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ON THE NUMBER OF ZEROS OF BOUNDED

NONOSCILLATORY SOLUTIONS TO HIGHER-ORDER

NONLINEAR ORDINARY DIFFERENTIAL EQUATIONS

Manabu Naito

Abstract. The higher-order nonlinear ordinary differential equation

x(n) + λp(t)f(x) = 0 , t ≥ a ,

is considered and the problem of counting the number of zeros of bounded
nonoscillatory solutions x(t; λ) satisfying limt→∞ x(t; λ) = 1 is studied. The
results can be applied to a singular eigenvalue problem.

1. Introduction

In this paper the higher-order ordinary differential equation

(1.1) x(n) + λp(t)f(x) = 0 , t ≥ a ,

is considered under the hypotheses that

n ≥ 2 is even;(1.2)

λ > 0 is a parameter;(1.3)

p(t) is continuous on [a,∞), a > 0 and p(t) > 0 for t ≥ a ;(1.4)

(1.5)

{

f(x) is locally Lipschitz continuous on R and

xf(x) > 0 for x 6= 0.

Moreover we assume that f(x) satisfies the additional conditions as follows: there
exists γ such that 0 < γ < 1 and
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(1.6)



















0 < lim inf
x→∞

f(x)

|x|γsgnx
≤ lim sup

x→∞

f(x)

|x|γsgnx
<∞ ,

0 < lim inf
x→−∞

f(x)

|x|γsgnx
≤ lim sup

x→−∞

f(x)

|x|γsgnx
<∞ ,

and

(1.7) lim inf
x→0

f(x)

x
> 0 .

Since f(x) is locally Lipschitz continuous on R, it is continuous on R. This
fact, together with the condition xf(x) > 0 (x 6= 0), implies f(0) = 0. Further,
the Lipschitz continuity of f(x) near x = 0 implies that there are x0 > 0 and
L > 0 such that |f(x)| ≤ L|x| for |x| ≤ x0. Thus we have

(1.8) lim sup
x→0

f(x)

x
<∞ .

Let

(1.9) f∗(x) =

{

x , |x| ≤ 1 ,

|x|γsgnx , |x| ≥ 1 .

Then, by the conditions (1.6)–(1.8) there exist L1 > 0 and L2 > 0 such that

(1.10) L1xf
∗(x) ≤ xf(x) ≤ L2xf

∗(x) for all x ∈ R .

In this sense, the nonlinear term f(x) in (1.1) behaves like c1x near x = 0 and like
c2|x|

γsgnx (0 < γ < 1) near x = ±∞, where c1 and c1 are positive constants. It
should be noted that the nondecreasing condition of f(x) itself is not assumed.

It is known (see, for example, Kiguradze and Chanturia [6, Corollary 8.2]) that
if p(t) satisfies the integral condition

(1.11)

∫

∞

a

tn−1p(t) dt <∞ ,

then, for each λ > 0, equation (1.1) has a bounded nonoscillatory solution x(t;λ)
such that

(1.12) lim
t→∞

x(t;λ) = 1 .

The main interest of this paper is the problem of counting the number of zeros of
solutions x(t;λ) satisfying (1.12).

For the second-order nonlinear equations, the problem of counting the number
of zeros of solutions is studied in the framework of regular eigenvalue problems on
compact interval (see, for example, [8, 9] and the papers cited therein). Regular
eigenvalue problems for higher-order linear differential equations are also consid-
ered in several papers (see [1] and the papers cited in [1]). They are summarized
and discussed in the book of Elias [2]. For a class of higher-order nonlinear differ-
ential equations, a regular eigenvalue problem is discussed by Elias and Pinkus [4].
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In the recent paper [7], the higher-order linear equation

(1.13) x(n) + λp(t)x = 0 , t ≥ a ,

was considered in an infinite interval [a,∞) and the following result was obtained:
Suppose that (1.11) holds, and let x(t;λ) be solutions of (1.13) satisfying (1.12).
Then there exists a sequence {λ(k)}∞k=0 of positive parameters with the properties
that (i) 0 = λ(0) < λ(1) < · · · < λ(k − 1) < λ(k) < . . . , limk→∞ λ(k) = ∞; (ii) if
λ ∈

(

λ(k−1), λ(k)
)

, then x(t;λ) has at most k−1 zeros in (a,∞); (iii) if λ = λ(k),
then x(t;λ) has exactly k − 1 zeros in (a,∞) and x(a;λ) = 0. Very recently, a
more general problem has been considered by Elias [3] and the above result in [7]
has been extended vastly.

In this paper it will be proved that the above result in [7] remains valid for
the nonlinear equation (1.1). As an underlying fact we first prove the following
theorem.

Theorem 1.1. Consider the nonlinear equation (1.1) under the conditions (1.2)−
(1.7). Suppose that (1.11) holds. Then, for each λ > 0, equation (1.1) has a

solution x(t;λ) satisfying (1.12), and x(t;λ) is globally defined and is uniquely

determined on [a,∞). Furthermore, x(t;λ) and its derivatives x(i)(t;λ) (i =
1, 2, . . . , n−1) with respect to t are continuous functions of (t, λ) ∈ [a,∞)×(0,∞).

