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ON ALMOST DISCRETE SPACE

Ali Akbar Estaji

Abstract. Let C(X) be the ring of real continuous functions on a completely
regular Hausdorff space. In this paper an almost discrete space is determined
by the algebraic structure of C(X). The intersection of essential weak ideal in
C(X) is also studied.

1. Introduction

For every topological space of X, let I(X) be the set of all isolated points of X
and D(X) = X \ I(X). A topological space X is called scattered if each nonempty
set A ⊆ X contains an (in A) isolated point. Since intX D(X) = X \ clX I(X) and
D(X) is closed, then the D(X) of every scattered space is nowhere dense.

A topological space X is called almost discrete if I(X) is dense in X, see [6].
Let Y be the subset of plane consisting of all points

(
m
n ,

1
n

)
, where n 	 0 and the

greatest common divisor of m and n is 1. Clearly Y is discrete. Let X = clR2 Y .
Since [0, 1]× {0} ⊆ X has no isolated points, then X is almost discrete space, but
it is not a scattered space.

In what follows, X will denote a completely regular Hausdorff space. We denote
C(X) the ring of real continuous functions on a topological space of X. As usual, if
f ∈ C(X), its zero set f←(0) is denoted by Z(f), its cozero setX\Z(f) is denoted by
Coz(f), and if S ⊆ C(X), Z[S] = {Z(f) : f ∈ S} and Coz[S] = {Coz(f) : f ∈ S}.
Recall that βX is the Stone-Čech compactification of X and υX is the Hewitt
realcompactification of X. For undefined terms and notations, see [4].

Let R always denote a commutative ring with identity. For S ⊆ R, the ideal{
a ∈ R : aS = {0}

}
=
{
a ∈ R : ab = 0 for all b ∈ S

}
is called the annihilator of S and is also denoted by Ann(S) or AnnR(S).

M. R. Ahmadi Zand studied S.B. space that is a topological space X that for
every real-valued function f on X there exists an open dense subset D of X such
that f |D is continuous, he showed that every dense subset and open subset of S.B.
space is S.B. space (see [8]).

In 1995, essential ideal in C(X) were studied first by F. Azarpanah (see [1]).
Also he studied the countable intersection of essential ideals in C(X) (see [2]).

2000 Mathematics Subject Classification: Primary: 54C40; Secondary: 13A30.
Key words and phrases: essential weak ideal, weak socle, minimal ideal, almost discrete space,

scattered space, Stone-Čech compactification, realcompactification.
Received July 20, 2007, revised November 2007. Editor A. Pultr.

http://www.emis.de/journals/AM/


70 A. A. ESTAJI

In view of the connection between weak ideal and ideal in rings, in this paper,
we study ideal on semigroup (C(X), ·) by using the techniques similar to those
used in ring C(X). We introduce the concepts Weak ideal and essential weak ideal.
The study of these concepts and the union of all minimal ideal of C(X) are our
main objects. These objects are important tools to study almost discrete spaces.

2. Almost discrete space

In the theory of rings, many structure results were obtained with the help of
minimal ideals, and the socle of a ring seems to be most efficient. The sum of all
minimal ideals of R is the socle of R, see [5]. In this article we want to study the
relation between the union of all minimal ideal of C(X) and the topological space
of X.

If x is an isolated point of X, then we define
Ix =

{
f ∈ C(X) : Coz(f) = {x}

}
∪ {0} ⊆ C(X)

and put WCF (X) =
⋃
x∈I(X) Ix, if I(X) 6= ∅ and WCF (X) = {0}, if I(X) = ∅.

The minimal ideal in C(X) is characterized in [7], it follows that for every x ∈ I(X),
Ix is a minimal ideal, and WCF (X) is the union of all minimal ideal of C(X).
Finally we have WCF (X) =

{
f ∈ C(X) : |Coz(f)| = 0 or 1

}
.

But we must begin at the beginning, with the basic definitions.

Definition 2.1. A nonempty subset I of R is called a weak ideal of R if RI ⊆ I.

Remark. For a topological space of X, WCF (X) is a weak ideal in C(X), but it
is not necessarily ideal in C(X).

Definition 2.2. A proper weak ideal P in R is called prime if for every a, b ∈ R,
we have that a ∈ P or b ∈ P whenever ab ∈ P .

By the following proposition, for a topological space of X, if WCF (X) is a prime
weak ideal, then X is an almost discrete space.

