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FINELY DIFFERENTIABLE MONOGENIC FUNCTIONS

ROMAN LÁVIČKA

Abstract. Since 1970’s B. Fuglede and others have been studying finely
holomorhic functions, i.e., ‘holomorphic’ functions defined on the so-called
fine domains which are not necessarily open in the usual sense. This note
is a survey of finely monogenic functions which were introduced in [12] like
a higher dimensional analogue of finely holomorphic functions.

1. Introduction

At the beginning of the 20th century É. Borel worked on the idea that certain
holomorphic functions can be continued beyond their classical maximal domain of
existence to a larger (not necessarily open) domain, see [2]. A significant progress
in the same direction was made not earlier than in 1970’s when B. Fuglede extended
the notion of holomorphic functions to those defined on domains from a topology
finer than the Euclidean one, namely, the fine topology of potential theory. A very
deep theory of the so-called finely holomorphic functions has been developed since
then, see [4], [5] or [8].

The Clifford analysis may be considered as a higher dimensional analogue of
classical complex analysis. In the Clifford analysis, functions called here monogenic
are counterparts of holomorphic ones. In [12], finely monogenic functions were
introduced. This note presents results on finely monogenic functions obtained in
[11], [12] and [13]. In [11], a special case of dimension 4 is considered.

2. Monogenic functions

The Clifford analysis studies functions taking values in Clifford modules that we
are going to introduce now, see e.g. [9, Chapter 2]. Consider a real (or complex)
finite dimensional Hilbert space H =

(

H, (·, ·)
)

. Denote by L(H) the algebra of
linear operators on H and by ā the adjoint operator to a ∈ L(H) , i.e., (au, v) =
(u, āv) , u, v ∈ H . In what follows, we suppose that m ≥ 1 and H is a (left) Cℓm -
module, i.e., there are skew-adjoint operators e1, . . . , em in L(H) (i.e., ēj = −ej )
such that

e2
j = −e0 , ejek = −ekej
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for j, k = 1, . . . , m , j 6= k where e0 is the identity operator on H . Then the
Euclidean space R

m+1 can be naturally embedded into L(H) in the following
way:

x = (x0, . . . , xm) ∼= x0e0 + · · · + xmem .

Low dimensional examples of Clifford modules are the complex plane C and the
skew field of real quaternions H . Indeed, the complex plane C is a Cℓ1 -module
with e1(z) = iz . As to the latter case, recall that the field H can be viewed as the
Euclidean space R4 endowed with a non-commutative multiplication. A quater-
nion x can be written in the form x = x0 + x1i + x2j + x3k where x0, x1, x2, x3

are real numbers and i, j, k are the imaginary units such that

i2 = j2 = k2 = −1 , ij = −ji = k , jk = −kj = i , ki = −ik = j .

Then H is a Cℓ3 -module with e1(x) = ix , e2(x) = jx and e3(x) = kx . In
a general dimension, examples of Clifford modules are given by the corresponding
real and complex Clifford algebras and spinor spaces, see e.g. [9, p. 60].

Now we are ready to introduce monogenic functions. Given an open set G ⊂
Rm+1 and a Cℓm -module H , denote by C1(G) the set of continuously differen-
tiable functions f : G → H and define the Cauchy-Riemann operator by

D =

m
∑

j=0

ej

∂

∂xj

.

Definition 1. A function f ∈ C1(G) is called monogenic if Df = 0 on G .

It is well known that a function f is monogenic if and only if both f and
xf(x) are harmonic where xf(x) := (x0e0 + · · ·+xmem)f(x) . Let us remark that
the Clifford analysis includes classical complex analysis. Indeed, in the complex
case monogenic functions coincide with holomorphic ones. Furthermore, in the
quaternionic case the so-called quaternionic analysis developed by R. Fueter in
1930’s is obtained, see e.g. [9, Chapter 2] for details.

3. Fine topology

For an account of the fine topology, we refer to [1, Chapter 7]. The fine topology
F in Rm+1 is the weakest topology making all subharmonic functions in Rm+1

continuous. It is strictly finer than the Euclidean topology in Rm+1 . For example,
if M is a dense countable subset of an open set G ⊂ Rm+1 , then U := G \ M is
a finely open set but it has no interior points in the usual sense.

Let U ⊂ Rm+1 be finely open and f : U → Rk . Then we call f finely
continuous on U if f is continuous from U endowed with the fine topology to
Rk with the Euclidean topology. Denote by Fx the family of fine neighbourhoods
of a point x ∈ Rm+1 . The fine limit of f at a point x ∈ U can be characterised
as the usual limit along some fine neighbourhood of x , i.e., there is V ∈ Fx such
that

fine-lim
y→x

f(y) = lim
y→x,y∈V

f(y) ,
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see [1, p. 207]. Moreover, we call a linear map L : Rm+1 → Rk the fine differential
of f at a point x ∈ U if

fine-lim
y→x

f(y) − f(x) − L(y − x)

|y − x|
= 0 .

