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ON SECOND ORDER HAMILTONIAN SYSTEMS

DANA SMETANOVÁ

Abstract. The aim of the paper is to announce some recent results con-
cerning Hamiltonian theory. The case of second order Euler–Lagrange form

non-affine in the second derivatives is studied. Its related second order Hamil-
tonian systems and geometrical correspondence between solutions of Hamil-
ton and Euler–Lagrange equations are found.

1. Introduction

The purpose of this paper is to announce some recent result in Hamiltonian
field theory. We work within the framework of Krupka’s theory of Lagrange stuc-
tures on fibered manifolds [1] and Krupková’s Hamiltonian systems (e.g., Lepagean
equivalent of Euler–Lagrange form)[3].

In [3] Krupková proposed a concept of a Hamiltonian system, which, contrary
to usual approach (c.f. Shadwick [6]), is not related with a single Lagrangian, but
rather with an Euler–Lagrange form (i.e., with the class of equivalent Lagrangians,
possibly of different orders). Using the concept she formulated a Hamiltonian field
theory and studied the corresponding geometric structures [2], [3], [4].

In this paper we are interested in non-affine second order Euler–Lagrange equa-
tions which give rise to second order Lepagean equivalents (i.e., Hamiltonian sys-
tems). All these Hamiltonian systems have a special stucture of their principal
part (i.e., at most 2-contact part). The principal part admits a noninvariant de-
composition α̂ = α̂E + α̂C , where α̂E depends on the Euler–Lagrange form, and
α̂C does not depent on the Euler–Lagrange form. The arising Hamilton equations
depend not only on the Euler–Lagrange form, but also on some “free” functions,
which correspond to the choice of a concrete Hamiltonian system. A very inter-
esting property of Hamiltonian systems is regularity. In the case studied in this
paper Hamiltonian systems cannot be regular. We study a weaker correspondence
between solutions of Euler–Lagrange and Hamilton equations. The condition for
Hamilton extremals satisfying π2,1 ◦ δ = J1γ is found. We note that the condition
depends on the choice of a Hamiltonian system (i.e, on some “free” functions).
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This consideration is illustrated on an example of “quadratic” Euler–Lagrange
equations.

Throughout the paper all manifolds and mappins are smooth and summation
convention is used. We consider a fibered manifold (i.e., surjective submersion)
π : Y → X , dim X = n, dim Y = n +m, its r-jet prolongation πr : JrY → X ,
r ≥ 1 and canonical jet projections πr,k : JrY → JkY , 0 ≤ k ≤ r (with an obvious
notation J0Y = Y ). A fibered chart on Y (resp. associated fibered chart on JrY )
is denoted by (V, ψ), ψ = (xi, yσ) (resp. (Vr , ψr), ψr = (xi, yσ, yσ

i , . . . , y
σ
i1...ir

)).
A vector field ξ on JrY is called πr-vertical if it projects onto the zero vector

field onX . A q-form η on JrY is called πr-horizontal if iξη = 0 for every πr-vertical
vector field ξ on JrY .

A q-form η on JrY is called contact if hη = 0. A contact q-form η on JrY is
called 1-contact if for every πr-vertical vector field ξ on JrY the (q − 1)-form iξη

is horizontal. A contact q-form η on JrY is called i-contact if for every πr-vertical
vector field ξ on JrY the (q − 1)-form iξη is (i− 1)-contact.

Recall that every q-form η on JrY admits a unique (canonical) decomposition
into a sum of q-forms on Jr+1Y as follows:

π∗r+1,rη = hη +

q
∑

k=1

pkη ,

where hη is a horizontal form, called the horizontal part of η, and pkη, 1 ≤ k ≤ q,

is a k-contact part of η (see [1]).
We use the following notations:

ω0 = dx1 ∧ dx2 ∧ · · · ∧ dxn , ωi = i∂/∂xiω0 , ωij = i∂/∂xjωi, . . .

and

ωσ = dyσ − yσ
j dx

j , . . . , ωσ
i1i2...ik

= dyσ
i1i2...ik

− yσ
i1i2...ikjdx

j

For more details on fibered manifolds and the corresponding geometric stuctures
we refer e.g. to [5].

In this section we briefly recall basic concepts on Lepagean equivalents of of
Euler–Lagrange forms and generalized Hamiltonian field theory, due to Krupková
[2], [3], [4].

By an r-th order Lagrangian we shal mean a horizontal n-form λ on JrY .
A closed (n + 1)-form α is called a Lepagean equivalent of an Euler–Lagrange

form E = Eσω
σ ∧ ω0 if p1α = E.

Recall that the Euler–Lagrange form corresponding to an r-th order Lagrangian
λ = Lω0 is the following (n+ 1)-form of order ≤ 2r

(1) E =
( ∂L

∂yσ
−

r
∑

l=1

(−1)ldp1
dp2

. . . dpl

∂L

∂yσ
p1...pl

)

ωσ ∧ ω0 .