The main result in this paper is the following theorem.

Theorem 1.2. Consider the nonlinear equation (1.1) under the conditions (1.2)−
(1.7). Suppose that (1.11) holds, and, for each λ > 0, let x(t;λ) be a solution of

(1.1) satisfying (1.12). Then there exists a sequence {λ(k)}∞k=0 of positive param-

eters with the properties that

(i) 0 = λ(0) < λ(1) < · · · < λ(k − 1) < λ(k) < · · · , lim
k→∞

λ(k) = ∞;

(ii) if λ ∈
(

λ(k − 1), λ(k)
)

, k = 1, 2, . . . , then x(t;λ) has at most k − 1 zeros in

the open interval (a,∞);
(iii) if λ = λ(k), k = 1, 2, . . . , then x(t;λ) has exactly k − 1 zeros in the open

interval (a,∞) and x(a;λ) = 0.

The proofs of Theorems 1.1 and 1.2 are given in the next section.
Later, it will be seen that the solution x(t;λ) satisfies

(1.14) lim
t→∞

x(i)(t;λ) = 0 (i = 1, 2, . . . , n− 1) .

Therefore Theorem 1.2 can be applied to the singular eigenvalue problem

(1.15)

{

x(n) + λp(t)f(x) = 0 , t ≥ a ,

x(a) = 0, lim
t→∞

x(i)(t) = 0 (i = 1, 2, . . . , n− 1) ,

and the following corollary is easily verified.

Corollary 1.1. Consider the problem (1.15) under the conditions (1.2) − (1.7).
If (1.11) holds, then there exists a sequence {λ(k)}∞k=1 such that 0 < λ(1) < · · · <
λ(k − 1) < λ(k) < · · · , limk→∞ λ(k) = ∞, and for λ = λ(k) (k = 1, 2, . . . ) the
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problem (1.15) has a nontrivial solution x = x
(

t;λ(k)
)

having exactly k − 1 zeros

in the open interval (a,∞).

To the author’s knowledge, for higher-order nonlinear eigenvalue problems in
infinite interval there is no literature showing the existence of a sequence of eigen-
functions with the prescribed numbers of zeros.

The author has a great interest in the Emden-Fowler nonlinear differential equa-
tion

(1.16) x(n) + λp(t)|x|γsgnx = 0 , t ≥ a , where γ > 0 , γ 6= 1 .

It is expected that Corollary 1.1 remains true for (1.16). However the problem for
(1.16) is still open.

2. Proofs of Theorems

Let us set about the proof of Theorem 1.1.
Proof of Theorem 1.1. As stated in the above, the existence of x(t;λ) for each
fixed λ > 0 is well known. Here, we show the existence and the uniqueness of
x(t;λ) and the continuity of x(i)(t;λ) (i = 0, 1, . . . , n − 1) simultaneously. Note
first that a solution x(t;λ) of (1.1) satisfying (1.12) is written in the form

x(t;λ) = 1 − λ

∫

∞

t

(s− t)n−1

(n− 1)!
p(s) f

(

x(s;λ)
)

ds

for all large t. Let Λ > 0 be an arbitrary number. From the Lipschitz continuity
of f(x) on the interval [1/2, 1], there exists L > 0 such that

(2.1) |f(x) − f(y)| ≤ L|x− y| for all x, y with 1/2 ≤ x, y ≤ 1 .

Let

(2.2) M = max
{

f(x) : 1/2 ≤ x ≤ 1
}

(> 0) .

Then, take T = T (Λ) ≥ a so that

ΛL

∫

∞

T

sn−1p(s) ds ≤
(n− 1)!

2
(2.3)

and

ΛM

∫

∞

T

sn−1p(s) ds ≤
(n− 1)!

2
.(2.4)

By (1.11), it is possible to take such a T . Denote by Cb

(

[T,∞)×(0,Λ]
)

the Banach
space which consists of all bounded continuous functions x(t;λ) on [T,∞)× (0,Λ]
with the norm

‖x‖ = sup
{

|x(t;λ)| : (t, λ) ∈ [T,∞) × (0,Λ]
}

.

We define the subset X of Cb

(

[T,∞) × (0,Λ]
)

and the mapping Φ : X →

Cb

(

[T,∞) × (0,Λ]
)

by

X =
{

x ∈ Cb

(

[T,∞) × (0,Λ]
)

:
1

2
≤ x(t;λ) ≤ 1 for (t, λ) ∈ [T,∞) × (0,Λ]

}
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and

(Φx)(t;λ) = 1 − λ

∫

∞

t

(s− t)n−1

(n− 1)!
p(s) f

(

x(s;λ)
)

ds ,

(t, λ) ∈ [T,∞) × (0,Λ] ,

respectively. Using (2.1) − (2.4), we find that Φ(X) ⊆ X and

‖Φx− Φy‖ ≤
1

2
‖x− y‖ for all x, y ∈ X .