Proposition 2.1. For a topological space of X, the following statements are
equivalent:

(1) WCF (X) is a prime weak ideal.
(2) |X| = 2.

Proof. (1)⇒ (2) Let I(X) > 2 and a, b ∈ I(X) be different elements. There exists
f, g ∈ C(X) such that f [X \ I(X)] = g[{a, b}] = {1} and f({a}) = g[X \ {a, b}] =
{0}. Then fg ∈ WCF (X), and g 6∈ WCF (X), it follows that f ∈ WCF (X).
Hence |X| = 2. Now we suppose that I(X) � 2. If X is a finite space, then
X = I(X). Hence C(X) = WCF (X) and we have a contradiction with WCF (X)
is a prime weak ideal. Therefore we may suppose that X is an infinite space. Let
a, b ∈ X \ I(X) be different elements. By complete regularity of X, there exists
f, g ∈ C(X) such that f(a) = g(b) = 0 and f(b) = g(a) = 0. Define h = f2 − g2,
and consider (h − |h|)(h + |h|) = 0. Since WCF (X) is a prime weak ideal of
C(X), h − |h| ∈ WCF (X) or h + |h| ∈ WCF (X). If h + |h| ∈ WCF (X), then
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f2 − g2 + |h| ∈Mb implies that f2 + |h| ∈Mb. But Mb is absolutely convex, and
therefore this would imply that f ∈Mb, a contradiction. Thus h− |h| ∈WCF (X).
But f2−g2−|h| ∈Mb implies that g2 + |h| ∈Mb and hence g ∈Mb a contradiction.

(2)⇒ (1) It is evident. �

Proposition 2.2. For a topological space of X, the following statements are
equivalent:

(1) X is an almost discrete space.
(2) Ann

(
WCF (X)

)
= {0}.

Proof. (1) ⇒ (2) Let e ∈ Ann(WCF (X)), then I(X) ⊆ Z(e), it follows that
X = clX(I(X)) ⊆ Z(e), i.e., e = 0

(2) ⇒ (1) We suppose that x ∈ X \ clX I(X) and get a contradiction. Then
by complete regularity of X, there exists g ∈ C(X) such that g[clX I(X)] =
{0} and g(x) = 1. Hence it is clear that 0 6= g ∈ Ann(WCF (X)) and we get
a contradiction. �

Lemma 2.1. If D is a dense subset of topological space X such that for all
f ∈ F (X,R)

(
f |D ∈ C(D)

)
then D = I(X) and it is a discrete subspace of X.

Proof. Let f be an arbitrary function on D. We can extend f to a function on X,
say g, then by hypothesis f = g|D ∈ C(D). Thus F (D,R) = C(D), it follows that
D is a discrete subspace of X.

Since D is a discrete subspace of X, for every d ∈ D there exists an open subset
V of X such that V ∩D = {d}. Thus

V ⊆ clX V = clX(V ∩D) = clX{d} = {d} ⊆ V
it follows that V = {d} is an open subset of X, this means that D ⊆ I(X) and D
is an open subset of X. Since D is a dense subset of X, therefore I(X) ⊆ D and
finally D = I(X). �

Proposition 2.3. For a topological space X, the following statements are equiva-
lent:

(1) X is an almost discrete space.
(2) There exists an unique dense subset D of X such that

∀f ∈ F (X,R)
(
f |D ∈ C(D)

)
.

Proof. (1) ⇒ (2) It is clear that I(X) is a discrete subspace of X. Hence if
f ∈ F (X,R), then f |I(X) ∈ C

(
I(X)

)
. By Lemma 2.1, we are through.

(2)⇒ (1) By Lemma 2.1, D = I(X) and we are through. �

Lemma 2.2. If D is a dense subset of X, then I(X) = I(D).

Proof. Since D is a dense subset of X, then I(X) ⊆ I(D) ⊆ D. If d ∈ I(D),
then there exists an open subset V of X such that D ∩ V = {d}, it follows that(
X \ {d}

)
∩D ∩ V = ∅. Since D is a dense subset of X, then

(
X \ {d}

)
∩ V = ∅

and therefore V = {d} is an open subset of X. Thus d ∈ I(X) and we conclude
that I(X) = I(D). �
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Proposition 2.4. For a topological space of X, the following statements are
equivalent:

(1) X is an almost discrete space.
(2) For every dense subset D in X, D is an almost discrete space.
(3) There exists a dense subset D in X such that D is an almost discrete space.

Proof. By Lemma 2.2, it is evident. �

By the above proposition, X is an almost discrete space if and only if βX is an
almost discrete space if and only if υX is an almost discrete space.