The family of Lepagean equivalents of E is also called a Lagrangian system, and
denoted by [α]. The corresponding Euler–Lagrange equations now take the form

(2) Jsγ
∗

iJsξα = 0 for every π − vertical vector field ξ on Y ,
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where α is any representative of order s of the class [α]. A (single) Lepagean
equivalent α of E on JsY is also called a Hamiltonian system of order s and the
equations

(3) δ∗iξα = 0 for every πs − vertical vector field ξ on JsY

are called Hamilton equations. They represent equations for integral sections δ
(called Hamilton extremals) of the Hamiltonian ideal, generated by the system
Ds

α of n-forms iξα, where ξ runs over πs-vertical vector fields on JsY . Also,

considering πs+1-vertical vector fields on Js+1Y , one has the ideal Ds+1
α̂ of n-

forms iξα̂ on Js+1Y , where α̂ (called principal part of α) denotes the at most
2-contact part of α. Its integral sections which moreover annihilate all at least
2-contact forms, are called Dedecker–Hamilton extremals. It holds that if γ is an
extremal then its s-prolongation (resp. (s+ 1)-prolongation) is a Hamilton (resp.
Dedecker–Hamilton) extremal, and (up to a projection) every Dedecker-Hamilton
extremal is a Hamilton extremal.

2. Second Order Hamiltonian Systems

We shall consider a second order Euler–Lagrange form which is not affine in the
second derivatives, i.e.,

∂2Eν

∂yσ
kl∂y

κ
pq

6= 0 .

As pointed out in [2] the Euler–Lagrange form affine in the second derivatives
has first order Hamiltonian systems. In what follows, we shall study second or-
der Hamiltonian systems corresponding to a Lepagean equivalent of such Euler–
Lagrange form. The Hamiltonian systems admits a decomposition

(4) π∗3,2α = α̂+ µ ,

where α̂ = p1α+ p2α is the principal part of α, µ is at least 2-contact part of α.
In the following Proposition the stucture of the principal part of α (4) is found.

Proposition 1. Let dim X ≥ 2. Let E = Eσ ωσ ∧ ω0 be a second order Euler–

Lagrange form (nontrivially) of order 2, and α its Lepagean equivalent of the form

(4). Let the form

α̂ = E + F = Eσω
σ ∧ ω0 +Ai

σνω
σ ∧ ων ∧ ωi +Bki

σνω
σ ∧ ων

k ∧ ωi(5)

+ Ckli
σν ω

σ ∧ ων
kl ∧ ωi +Dkli

σνω
σ
k ∧ ων

l ∧ ωi ,

where

Ai
σν = −Ai

νσ, C
kli
σν = Clki

σν , D
kli
σν = −Dlki

νσ ,(6)

be the principal part of a Lepagean equivalent α (4) of the Euler–Lagrange form

E. Then the following conditions are satisfied

1)
(

∂Eσ

∂yν + diA
i
νσ

)

Alt(σν)
= 0,

2) Coefficient conditions:

Dkli
σν = 1

2C
kil
σν + dkli

σν , where dkli
σν are arbitrary functions satisfying dkli

σν = −dlki
σν ,
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Ak
σν = 1

2

(

∂Eν

∂yσ
k

− diB
ki
νσ

)

− ak
σν , where ak

σν are arbitrary functions satisfying ak
σν =

ak
νσ,

Bkl
σν = ∂Eσ

∂yν
kl

−2 ∂Eν

∂yσ
kl

−2di

(

Ckli
σν − Clki

νσ + Ckil
σν − dkli

σν

)

+ bkl
σν , where bkl

σν are arbitrary

functions satisfying bkl
σν = −blkσν and bkl

σν = −blkνσ,

3) Projectability conditions:

Ckli
σν , Dkli

σν do not depend on yσ
kl,

(

Ckli
σν

)

Sym(kli)
= 0,

where Alt(σν) means alternation in the indicated idices and Sym(kli) means sym-

metrization in the indicated indices

Proof. Proof of Proposition 1 follows from the explicit computation of dα = 0. �

Note that the above Proposition means that the functions Ckli
σν , Dkli

σν do not
depend on coefficients of the Euler–Lagrange form and α̂ admits a noninvariant
decomposition

α̂ = α̂E + α̂C ,(7)

where

α̂E = Eσω
σ ∧ ω0 +

(1

2

∂Eν

∂yσ
i

−
1

2
dl
∂Eσ

∂yν
il

− dl
∂Eν

∂yσ
il

)

ωσ ∧ ων ∧ ωi(8)

+
(∂Eσ

∂yν
ki

−
∂Eν

∂yσ
ki

)