Then the contraction mapping principle ensures the existence and uniqueness of a
fixed point x = x(t;λ) ∈ X of Φ. It is easy to see that, for each λ ∈ (0,Λ], this fixed
point x(t;λ) is a solution of (1.1) on the interval [T,∞) and satisfies (1.12). It is
immediate to see that this x(t;λ) is a unique solution of (1.1) on [T,∞) satisfying
(1.12). Further, x(t;λ) is a continuous function of (t, λ) ∈ [T,∞) × (0,Λ], and so
the derivatives of x(t;λ) with respect to t,

x(i)(t;λ) = (−1)i−1λ

∫

∞

t

(s− t)n−i−1

(n− i− 1)!
p(s) f

(

x(s;λ)
)

ds ,

i = 1, 2, . . . , n− 1 ,

are also continuous functions of (t, λ) ∈ [T,∞) × (0,Λ].
Since (1.6) with 0 < γ < 1 is assumed to hold, it follows from Wintner’s theorem

([5, p.29]) that the maximal interval of existence of solutions of (1.1) is the entire
interval [a,∞). Since f(x) is locally Lipschitz continuous on R, we find that, for
each λ ∈ (0,Λ], the solution x(t;λ) of (1.1) on [T,∞) constructed as the above is
uniquely continued to the left of T as a solution of (1.1) on [a,∞). This solution
of (1.1) on [a,∞) is denoted by x(t;λ) again, where λ ∈ (0,Λ].

Recall that the solution x(t;λ) and its derivatives x(i)(t;λ), i = 1, 2, . . . , n− 1,
are continuous functions of (t, λ) ∈ [T,∞)× (0,Λ]. Then, by a fundamental theo-
rem concerning the continuity of solutions of initial value problems with parame-
ters (see, for example, [5, p.94]), we see that the solution x(t;λ) and its derivatives
x(i)(t;λ), i = 1, 2, . . . , n − 1, are continuous functions of (t, λ) ∈ [a,∞) × (0,Λ].
Since Λ > 0 is arbitrary, this proves the continuity of x(i)(t;λ) on [a,∞)× (0,∞),
i = 0, 1, 2, . . . , n− 1. The proof of Theorem 1.1 is complete.

In what follows, x(t;λ) denotes the solution of (1.1) satisfying (1.12). It is worth
noting that, for each λ > 0,

x(t;λ) = 1 − λ

∫

∞

t

(s− t)n−1

(n− 1)!
p(s) f

(

x(s;λ)
)

ds , t ≥ a ,(2.5)

and

x(i)(t;λ) = (−1)i−1λ

∫

∞

t

(s− t)n−i−1

(n− i− 1)!
p(s) f

(

x(s;λ)
)

ds , t ≥ a ,(2.6)

i = 1, 2, . . . , n− 1 .

In particular, we have (1.14).
The following lemma is clear from the proof of Theorem 1.1.
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Lemma 2.1. Let Λ > 0 be fixed. Then, there exists T = T (Λ) ≥ a such that, for

λ ∈ (0,Λ], x(t;λ) has no zeros in the interval [T,∞).

It is possible to take λ∗ > 0 such that

λ∗L

∫

∞

a

sn−1p(s) ds ≤
(n− 1)!

2
and λ∗M

∫

∞

a

sn−1p(s) ds ≤
(n− 1)!

2
,

where L and M are given by (2.1) and (2.2), respectively. Then, by the proof of
Theorem 1.1, we see that 1/2 ≤ x(t;λ) ≤ 1 for t ∈ [a,∞) and λ ∈ (0, λ∗]. Thus
we have the following.

Lemma 2.2. There exists λ∗ > 0 such that, for λ ∈ (0, λ∗], x(t;λ) has no zeros

in the interval [a,∞).

Since f(x) is locally Lipschitz continuous on R, we see that if x(t) is a solution
of (1.1) such that

x(t0) = x′(t0) = · · · = x(n−1)(t0) = 0 , where t0 ≥ a ,

then x(t) ≡ 0 for all t ≥ a. Therefore, for each λ > 0, x(t;λ) has a finite number
of zeros in any finite subinterval of [a,∞). This fact, combined with Lemma 2.1,
implies that, for each λ > 0, x(t;λ) has a finite number of zeros in [a,∞).

The following lemma can be proved exactly as in the linear case ([7, Proposition
2.4]).

Lemma 2.3. For each λ > 0, the zeros of x(t;λ) are simple.

The following lemma gives an estimate for x(t;λ).

Lemma 2.4. We have

(2.7)
∣

∣x(t;λ)
∣

∣ ≤
[

1 + (1 − γ)λL2

∫

∞

a

sn−1

(n− 1)!
p(s) ds

]1/(1−γ)

for all (t, λ) ∈ [a,∞)×(0,∞). Here, γ and L2 are the constants appearing in (1.6)
and (1.10), respectively. Note that 0 < γ < 1.

Proof. Let λ > 0 be fixed. From (2.5) it follows that

(2.8)
∣

∣x(t;λ)
∣

∣ ≤ 1 + λ

∫

∞

t

sn−1

(n− 1)!
p(s)

∣

∣f(x(s;λ))
∣

∣ ds

for t ≥ a. Denote by y(t) the right-hand side of (2.8). We have y(t) ≥ 1 (t ≥ a),
limt→∞ y(t) = 1 and

(2.9)
∣

∣x(t;λ)
∣

∣ ≤ y(t) , t ≥ a .