Proposition 2.5. For a topological space X, the following statements are equiva-
lent:

(1) X is an almost discrete space.
(2) For every open subset D in X, D is an almost discrete subspace of X.

Proof. (1)⇒ (2) Let U be an open subset of X. Then I(U) = I(X)∩U is a dense
subset of U .

(2)⇒ (1) It is clear. �

Proposition 2.6. For a topological space X, if every proper closed subset in X is
an almost discrete subspace of X, then X is an almost discrete space.

Proof. If X is finite, then X is discrete space, it follows that I(X) = X. Now we
suppose that X is infinite. By hypothesis I(X) 6= ∅. Let U be an open subset of
X. If clX(U) = X, then by Lemma 2.2, I(U) = I(X) 6= ∅, it follows that X is an
almost discrete space. Therefore we may suppose that clX(U) ( X. By hypothesis
V = clX(U) is an almost discrete subspace of X, hence U has an isolated point x
in V . It is clear that x ∈ I(X). Thus clX I(X) = X, i.e., X is an almost discrete
space. �

Proposition 2.7. Let {Xi}ni=1 be a family topological spaces and X =
∏n
i=1 Xi be

a product space. If for every 1 ≤ i ≤ n, Xi is an almost discrete space, then X is
an almost discrete space.

Proof. If I(Xi) and I(Xj) are dense in Xi and Xj respectively, then I(Xi×Xj) =
I(Xi)× I(Xj) is dense in Xi ×Xj and by induction on n, we are through. �

Remark. If for every i ∈ N, Xi = {0, 1} is a discrete space, then X =
∏
i∈N Xi is

not almost discrete space, in fact I(X) = ∅.

It is clear that every ideal of R is a weak ideal and conversely is false. It is
natural to ask: when WCF (X) is an ideal.

Proposition 2.8. For a topological space of X, the following statements are
equivalent:

(1) WCF (X) is an ideal of C(X).
(2) |I(X)| ≤ 1.
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(3) WCF (X) =
⋂
x∈D(X) Ox.

Proof. (1) ⇒ (2) Let a, b ∈ I(X) be different points of X. Then we define
f, g ∈ C(X) such that f(a) = g(b) = 1 and f

[
X \ {a}

]
= g
[
X \ {b}

]
= {0}. Hence

Coz(f2 +g2) = {a, b} and by hypothesis f2 +g2 ∈WCF (X), i.e., |Coz(f2 +g2)| ≤ 1
which we have a contradiction.

(2)⇒ (3) If I(X) = ∅, then WCF (X) =
⋂
x∈D(X) Ox = {0}.

Let I(X) = {a}. If 0 6= f ∈ WCF (X), then Z(f) = X \ {a} is an open subset
of X, it follows that f ∈

⋂
x∈D(X) Ox. So that if 0 6= f ∈

⋂
x∈D(X) Ox, then

D(X) ⊆ Z(f) 6= X, i.e., Coz(f) = {a} and f ∈WCF (X).
(3)⇒ (1) It is clear. �

By Lemma 2.2 and Proposition 2.8, the following statements are equivalent:
(1) WCF (X) is an ideal of C(X).
(2) WCF (βX) is an ideal of C(βX).
(3) WCF (υX) is an ideal of C(υX).

3. Essential weak ideals of C(X)

An ideal of R is called essential if it intersects every nonzero ideal nontrivially. In
the theory of rings, many structure results were obtained with the help of essential
ideals, and the socle of a commutative ring is the intersection of all essential ideals,
see [5].

One of the main aims of this section is to show that WCF (X) is an essential
weak ideal of C(X) if and only if X is an almost discrete space and also we study
the intersection essential weak ideals of C(X).

But we must begin with the basic definition, such as essential weak ideal.
Definition 3.1. A weak ideal of a ring R is called essential if it intersects every
nonzero weak ideal nontrivially.
Proposition 3.1. If A is a nonzero weak ideal in C(X), then the following
statements are equivalent:

(1) A is essential weak ideal in C(X).
(2) Ann(A) = {0}.
(3)

⋂
Z[A] is a nowhere dense subset of X.

Proof. (1)⇒ (2) It is clear that (Ann(A)∩A)2 = {0}, implies that Ann(A)∩A =
{0}. Hence Ann(A) = {0}.