ωσ ∧ ων
k ∧ ωi

depends on derivatives of coefficients of the Euler–Lagrange form and

α̂C =
(

− ai
σν + dldp(C

kip
νσ + Ckip

σν − Ckpi
σν + dkip

σν )
)

ωσ ∧ ων ∧ ωi(9)

+
(

bkl
σν + dp (Ckip

νσ + Ckip
σν − Ckpi

σν + dkip
σν )

)

ωσ ∧ ων
k ∧ ωi

+ Ckli
σν ω

σ ∧ ων
kl ∧ ωi +

(1

2
Ckil

σν + dkli
σν

)

ωσ
k ∧ ων

l ∧ ωi ,

does not depend on the Euler–Lagrange form.

A very interesting property of Hamiltonian systems is regularity. A Hamiltonian
system of order s is called regular if the ideal Ds+1

α̂ contains all the n-forms

ωσ ∧ ωi , ωσ
(j1

∧ ωi), . . . , ωσ
(j1...jr0−1

∧ ωi) ,

where (. . . ) means symmetrization in the indicated indices and r0 is the minimal

order of Lagrangians corresponding to Euler–Lagrange form, [4]. Regularity can
be rewritten as the corespondence πs,r0

◦ δD = Jr0γ, s ≥ r0 between Dedecker–
Hamilton extremals δD and extremals γ.

We study the case s = 2 and r0 = 2. Unfortunately, these Hamiltonian sys-
tems cannot be regular. In this case regularity is a very strong condition. One
can, indeed, study regularity of Hamiltonian systems for such second order Euler–
Lagrange forms, however, regular Hamiltonian systems have to be considered to be
of order ≥ 3. In the following proposition a correspondence between solutions of
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Euler–Lagrangange equations (2) (extremals of λ) and solutions of Hamilton equa-
tions (3) (Dedecker–Hamilton and Hamilton extremals) is found which is weaker
than regularity.

Proposition 2. Let dim X ≥ 2. Let E = Eσω
σ ∧ ω0 the Euler–Lagrange form

(nontrivially) of order 2, and α of the form (4), (5), (6) be its Lepagean equivalent.

Assume that the matrix Ckli
σν with mn2 rows (resp. mn columns) labelled by νkl

(resp. σi) has rank mn.

Then every Hamilton–Dedecker extremal δD : V ⊃ π(U) → J2Y of the Hamil-

tonian system α is of the form π2,1 ◦ δD = J1γ, where γ is an extremal of λ.

If moreover µ = 0 in (4) then every Hamilton extremal δ : V ⊃ π(U) → J2Y

of the Hamiltonian system α is of the form π2,1 ◦ δ = J1γ, where γ is an extremal

of λ.

Proof. Expressing the generators of the ideal Ds+1
α̂ we get

i ∂
∂yσ

α̂ = Eσω0 +Ai
σνω

ν ∧ ωi +Bki
σνω

ν
k ∧ ωi + Ckli

σν ω
ν
kl ∧ ωi ,

i ∂
∂yσ

k

α̂ = Bki
νσω

ν ∧ ωi +Dkli
σνω

ν
k ∧ ωi ,

i ∂
∂yσ

kl

α̂ = −Ckli
σν ω

σ ∧ ωi .

Since the rank of the matrix Ckli
σν is equal to mn then the ωσ ∧ ωi are generators

of the ideal Ds+1
α̂ . We obtain ∂yσ

∂xi ◦ δD = yσ
i ◦ δD, i.e.

π2,1 ◦ δD = J1γ ,(10)

where γ is a section of π. Substituting this into (3) we get

δ∗Di ∂
∂yσ

α̂ = Eσ ◦ J2γ = 0 ,

showing that γ is an extremal of λ.
If moreover µ = 0, then π∗3,2α = α̂, we can easily see that π2,1 ◦ δ = J1γ, where

γ is an extremal of λ. This completes the proof. �

Note that in general the condition in Proposition 2 does not depend on the
Euler–Lagrange form. In the following we shall study the case than the correspon-
dence between extremals and Hamilton extremals depends on the Euler–Lagrange
form.

An interesting case.

If the functions Ckli
σν andDkli

σν in the principal part (5) vanish then the conditions
in Propositon 1 take the form

(∂Eσ

∂yν
+ diA

i
νσ

)

Alt(σν)
= 0 ,

Ai
σν =

1

2

(∂Eν

∂yσ
i

− dl

(∂Eσ

∂yν
il

− 2
∂Eν

∂yσ
il

+ bilσν

))

− ai
σν ,

Bkl
σν =

∂Eσ

∂yν
kl

− 2
∂Eν

∂yσ
kl

+ bkl
σν ,
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In this case the rank condition in Proposition 2 is not satisfied. In the next
Proposition a new condition is found which depends on the Euler–Lagrange form
and guarantees the correspondence (10) between extremals and Hamilton ex-
tremals.