Then,

y′(t) = −λ
tn−1

(n− 1)!
p(t)

∣

∣f(x(t;λ))
∣

∣ ≥ −λL2
tn−1

(n− 1)!
p(t) f∗

(

|x(t;λ)|
)

≥ −λL2
tn−1

(n− 1)!
p(t) f∗

(

y(t)
)

= −λL2
tn−1

(n− 1)!
p(t) y(t)γ
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for t ≥ a, where f∗(x) is given by (1.9), and the inequality (1.10) has been used.
Thus, for τ ≥ t ≥ a,

1

1 − γ
y(τ)1−γ −

1

1 − γ
y(t)1−γ ≥ −λL2

∫ τ

t

sn−1

(n− 1)!
p(s) ds .

Letting τ → ∞ in the above, we get

1

1 − γ
−

1

1 − γ
y(t)1−γ ≥ −λL2

∫

∞

t

sn−1

(n− 1)!
p(s) ds ,

and so

(2.10) y(t) ≤

[

1 + (1 − γ)λL2

∫

∞

a

sn−1

(n− 1)!
p(s) ds

]1/(1−γ)

, t ≥ a .

Then, (2.9) and (2.10) yield (2.7). The proof of Lemma 2.4 is complete.

Lemma 2.5. Let [b, c] ⊆ [a,∞) and let {λj} be a sequence such that 0 < λj → ∞
as j → ∞. Suppose that, for each j, x = ϕ(t;λj) is a solution of (1.1) with λ = λj

on [b, c] such that ϕ(t;λj) does not change signs and ϕ(t;λj) 6≡ 0 on [b, c]. Then,

there exist a constant m > 0 and a subinterval [b′, c′] ⊆ [b, c] and a subsequence

{λj′} ⊆ {λj} such that

(2.11)
∣

∣ϕ(t;λj′ )
∣

∣ ≥ mλ
1/(1−γ)
j′ on [b′, c′]

for all j′.

Proof. A part of the proof of this lemma is done along the proof of the result of
Elias [1, Lemma 4]. Without loss of generality, we may suppose that either

(2.12) ϕ(t;λj) ≥ 0 , 6≡ 0 on [b, c] for all j ,

or

(2.13) ϕ(t;λj) ≤ 0 , 6≡ 0 on [b, c] for all j .

In the case where (2.13) holds, let f̃(x) = −f(−x). Then, x = −ϕ(t;λj) is a
nonnegative and nontrivial solution of the equation

(2.14) x(n) + λp(t)f̃(x) = 0

with λ = λj on [b, c]. Observe that, for the equation (2.14), all the hypotheses
corresponding to (1.2) − (1.7) are satisfied. Thus it is enough to discuss the case
where (2.12) holds.

Take b1, c1 and d arbitrarily so that b < b1 < d < c1 < c, and fix these
three numbers. We first consider the sequence {ϕ(t;λj)} on the interval [b, d]. By
Taylor’s formula with remainder, we have

ϕ(t;λj) =
n−1
∑

l=0

ϕ(l)(d;λj)

l!
(t− d)l +

∫ t

d

(t− s)n−1

(n− 1)!
ϕ(n)(s;λj) ds

=

n−1
∑

l=0

(−1)l ϕ
(l)(d;λj)

l!
(d− t)l − λj

∫ d

t

(s− t)n−1

(n− 1)!
p(s)f

(

ϕ(s;λj)
)

ds ,
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where the hypothesis (1.2) has been used. Then it follows from (2.12) and Cauchy’s
inequality that

λj

∫ d

t

(s− t)n−1

(n− 1)!
p(s)f

(

ϕ(s;λj)
)

ds ≤

n−1
∑

l=0

(−1)l ϕ
(l)(d;λj)

l!
(d− t)l

≤
{

n−1
∑

l=0

[

ϕ(l)(d;λj)
]2

}1/2{ n−1
∑

l=0

[ (d− t)l

l!

]2}1/2

for t ∈ [b, d]. Set

D(λj) =
{

n−1
∑

l=0

[

ϕ(l)(d;λj)
]2

}1/2

and K =
{

n−1
∑

l=0

[ (d− b)l

l!

]2}1/2

.

The preceding inequality gives

λj

∫ d

b

(s− b)n−1

(n− 1)!
p(s) f

(

ϕ(s;λj)
)

ds ≤ KD(λj) ,

and so

λj

∫ d

b1

(s− b)n−1

(n− 1)!
p(s) f

(

ϕ(s;λj)
)

ds ≤ KD(λj) .

This yields

λj
(b1 − b)n−1

(n− 1)!

∫ d

b1

p(s) f
(

ϕ(s;λj)
)

ds ≤ KD(λj) ,

or

λj

∫ d

b1

p(s) f
(

ϕ(s;λj)
)

ds ≤ (b1 − b)−n+1(n− 1)!KD(λj) .

Let L = (b1 − b)−n+1(n− 1)!K (> 0). Then,

(2.15) λj

∫ d

t

p(s) f
(

ϕ(s;λj)
)

ds ≤ LD(λj) , b1 ≤ t ≤ d .