(2)⇒ (3) Suppose the interior of
⋂
Z[A] is nonempty set. If x ∈ intX

⋂
Z[A],

then by the complete regularity of X, there is g ∈ C(X) such that g(x) = 1 and
g
[
X\intX

⋂
Z[A]

]
= {0}. Thus for every f ∈ A we have fg = 0, i.e., Ann(A) 6= {0},

a contradiction.
(3)⇒ (1) Let B be a nonzero weak ideal in C(X) and 0 6= g ∈ B. It is clear that

X \
⋂
Z[A] is open and dense in X. Then

(
X \Z[g]

)
∩
(
X \

⋂
Z[A]

)
6= ∅, it follows

that there is a f ∈ A for which
(
X \ Z[g]

)
∩
(
X \ Z[f ]

)
6= ∅. Therefore Z[fg] 6= X,

i.e., 0 6= fg ∈ A ∩B. Hence A is essential weak ideal in C(X). �
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Corollary 3.1. The ideal (weak ideal) E is essential ideal (weak ideal) in C(X) if
and only if intX

⋂
Z[E] = ∅.

Proposition 3.2. For a topological space of X, the following statements are
equivalent:

(1) WCF (X) is an essential weak ideal of C(X).
(2) X is an almost discrete space.

Proof. (1)⇒ (2) Let G be a proper nonempty open subset of X. Then

I =
{
f ∈ C(X) : X \G ⊆ Z(f)

}
is a nonzero ideal of C(X) and by hypothesis there exists 0 6= f ∈ WCF (X) ∩ I.
Hence Coz(f) ⊆ I(X) ∩G and we are through.

(2)⇒ (1) Let I be a nonzero weak ideal and 0 6= f ∈ I, then by hypothesis

Coz(f) ∩
(
X \

⋂
Z
[
WCF (X)

])
= Coz(f) ∩ I(X) 6= ∅

this implies that there exists g ∈WCF (X) such that Coz(f) ∩ Coz(g) 6= ∅. Hence
Z(fg) 6= X, i.e., 0 6= fg ∈WCF (X) ∩ I. �

Proposition 3.3. For a topological space of X, the following statements are
equivalent:

(1)
⋃
x∈X Ox is an essential weak ideal in C(X).

(2) For every 0 6= f ∈ C(X), if f is not unit then there exists 0 6= g ∈ C(X)
such that intX Z(fg) 6= ∅.

Proof. (1)⇒ (2) Let 0 6= f ∈ C(X) and it is not unit. Then fC(X)∩
(⋃

x∈X Ox
)
6=

{0}, it follows that there exists g ∈ C(X) such that fg ∈
⋃
x∈X Ox. Therefore

there exists x ∈ X such that x ∈ intX Z(fg) 6= ∅.
(2) ⇒ (1) Let I 6= {0} be a proper weak ideal in C(X). If 0 6= f ∈ I, then

there exists 0 6= g ∈ C(X) and x ∈ X such that x ∈ intX Z(fg), it follows that
fg ∈ I ∩

(⋃
x∈X Ox

)
. Hence

⋃
x∈X Ox is an essential weak ideal in C(X). �

In the following example we show that there exists weak ideal in C(X) such
that Z[I] is closed under finite intersection, but it is not ideal in C(X).

Example 1. Let

f(x) =
{

1
ln(x) x 	 0
x x 5 0

and g(x) =
{
x x = 0

1
ln(−x) x � 0

.

Then limx→0+
f(x)
g(x) = −∞ and limx→0−

g(x)
f(x) = +∞. Thus f 6∈ gC(X) and g 6∈

fC(X). Let I = fC(X) ∪ gC(X), then I is a weak ideal in C(X), but I is not
ideal in C(X), for if f + g ∈ I, then there exists h ∈ C(X) such that f + g = fh or
f + g = gh, it follows that g = (h− 1)f ∈ fC(X) or f = (h− 1)g ∈ gC(X), which
we have a contradiction. Also since Z(ff1) ∩ Z(gg1) = Z

(
f(f2

1 + g2
1)
)
, hence Z[I]

is closed under finite intersection.



ON ALMOST DISCRETE SPACE 75

Lemma 3.1. Let J be a weak ideal of C(X) and A =
⋂
f∈J clβX Z(f). If Z[J ]

is closed under finite intersection then OA ⊆ J , where OA = {f ∈ C(X) : A ⊆
intβX clβX Z(f)}.