Proposition 3. Let dim X ≥ 2. Let E = Eσω
σ ∧ ω0 the Euler–Lagrange form

(nontrivially) of order 2, and α of the form (4), (5), (6) and with Ckli
σν , Dkli

σν

vanishing, be its Lepagean equivalent.

Assume that the matrix

Bkl
σν =

∂Eσ

∂yν
kl

− 2
∂Eν

∂yσ
kl

+ bkl
σν(11)

with mn rows (resp. mn columns) labelled by νk (resp. σl) is regular.

Then every Hamilton–Dedecker extremal δD : V ⊃ π(U) → J2Y of the Hamil-

tonian system α is of the form π2,1 ◦ δD = J1γ, where γ is an extremal of λ.

If moreover µ = 0 in (4) then every Hamilton extremal δ : V ⊃ π(U) → J2Y

of the Hamiltonian system α is of the form π2,1 ◦ δ = J1γ, where γ is an extremal

of λ.

Proof. Expressing the generators of the ideal Ds+1
α̂ we get

i ∂
∂yσ

α̂ = Eσω0 +Ai
σνω

ν ∧ ωi +Bki
σνω

ν
k ∧ ωi ,

i ∂
∂yσ

k

α̂ = Bki
νσω

ν ∧ ωi ,

i ∂
∂yσ

kl

α̂ = 0 .

Since the rank of the matrix Bkl
σν is equal to mn then the ωσ ∧ ωi are generators

of the ideal Ds+1
α̂ . We obtain ∂yσ

∂xi ◦ δD = yσ
i ◦ δD, i.e. π2,1 ◦ δD = J1γ, where γ is

a section of π. Substituting this into (3) we get

δ ∗

D i ∂
∂yσ

α̂ = Eσ ◦ J2γ = 0 ,

showing that γ is an extremal of λ.
If moreover µ = 0, then π∗3,2α = α̂, we can easily see that π2,1 ◦ δ = J1γ, where

γ is an extremal of λ. This completes the proof. �

The above results can be directly applied to a class of “quadratic” Euler–
Lagrange equations. Let us consider the following example as an illustration of
the above properties of the second order Hamiltonian systems.

Example. Let us consider an Euler–Lagrange form E = Eσ ωσ ∧ ω0 with the
coeficients of the form

Eσ = Pσ +Qkl
σν y

ν
kl +Rklpq

σνκ yν
kl y

κ
pq

where Pσ = Pσ(xr , yβ, yβ
r ), Qrs

σν = Qkl
σν(xr , yβ, yβ

r ) and Rklpq
σνκ = Rklpq

σνκ (xr , yβ, yβ
r )

and

Qkl
σν = Qlk

σν , Qkl
σν = Qkl

νσ, Rklpq
σνκ = Rpqkl

σκν , Rklpq
σνκ = Rklpq

νσκ .
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In view of the above considerations we take the principal part (5), (6) in the
following form: Ckli

σν = Dkli
σν = 0 and

α̂ =
(

Pσ +Qkl
σν y

ν
kl +Rklpq

σνκ yν
kl y

κ
pq

)

ωσ ∧ ω0

−
(

ai
σν +

3

2
dl(Q

il
σν + 2Rilpq

σνκ y
κ
pq)

)

ωσ ∧ ων ∧ ωi

+
(

bki
σν −Qki

σν − 2Rkipq
σνκ yκ

pq

)

ωσ ∧ ων
k ∧ ωi ,

where ai
σν , bkl

σν are arbitrary functions satisfying ai
σν = ai

νσ, bkl
σν = −blkσν and

bkl
σν = −blkνσ.

We can easily see that the forms in the noninvariant decomposition (7) are

α̂E =
(

Pσ +Qkl
σν y

ν
kl +Rklpq

σνκ yν
kl y

κ
pq

)

ωσ ∧ ω0

−
(3

2
dl (Qil

σν + 2Rilpq
σνκ y

κ
pq)

)

ωσ ∧ ων ∧ ωi

−
(

Qki
σν + 2Rkipq

σνκ yκ
pq

)

ωσ ∧ ων
k ∧ ωi

and

α̂C = − ai
σνω

σ ∧ ων ∧ ωi + bki
σνω

σ ∧ ων
k ∧ ωi .

The regularity condition for the matrix (11) now takes form

det
(

Bkl
σν

)

= det
(

bkl
σν −Qkl

σν − 2Rklpq
σνκ yκ

pq

)

6= 0 .

Then every Hamilton–Dedecker extremal δD : V ⊃ π(U) → J2Y of the Hamil-
tonian system α is of the form π2,1 ◦ δD = J1γ, where γ is an extremal of λ.
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