S

. (For the correctness of this definition, see Kashiwara,
Vergne [11], where certain globalization of the basic spinor modules to the group

G̃0 is described.)
For the sake of brevity, let us introduce the notation for the following associated

vector bundles Ei,j := Q×G̃0
Ei,j for all (i, j) ∈ Ξ. For technical reasons, we define

Ei,j := 0 if (i, j) /∈ Ξ.

Theorem 4. Let ∇ be a torsion-free symplectic connection on the tangent bundle
of the (symplectic) base manifold M of a metaplectic structure. Let us denote the
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induced covariant derivative for the associated symplectic spinor bundle p : S → M

by d∇
S

. Then with the notation introduced above,

d∇
S

: Γ(M, Ei,j) → Γ(M, Ei+1,j−1 ⊕ Ei+1,j ⊕ Ei+1,j+1)

for all (i, j) ∈ Ξ.

Proof. We must prove that the image is of the form described by the statement of

the theorem. Lemma 4 (for F := S, E := Ei,j ⊆
∧i T ∗M ⊗S and a connection ∇S

induced by a symplectic connection ∇ on TM) implies, that d∇
S

s ∈ Γ(M, (Ei,j ⊗

T ∗M) ∩
∧i+1

T ∗M ⊗ S) for a section s ∈ Γ(M, Ei,j). The vector bundle T ∗M ⊗

Ei,j∩
∧i+1 T ∗M⊗S is isomorphic to the associated vector bundle Q×G̃(V∗⊗Ei,j∩

∧i+1
V∗⊗S). Our strategy is to use lemma 3 to compute the intersection. Therefore

we need to find the decomposition of the modules V∗ ⊗ Ei,j and
∧i+1

V∗ ⊗ S into
irreducible summands. The latter was done in lemma 2. We shall use theorem 3 to
decompose V∗⊗Ei,j ≃ V⊗Ei,j . There are in principle 6 forms of Ei,j : L(0 . . . 0− 1

2 ),

L(0 . . . 01 − 3
2 ), L(0 . . . 01k0 . . . 0 − 1

2 ), L(0 . . .01k0 . . . 01 − 3
2 ), L(0 . . . 02 − 3

2 ) and

L(0 . . . 0 1
2 ). Because we will be more careful and will distinguish between odd and

even subscripts i, j for the space Ei,j at the beginning of our analysis, we will be
investigating eleven cases actually.

1) For E2i,0 = (0 . . . 0− 1
2 ), we obtain that E2i,0⊗V = (10 . . . 0− 1

2 )⊕(0 . . . 01−
3
2 ).

– For i = 0, . . . , l − 1, we obtain that ((10 . . . 0 − 1
2 ) ⊕ (0 . . . 01 − 3

2 )) ∩
∧2i+1

V⊗S ⊆ (10 . . . 0− 1
2 )⊕(0 . . . 01− 3

2 ) = E2i+1,−1⊕E2i+1,0⊕E2i+1,1

(the first summand is zero by definition).

– For i = l, we obtain that the intersection is zero, because
∧2i+1

V⊗S

is zero. But in this case the vector space E2l,−1 ⊕E2l+1,0 ⊕E2l+1,1 is
zero, too (by definition).

In each cases, we have obtain that E2i,0 ⊗ V∗ ⊆ E2i,−1 ⊕ E2i,0 ⊕ E2i,1

according to the statement.

2) For E2i+1,0 = (0 . . . 01− 3
2 ), we obtain that E2i+1,0 ⊗V = (10 . . . 01− 3

2 )⊕

(0 . . . 0 − 1
2 ) ⊕ (0 . . . 010 − 3

2 ).

– For i = 0, . . . , l−2, we get ((10 . . . 01− 3
2 )⊕ (0 . . . 0− 1

2 )⊕ (0 . . . 010−
3
2 ))∩

∧2i+1
V⊗S = (0 . . . 0− 3

2 )⊕(10 . . . 01− 3
2 ) = E2i+2,−1⊕E2i+2,0⊕

E2i+2,1, because the first summand is zero (by definition).
– For i = l − 1, we obtain ((10 . . . 01 − 3

2 ) ⊕ (0 . . . 0 − 1
2 ) ⊕ (0 . . . 010 −

3
2 )) ∩

∧2l
V ⊗ S = (0 . . . 0 − 1

2 ) = E2l,−1 ⊕ E2l,0 ⊕ E2l,1, because the
first and last summands are zero (by definition).

3) For E2i,2j = (0 . . . 012j0 . . . 0 − 1
2 ) (l − 2 ≥ 2j > 0 is to be supposed, j = 0

has been already handled), we obtain E2i,2j ⊗ V = (0 . . . 012j−10 . . . 0 −
1
2 )⊕ (0 . . .012j+10 . . . 0− 1

2 )⊕ (0 . . . 012j0 . . . 1− 3
2 )⊕ (10 . . .012j0 . . . 0− 1

2 ).

– For 2i + 2j < 2l, the intersection ((0 . . . 012j−10 . . . 0 − 1
2 )⊕

(0 . . . 012j+10 . . . 0− 1
2 )⊕(0 . . . 012j0 . . . 1− 3

2 )⊕(10 . . . 012j0 . . . 0− 1
2 ))
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∩
∧2i+1

V ⊗ S = (0 . . . 012j−10 . . . 0 − 1
2 ) ⊕ (0 . . . 012j+10 . . . 0 − 1

2 ) ⊕

(0 . . . 012j0 . . . 1 − 3
2 ) = E2i+1,2j−1 ⊕ E2i+1,2j ⊕ E2i+1,2j+1.