Proof. Let g ∈ OA. By Lemma 1.1 in [3], there exists an open neighborhood
U of A with U ∩ X ⊆ Z(g). For each y ∈ βX \ U . We can find an fy ∈ J so
that y 6∈ clβX Z(fy). Since βX is regular we may choose a neighborhood Uy of
y disjoint from clβX Z(fy). The Uy’s cover the compact set βX \ U so for some
y1, . . . , yn ∈ βX, βX \ U ⊆

⋃n
i=1 Uyi . By hypothesis there exists f ∈ J such that

Z(f) =
⋃n
i=1 Z(fyi) so that clβX Z(f) =

⋃n
i=1 clβX Z(fyi) and hence

(βX\U)∩clβX Z(f) ⊆
( n⋃
i=1

Uyi

)
∩
( n⋃
i=1

clβX Z(fyi)
)
⊆

n⋃
i=1

(
Uyi∩clβX Z(fyi)

)
= ∅ .

This means Z(f) ⊆ X∩clβX Z(f) ⊆ U∩X ⊆ Z(g), it follows that Z(f) ⊆ intX Z(g).
By Problem 1D(1) in [4], there exists h ∈ C(X) with g = fh ∈ J , so OA ⊆ J . �

Corollary 3.2. If J is an ideal of C(X) and A =
⋂
f∈J clβX Z(f), OA ⊆ J ⊆MA,

where MA = {f ∈ C(X) : A ⊆ clβX Z(f)}.

Proof. Since Z[J ] is closed under finite intersection, be Lemma 3.1, we are
through. �

We need the following lemma which is proved in [3].

Lemma 3.2. For a topological space of X, if A ⊆ βX,⋂
f∈OA

clβX Z(f) = clβX A =
⋂

f∈MA
clβX Z(f)

and if OA ⊆MB, clβX B ⊆ clβX A.

Proposition 3.4. Let λ be a cardinal number and X be a compact space. If every
intersection of a family A of essential weak ideals in C(X) with |A| ≤ λ is an
essential ideal in C(X), then every union of a family V of nowhere dense subset in
X with |V| ≤ λ is nowhere dense subset of X.

Proof. Let {Vi}i∈I be a family of nowhere dense subset of X with |I| ≤ λ
and V =

⋃
i∈I Vi. By Lemma 3.2,

⋂
Z[OVi ] = clX Vi. Since intX clX Vi = ∅, by

Corollary 3.1, OVi is an essential weak ideal of C(X). So that by our hypothesis
E =

⋂
i∈I O

Vi = OV is an essential weak ideal of C(X), hence again by Lemma
3.2 and Corollary 3.1,

⋂
Z[E] = clX V and intX clX V = ∅, it follows that V is

nowhere dense subset of X. �

Proposition 3.5. Let λ be a cardinal number and X be a compact space. If every
union of a family V of nowhere dense subset in X with |V| ≤ λ is nowhere dense
subset of X, then every intersection of a family {Ai}i∈I of essential weak ideals in
C(X) with |I| ≤ λ such that for every i ∈ I, Z[Ai] is closed under finite intersection
is an essential ideal in C(X).
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Proof. Let {Ai}i∈I be a family of essential weak ideals in C(X) with |I| ≤ λ
such that for every i ∈ I, Z[Ai] is closed under finite intersection. We put for
each i ∈ I, Vi =

⋂
Z[Ai] and V =

⋃
i∈I Vi. Hence by Corollary 3.1, for each i ∈ I,

intX clX Vi = intX
⋂
Z[Ai] = ∅, i.e., Vi is a nowhere dense subset of X. By Lemma

3.1, OVi ⊆ Ai and hence OV =
⋂
i∈I O

Vi ⊆
⋂
i∈I Ai. Now we have by Lemma 3.2,⋂

Z[OV ] = clX V and since by our hypothesis V is nowhere dense subset of X,
then OV is an essential weak ideal of C(X), it follows that

⋂
i∈I Ai is an essential

weak ideal of C(X). �

The following result the consequence of Proposition 3.4 and 3.5.

Corollary 3.3. Let λ be a cardinal number. For a compact space X, the following
statements are equivalent:

(1) If {Ai}i∈I is a family of essential ideals in C(X) and |I| ≤ λ, then
⋂
i∈I Ai

is essential ideal in C(X).
(2) If {Vi}i∈I is a family of nowhere dense subset of X and |I| ≤ λ, then⋃

i∈I Vi is nowhere dense subset of X.

By the above proposition, for a compact space X, every countable intersection
of essential ideals in C(X) is an essential ideal in C(X) if and only if every first
category subset of X is nowhere dense subset in X.
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