Integrating this inequality over [t, d] (b1 ≤ t ≤ d), we see that

(2.16) λj

∫ d

t

(s− t)p(s) f
(

ϕ(s;λj)
)

ds ≤ LD(λj)(d− t) , b1 ≤ t ≤ d .

Repeated integrations of (2.16) give

(2.17) λj

∫ d

t

(s− t)i

i!
p(s) f

(

ϕ(s;λj)
)

ds ≤ LD(λj)
(d− t)i

i!
, b1 ≤ t ≤ d ,

for i = 0, 1, 2, . . . , n− 1.
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By Taylor’s formula with remainder again, we get

ϕ(i)(t;λj) =

n−i−1
∑

l=0

ϕ(i+l)(d;λj)

l!
(t− d)l +

∫ t

d

(t− s)n−i−1

(n− i− 1)!
ϕ(n)(s;λj) ds

=

n−i−1
∑

l=0

(−1)l ϕ
(i+l)(d;λj)

l!
(d− t)l

+ (−1)n−i−1λj

∫ d

t

(s− t)n−i−1

(n− i− 1)!
p(s) f

(

ϕ(s;λj)
)

ds

for i = 0, 1, 2, . . . , n− 1. Then, using (2.17), we see that

∣

∣ϕ(i)(t;λj)
∣

∣ ≤
{

n−i−1
∑

l=0

[

ϕ(i+l)(d;λj)
]2

}1/2{ n−i−1
∑

l=0

[ (d− t)l

l!

]2}1/2

+ λj

∫ d

t

(s− t)n−i−1

(n− i− 1)!
p(s) f

(

ϕ(s;λj)
)

ds

≤ D(λj)
{

n−i−1
∑

l=0

[ (d− b1)
l

l!

]2}1/2

+ LD(λj)
(d− b1)

n−i−1

(n− i− 1)!

for all t ∈ [b1, d] and i = 0, 1, 2, . . . , n− 1. This implies that the sequences

{ϕ(i)(t;λj)

D(λj)

}

j
, i = 0, 1, 2, . . . , n− 1 ,

are uniformly bounded on the interval [b1, d]. Therefore, the sequences
{

ϕ(i)(t;λj)/D(λj)
}

j
, i = 0, 1, 2, . . . , n− 2 ,

are uniformly bounded and equicontinuous on [b1, d]. From this we can deduce that
there exist a Cn−2-class function ϕ0(t) on [b1, d] and a subsequence {λj′} ⊆ {λj}
— let us denote the subsequence {λj′} by {λj} again — such that

(2.18)
ϕ(i)(t;λj)

D(λj)
→ ϕ

(i)
0 (t) uniformly on [b1, d] as j → ∞ ,

where i = 0, 1, 2, . . . , n− 2. By (2.12), we have ϕ0(t) ≥ 0 for t ∈ [b1, d].
Consider the case where ϕ0(t) ≡ 0 on [b1, d]. In this case it follows from (2.18)

that, for i = 0, 1, 2, . . . , n− 2,

(2.19)
ϕ(i)(t;λj)

D(λj)
→ 0 uniformly on [b1, d] as j → ∞ .

In particular,

ϕ(i)(d;λj)

D(λj)
→ 0 as j → ∞ (i = 0, 1, 2, . . . , n− 2) .

Since
n−1
∑

i=0

{ϕ(i)(d;λj)

D(λj)

}2

= 1 ,
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we have
{ϕ(n−1)(d;λj)

D(λj)

}2

→ 1 as j → ∞ .

Then there is a subsequence {λj′} ⊆ {λj} — we denote the subsequence {λj′} by
{λj} again — such that either

ϕ(n−1)(d;λj)

D(λj)
=

ϕ(n−1)(d;λj)
{

∑n−1
i=0

[

ϕ(i)(d;λj)
]2

}1/2
→ +1 as j → ∞(2.20)

or

ϕ(n−1)(d;λj)

D(λj)
=

ϕ(n−1)(d;λj)
{

∑n−1
i=0

[

ϕ(i)(d;λj)
]2

}1/2
→ −1 as j → ∞(2.21)

holds. Assume that (2.20) occurs. Since ϕ(n−1)(t;λj)/D(λj) is nonincreasing on
[b1, d], we see that, for all sufficiently large j,

ϕ(n−1)(t;λj)

D(λj)
≥
ϕ(n−1)(d;λj)

D(λj)
≥

1

2
on [b1, d]

and so

ϕ(n−2)(d;λj)

D(λj)
−
ϕ(n−2)(b1;λj)

D(λj)
≥

1

2
(d− b1) .

Then, letting j → ∞ and noting (2.19), we get 0 ≥ (d − b1)/2, which is a con-
tradiction. Therefore, (2.20) does not occur. Consequently, for the case where
ϕ0(t) ≡ 0 on [b1, d], we must have (2.21).

Next consider the case where ϕ0(t) ≥ 0, 6≡ 0 on [b1, d]. In this case there are a
positive number δ > 0 and an interval [t1, t2] ⊆ [b1, d] such that 3δ ≤ ϕ0(t) ≤ 4δ
on [t1, t2]. Therefore, for all sufficiently large j,

(2.22) 2δD(λj) ≤ ϕ(t;λj) ≤ 5δD(λj) on [t1, t2] .