– For 2i+2l = 2l, we get that the intersection equals (0 . . . 012j−10 . . . 0−
1
2 ).

In each case, we have obtained that the intersection is in E2i+1,2j−1 ⊕
E2i+1,2j ⊕ E2i+1,2j+1.

The remaining cases will not be handled so carefully. We will write only the
result of the appropriate decomposition and not the result of the intersection. In
each cases, one can compute the intersection like in the previous ones and check
that the condition for the intersection to be a vector subspace of Ei+1,j−1⊕Ei+1,j⊕
Ei+1,j+1 for appropriate i, j is fulfilled. We will also not distinguish between the
parities of i, j.

4) For E = (0 . . . 01k0 . . . 01− 3
2 ) (k > 1), we get E⊗V = (0 . . . 01k−10 . . . 01−

3
2 )⊕ (0 . . .01k+10 . . . 01− 3

2 )⊕ (10 . . .01k0 . . . 01− 3
2 )⊕ (0 . . . 01k0 . . . 0− 1

2 ).

5) For E = (0 . . . 01k0 . . . 0 − 1
2 ) (k > 1), we get E ⊗ V = (0 . . . 01k−10 . . . 0 −

1
2 )⊕ (0 . . . 01k+10 . . . 0− 1

2 )⊕ (10 . . . 01k0 . . . 0− 1
2 )⊕ (0 . . . 01k0 . . . 01− 3

2 ).

6) For E = (10 . . . 0 − 1
2 ), we get E ⊗ V = (0 . . . 0 − 1

2 ) ⊕ (010 . . .0 − 1
2 ) ⊕

(1 . . . 01 − 3
2 ).

7) For E = (10 . . . 01 − 3
2 ), we get E ⊗ V = (0 . . . 01 − 3

2 ) ⊕ (010 . . .01 − 3
2 ) ⊕

(1 . . . 0 − 1
2 ).

8) For E = (0 . . . 01 − 1
2 ), we get E ⊗ V = (10 . . . 01 − 1

2 ) ⊕ (0 . . . 02 − 3
2 ) ⊕

(0 . . . 0 1
2 ).

9) For E = (0 . . . 011 − 3
2 ), we get E ⊗ V = (10 . . . 011 − 3

2 ) ⊕ (0 . . . 02 − 3
2 ) ⊕

(0 . . . 010 − 1
2 ).

10) For E = (0 . . . 02 − 3
2 ), we get E ⊗ V = (10 . . . 02 − 3

2 ) ⊕ (0 . . . 011 − 3
2 ) ⊕

(0 . . . 03 − 5
2 ) ⊕ (0 . . . 01 − 1

2 ).

11) For E = (0 . . . 0 1
2 ), we get E ⊗ V = (10 . . . 0 1

2 ) ⊕ (0 . . . 0 − 1
2 ).

The irreducible representation of g could be define also for the split real form
g0 = sp(2l, R). The irreducibility does not change and also the decompositions
remain the same. Let us remark, that according to the result of Kashiwara, Vergne
[11], there are some L2-globalizations of our representation to the metaplectic

group G̃0 and that there are also the canonically defined ones. The decompositions
do not change if we turn our attention to the (g0, K̃)-structure,3 because K̃ is
connected (see Baldoni [1]), and do not change even if we take the appropriate
globalization (e.g., the Casselman-Wallach, i.e., the minimal one). �

3K̃ is the maximal compact subgroup of G̃0 ≃ Mp(2l, R), i.e., the λ-preimage of the maximal
compact subgroup K of Sp(2l, R), which is isomorphic to the unitary group, K ≃ U(2l).
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In the next picture, the system described by theorem 4 is displayed for l = 3,
i.e., for metaplectic structures over a six dimensional symplectic manifold (M6, ω).

E0,0 //

""DD
DD

DD
DD

E1,0 //

""DD
DD

DD
DD

E2,0 //

""DD
DD

DD
DD

E3,0 //

""DD
DD

DD
DD

E4,0 //

""D
DD

DD
DD

D
E5,0 // E6,0

E1,1

<<zzzzzzzz
//

""DD
DD

DD
DD

E2,1 //

""DD
DD

DD
DD

<<zzzzzzzz
E3,1 //

""DD
DD

DD
DD

<<zzzzzzzz

E4,1 //

<<zzzzzzzz
E5,1

<<zzzzzzzz

E2,2 //

<<zzzzzzzz

""DD
DD

DD
DD

E3,2

<<zzzzzzzz
// E4,2

<<zzzzzzzz

E3,3

<<zzzzzzzz

Having the analogous result in the Riemannian case in mind, we are entitled to
call the horizontally going operators in the first arrow symplectic Dirac operators,
that ones going from the first arrow down-right symplectic twistor and in the
second arrow the horizontally going ones symplectic Rarita-Schwinger operators .
The horizontally going operators on the remaining arrows could be eventually
called symplectic generalized Rarita-Schwinger operators.

The further research could be devoted to other real symplectic groups, various
types of globalizations of the modules in question, to a coordinate-way description
of the operators, we have obtained, and to their analytic properties.
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ing from Riemannian geometry and orthogonal spin structures. The author is also
grateful to the Grant Agency of Czech Republic for the support from the grant
for young researchers GAČR 201/06/P223.
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