Here |x| is the Euclidean norm of x ∈ Rm+1 . We write fine-df(x) for L and set,
for j = 0, . . . , m ,

fine-
∂f

∂xj

(x) := fine-df(x)(ej)

where the vectors e0 . . . , em form the standard basis of Rm+1 .
In 1970-80’s a very deep theory of finely holomorhic functions has been devel-

oped, see e.g. [4], [5] or [8]. Recall that, given a finely open subset V of the
complex plane C , a function f : V → C is called finely holomorphic provided
that f has a finely continuous fine derivative f ′ on V . Here

f ′(z) = fine -lim
w→z

f(w) − f(z)

w − z
, z ∈ V .

Moreover, in [4], B. Fuglede proved the following theorem.

Theorem 1. A function f is finely holomorphic on a finely open set V ⊂ C if

and only if, for each z ∈ V , there is K ∈ Fz and F ∈ C1(C) such that F = f

on K and ∂̄F = 0 on K where z = x + iy ∈ C and

∂̄F :=
1

2

(

∂F

∂x
+ i

∂F

∂y

)

.

Finely holomorphic functions are closely related to finely harmonic ones. In-
deed, a function f is finely holomorphic on a finely open set V ⊂ C if and only
if, the functions f and zf(z) are both finely harmonic on V . For an account of
finely harmonic functions, we refer to [3]. Let us recall that a function f is finely
harmonic on a finely open set U ⊂ Rm+1 if and only if, for every x ∈ U , there is
V ∈ Fx such that f |V , the restriction of f to V , is a uniform limit of functions
fn harmonic on open sets Vn containing V .

4. Finely monogenic functions

Now we introduce finely monogenic functions. In what follows, we suppose that
H is a Cℓm -module, U ⊂ Rm+1 be finely open and f : U → H unless otherwise
stated.

Definition 2. A function f is called finely monogenic if f and xf(x) are both
finely harmonic on U .

When m = 1 we get nothing else but finely holomorphic functions introduced
by B. Fuglede, see [4], [5] or [8]. A function f is monogenic on a usual open set
G ⊂ Rm+1 if and only if f is finely monogenic and locally bounded on G because
the same is true even for finely harmonic functions. Moreover, when m = 1 we
do not need to assume local boundedness of f . See [3, Theorem 10.16].
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Recall that the Sobolev space W 1,2(Rm+1) consists of (Lebesgue) measurable
functions F whose second power is integrable on R

m+1 together with second
powers of its first weak derivatives. Denote by W

1,2
f-loc(U) the set of functions f

on U satisfying that, for each x ∈ U , there exist K ∈ Fx and F ∈ W 1,2(Rm+1)
such that F = f on K . For an account of the Sobolev spaces on fine domains, we
refer to [10]. Now we are ready to state other characterisations of finely monogenic
functions, see [12].

Theorem 2. The following statements are equivalent to each other:

(a) f is finely monogenic on U ,

(b) f is finely continuous on U , f ∈ W
1,2
f-loc(U) and Df = 0 on U ,

(c) f is finely harmonic on U and fine-Df = 0 almost everywhere on U ,

i.e., except for a Lebesgue null set. Here

fine-Df =

m
∑

j=0

ej fine-
∂f

∂xj

at each point where f is finely differentiable.

To state our next result we need some notation. Let us denote by fine-C1(U) the
set of all functions f finely differentiable everywhere on U whose fine differential
fine-df is finely continuous on U . Moreover, C1

f-loc(U) stands for the set of all
functions f on U such that, for each x ∈ U , there is K ∈ Fx and F ∈ C1(Rm+1)
with F = f on K . Then the following theorem is proved in [13].

Theorem 3. Let m ≥ 1 and U ⊂ Rm+1 be finely open. Then

C1
f-loc(U) = fine-C1(U) ∩ W

1,2
f-loc(U) .

In the case where m = 1 , it is true even that C1
f-loc(U) = fine-C1(U) .

Let us remark that Theorem 3 for m = 1 is essentially due to B. Fuglede. If
m ≥ 2 , then it seems to be open whether

fine-C1(U) ⊂ W
1,2
f-loc(U)

or not. Since finely holomorphic functions are infinitely fine differentiable (in
particular, they belong to fine-C1(U) ) the following result generalises Theorem 1
mentioned above.

Theorem 4. A function f is finely monogenic and f ∈ fine-C1(U) if and only if

f ∈ C1
f-loc(U) and fine-Df = 0 on U .

Proof. Let us notice that, by Theorem 2 (b), any finely monogenic function f

belongs to W
1,2
f-loc(U) . Now it is easy to see that Theorem 4 is a direct consequence

of Theorem 3 stated above. �

In comparison with finely harmonic functions, finely holomorphic functions are
infinitely fine differentiable everywhere and have the unique continuation property,
i.e., any finely holomorphic function f on a fine domain U in C is uniquely
determined by its values in some fine neighbourhood of a point of U , see [5] or [4].
It would be interesting to clear up to what extent these properties remain true for
finely monogenic functions in higher dimensions.
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