Assume that lim inf D(λj) = 0 as j → ∞. Then, for some subsequence {λj′} ⊆
{λj}, we have limj′→∞D(λj′ ) = 0. By (2.22), limj′→∞ ϕ(t;λj′ ) = 0 uniformly on
[t1, t2]. Then, from (1.10) and (2.22), we may suppose that

f(ϕ(t;λj′ )) ≥ L1ϕ(t;λj′ ) ≥ 2δL1D(λj′ ) on [t1, t2]

for all large j′, where L1 is a positive constant appearing (1.10). By (2.15), we get

2δL1λj′

∫ t2

t1

p(s) ds ≤ L

for all large j′. But this gives a contradiction as j′ → ∞.
Next assume that 0 < lim inf D(λj) <∞ as j → ∞. There are D0 ∈ (0,∞) and

a subsequence {λj′} ⊆ {λj} such that limj′→∞D(λj′ ) = D0 ∈ (0,∞). By (2.22),
we have δD0 ≤ ϕ(t;λj′ ) ≤ 6δD0 on [t1, t2] for all large j′. By (2.15) again, we get

M0λj′

∫ t2

t1

p(s) ds ≤ 2LD0
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for all large j′, where M0 = min
{

f(x) : δD0 ≤ x ≤ 6δD0

}

(> 0). This also gives
a contradiction as j′ → ∞.

Thus we must have lim inf D(λj) = ∞ as j → ∞, and hence limD(λj) = ∞ as
j → ∞. By (2.22), we may suppose that ϕ(t;λj) ≥ 1 on [t1, t2] for all j. Then, by
(1.10),

(2.23) f
(

ϕ(t;λj)
)

≥ L1ϕ(t;λj)
γ on [t1, t2] ,

where L1 > 0 and 0 < γ < 1. Using (2.15), (2.22) and (2.23), we can compute as
follows:

λj

∫ t2

t1

p(s) (2δ)γds ≤ λj

∫ t2

t1

p(s)
(ϕ(s;λj)

D(λj)

)γ

ds

≤ λjD(λj)
−γ 1

L1

∫ t2

t1

p(s) f
(

ϕ(s;λj)
)

ds ≤
L

L1
D(λj)

1−γ ,

which implies that

(2.24) D(λj) ≥ m′λ
1/(1−γ)
j

with

m′ =
[L1

L
(2δ)γ

∫ t2

t1

p(s) ds
]1/(1−γ)

> 0 .

By (2.22) and (2.24), we obtain

ϕ(t;λj) ≥ mλ
1/(1−γ)
j on [t1, t2]

(

⊆ [b, d]
)

,(2.25)

where m = 2δm′.
By the above arguments we find that if the sequence

{

ϕ(t;λj)
}

is considered
on [b, d], then either (2.21) or (2.25) holds. For the case where (2.25) holds, the
conclusion of the lemma is proved. For the case where (2.21) holds, we consider
the sequence

{

ϕ(t;λj)
}

on the interval [d, c]. Put

ψ(t;λj) = ϕ(2d− t;λj) , t ∈ [2d− c, d] .(2.26)

We have

ψ(i)(t;λj) = (−1)iϕ(i)(2d− t;λj) , i = 1, 2, . . . , n ,(2.27)

and, in particular, x = ψ(t;λj) is a solution of the equation

(2.28) x(n) + λp(2d− t)f(x) = 0 with λ = λj

on [2d− c, d], where the hypothesis (1.2) has been used. Observe that (2.28) is the
same form as the original equation (1.1). Since ψ(t;λj) ≥ 0, 6≡ 0 on [2d − c, d],
exactly as in the previous arguments, we find that either

ψ(n−1)(d;λj)
{

∑n−1
i=0

[

ψ(i)(d;λj)
]2

}1/2
→ −1 as j → ∞
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or there exist a number m > 0 and an interval [t1, t2]
(

⊆ [2d− c, d]
)

such that

ψ(t;λj) ≥ mλ
1/(1−γ)
j on [t1, t2] .

By the relations (2.26) and (2.27) these are equivalent to

(2.29)
ϕ(n−1)(d;λj)

{

∑n−1
i=0

[

ϕ(i)(d;λj)
]2

}1/2
→ +1 as j → ∞

and

(2.30) ϕ(t;λj) ≥ mλ
1/(1−γ)
j on [2d− t2, 2d− t1]

(

⊆ [d, c]
)

,

respectively. Of course, (2.29) contradicts (2.21). Thus, for the case where (2.21)
holds, we must have (2.30). This finishes the proof of Lemma 2.5.

Lemma 2.6. Let {λj} be a sequence such that 0 < λj → ∞ as j → ∞. Suppose

that, for each j, x(t;λj) has a zero z(λj) in [a,∞), and that

(2.31) lim
j→∞

z(λj) = ∞ .

Then, for all sufficiently large j, x(t;λj) has another zero in
[

a, z(λj)
)

.

Proof. Assume, contrary to our claim, that there is a subsequence {λj′} ⊆ {λj}
such that, for any j′, x(t;λj′ ) has no zeros in

[

a, z(λj′ )
)

. Since z(λj′) → ∞ as

j′ → ∞, we can take an interval [b, c] such that [b, c] ⊆
[

a, z(λj′)
)

for all j′. By
Lemma 2.5, there exist a constant m > 0 and a subinterval [b′, c′] ⊆ [b, c] and a
subsequence {λj′′} ⊆ {λj′} — we denote {λj′′} by {λj} again — such that

(2.32)
∣

∣x(t;λj)
∣

∣ ≥ mλ
1/(1−γ)
j on [b′, c′]

for all j. It follows from (2.5) that

x(t;λj) = 1 − λj

∫ z(λj)

t

(s− t)n−1

(n− 1)!
p(s) f

(

x(s;λj)
)

ds

− λj

∫

∞

z(λj)

(s− t)n−1

(n− 1)!
p(s) f

(

x(s;λj)
)

ds , t ≥ a .

If t ∈ [b′, c′], then

sgnx(t;λj) = sgnx(s;λj) for all s ∈
[

t, z(λj)
)

.

Hence we have

∣

∣x(t;λj)
∣

∣ = sgnx(t;λj) − λj

∫ z(λj)

t

(s− t)n−1

(n− 1)!
p(s)

∣

∣f(x(s;λj))
∣

∣ ds

− λj sgnx(t;λj)

∫

∞

z(λj)

(s− t)n−1

(n− 1)!
p(s) f

(

x(s;λj)
)

ds

for t ∈ [b′, c′], and so

∣

∣x(t;λj)
∣

∣ ≤ 1 + λj

∫

∞

z(λj)

(s− t)n−1

(n− 1)!
p(s)

∣

∣f(x(s;λj))
∣

∣ ds
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for t ∈ [b′, c′]. Then, using (2.32), (2.7) and (1.10), we find that

mλ
1/(1−γ)
j ≤ 1 + L2λjB(λj)

∫

∞

z(λj)

sn−1

(n− 1)!
p(s) ds ,

where

B(λj) =
[

1 + (1 − γ)λjL2

∫

∞

a

sn−1

(n− 1)!
p(s) ds

]γ/(1−γ)

.

This gives

0 < m ≤
1

λ
1/(1−γ)
j

+ L2

[ 1

λj
+ (1 − γ)L2

∫

∞

a

sn−1

(n− 1)!
p(s) ds

]γ/(1−γ)

×

∫

∞

z(λj)

sn−1

(n− 1)!
p(s) ds .

However, by the condition (2.31), the right-hand side of the above tends to 0 as
j → ∞. This is a contradiction. The proof of Lemma 2.6 is complete.

Lemma 2.7. Let {λj} be a sequence with 0 < λj → ∞ as j → ∞. Suppose that

z2(λj) and z1(λj) are successive zeros of x(t;λj) such that a < z2(λj) < z1(λj)
and

lim
j→∞

z1(λj) = ∞ .

Then we have

lim
j→∞

z2(λj) = ∞ .

Proof. Assume to the contrary that lim infj→∞ z2(λj) < ∞. There are a subse-
quence {λj′} ⊆ {λj} and an interval [b, c] such that [b, c] ⊆

(

z2(λj′ ), z1(λj′ )
)

for all
j′. Then, analogously to the proof of Lemma 2.6, we are lead to a contradiction.
The proof of Lemma 2.7 is complete.

Lemma 2.8. Let {λj} be a sequence with 0 < λj → ∞ as j → ∞, and let k be

an arbitrary positive integer. Then, for all sufficiently large j, x(t;λj) has at least

k zeros in the interval (a,∞).

Proof. Assume that there is a subsequence {λj′} ⊆ {λj} such that, for all j′,
x(t;λj′ ) has no zeros in (a,∞). Then,

(2.33) 0 < x(t;λj′ ) < 1 on (a,∞) for all j′ .

From Lemma 2.5 there exist a constant m > 0 and an interval [b′, c′] ⊆ (a,∞) and
a subsequence {λj′′} of {λj′} such that

x(t;λj′′ ) ≥ mλ
1/(1−γ)
j′′ on [b′, c′] for all j′′ ,

and consequently limj′′→∞ x(t;λj′′ ) = ∞ for each t ∈ [b′, c′]. This is a contradic-
tion to (2.33). Therefore, for all sufficiently large j, x(t;λj) has at least one zero
in (a,∞).
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For all sufficiently large j, let z1(λj) be the largest zero of x(t;λj). Assume
that lim infj→∞ z1(λj) <∞. There are a subsequence {λj′} ⊆ {λj} and a number
b such that b > z1(λ

1
j′ ) for all j′. We have

0 < x(t;λj′ ) < 1 on (b,∞) for all j′ .

Then, exactly as in the above, we obtain a contradiction. Thus we must have
limj→∞ z1(λj) = ∞. It is concluded by Lemma 2.6 that, for all sufficiently large
j, x(t;λj) has another zero z2(λj)

(

< z1(λj)
)

, and, by Lemma 2.7, we have

lim
j→∞

z2(λj) = ∞ .

We repeat this procedure by using Lemmas 2.6 and 2.7. Then we can get the
desired conclusion. The proof of Lemma 2.8 is complete.

We are now ready to prove Theorem 1.2.

Proof of Theorem 1.2. For k = 1, 2, . . . , we put

Λ+
k = {λ ∈ (0,∞) : x(t;λ) has at least k zeros in the open interval (a,∞)} .

By Lemma 2.8, Λ+
k is nonempty. Lemma 2.2 implies that there is λ∗ > 0 such

that λ ≥ λ∗ for all λ ∈ Λ+
k . Let

λ(k) = inf Λ+
k , k = 1, 2, . . .

Then we have λ(k) ≥ λ∗ > 0 (k = 1, 2, . . . ). Since Λ+
k ⊇ Λ+

k+1, we also have
λ(k) ≤ λ(k + 1) (k = 1, 2, . . . ).

For each k = 1, 2, . . . , we can take a sequence {λ(k)j}
∞

j=1 such that λ(k)j ∈ Λ+
k

(j = 1, 2, . . . ) and lim λ(k)j = λ(k) as j → ∞. The solution x(t;λ(k)j) has at
least k zeros in (a,∞). Let

(a <) zk(λ(k)j) < zk−1(λ(k)j) < · · · < z2(λ(k)j) < z1(λ(k)j) (<∞)

be k zeros of x(t;λ(k)j). It follows from Lemma 2.1 that all the zeros z1(λ(k)j),
z2(λ(k)j), . . . , zk(λ(k)j) are in a certain compact interval of the form [a, Tk]. Here,
Tk does not depend on j while it depends on k. There is a subsequence j′ of j
such that

{

z1(λ(k)j′ )
}

, . . . ,
{

zk(λ(k)j′ )
}

have finite limits z1(λ(k)), . . . , zk(λ(k))
as j′ → ∞, respectively. Then,

a ≤ zk

(

λ(k)
)

≤ zk−1

(

λ(k)
)

≤ · · · ≤ z2
(

λ(k)
)

≤ z1
(

λ(k)
)

≤ Tk ,

and the continuity of x(t;λ) implies that z1(λ(k)), . . . , zk(λ(k)) are zeros of x(t;λ(k)).
Assume that there is m ∈ {1, 2, . . . , k−1} such that zm(λ(k)) = zm+1(λ(k)). Since
we have x(zm(λ(k)j′ );λ(k)j′ ) = x(zm+1(λ(k)j′ );λ(k)j′ ) = 0 and x′(ξ;λ(k)j′ ) = 0
for some ξ ∈

(

zm+1(λ(k)j′ ), zm(λ(k)j′ )
)

, the continuity of x(t;λ) and x′(t;λ) im-
plies x(zm(λ(k));λ(k)) = 0 and x′(zm(λ(k));λ(k)) = 0. This means that zm(λ(k))
is a multiple zero of x(t;λ(k)), giving a contradiction to Lemma 2.3. Thus we get

a ≤ zk

(

λ(k)
)

< zk−1

(

λ(k)
)

< · · · < z2
(

λ(k)
)

< z1
(

λ(k)
)

<∞ .

Assume that a < zk

(

λ(k)
)

. Then x
(

t;λ(k)
)

has at least k zeros z1
(

λ(k)
)

, . . . ,

zk

(

λ(k)
)

in the open interval (a,∞). The continuity of x(t;λ) implies that, for all
λ which are sufficiently close to λ(k), x(t;λ) has at least k zeros in the interval



BOUNDED NONOSCILLATORY SOLUTIONS 53

(a,∞). This is a contradiction to the property of the infimum λ(k) of Λ+
k . Thus

we must have a = zk

(

λ(k)
)

, and so

a = zk

(

λ(k)
)

< zk−1

(

λ(k)
)

< · · · < z2
(

λ(k)
)

< z1
(

λ(k)
)

<∞ .

Note that x
(

t;λ(k)
)

has at least k− 1 zeros z1
(

λ(k)
)

, . . . , zk−1

(

λ(k)
)

in the open

interval (a,∞). If x
(

t;λ(k)
)

has k or more zeros in (a,∞), then an argument
similar to the above yields a contradiction to the property of the infimum λ(k) of
Λ+

k . Thus we conclude that x
(

t;λ(k)
)

has exactly k− 1 zeros in the open interval
(a,∞). From this fact it follows that the equality λ(k) = λ(k + 1) does not hold,
and consequently,

0 < λ(1) < λ(2) < · · · < λ(k) < · · · .

We claim that lim λ(k) = ∞ as k → ∞. Assume to the contrary that {λ(k)} has
a finite limit λ∞ as k → ∞. Then there is T > 0 such that, for all λ which are
sufficiently close to λ∞, x(t;λ) has no zeros in the interval [T,∞) (see Lemma 2.1).
Let N be an arbitrary positive integer. It is clear that, for all large k, x(t;λ(k)) has
at least N zeros on the compact interval [a, T ]. Then, in the limiting procedure as
the above, we find that x(t;λ∞) has at least N zeros in the interval [a, T ]. Since
N is arbitrary, this means that x(t;λ∞) has an infinite number of zeros in the
compact interval [a, T ]. This is a contradiction. Thus we have limλ(k) = ∞ as
k → ∞.

By the above discussions it is easily found that the sequence
{

λ(k)
}

satisfies
the properties (i)–(iii) in Theorem 1.2. The proof is complete.
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