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A NEW APPROACH FOR DESCRIBING INSTANTANEOUS
LINE CONGRUENCE

Rashad A. Abdel-Baky and Ashwaq J. Al-Bokhary

Abstract. Based on the E. Study’s map, a new approach describing instan-
taneous line congruence during the motion of the Darboux frame on a regular
non-spherical and non-developable surface, whose parametric curves are lines
of curvature, is proposed. Afterward, the pitch of general line congruence is
developed and used for deriving necessary and sufficient condition for ins-
tantaneous line congruence to be normal. In terms of this, the derived line
congruences and their differential geometric invariants were examined.

1. Introduction

A set of two-parameter of lines in space is called a rectilinear line congruence
(line congruence for short), where the normals to a surface constitute such a line
congruence. Generally, the lines of a congruence are not normal to a surface. Hence,
the line congruence of normals forms a special class; which is called normal line
congruence. They were the first studied, particularly in investigations of the effects
of reflection and refraction upon rays of light (geometric optic). The first purely
mathematical treatment of general line congruence was given by Kummer in his
memoir; Allgemeine Theorie der Gradlinigen Strahen system, Eisenhart [8]. The
lines of a line congruence meet a given plane in such a way that through a point
of the plane one line, or at most a finite member, pass. Similar results hold if a
surface be taken instead of a plane; this surface is called the surface of reference or
director surface of the line congruence. The lines of the line congruence which pass
through a curve on the surface form a one-parameter family of lines in the space
or ruled surface (parameter ruled surface).

An important analytical tool in the study of line trajectories is the introduction of
dual numbers which were first introduced by Clifford [7], and rediscovered by Study
[9, 13, 21]. A comprehensive analysis of dual numbers and their applications to the
kinematics analysis of spatial linkages were conducted by Yang [23]. Bottema &
Roth [6] introduced a treatment of theoretical kinematics using dual numbers. Dual
numbers are extremely useful for spatial mechanisms, since there is a vast literatures
on this branch of classical differential line geometry and spatial mechanisms (see
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for instance Refs. [14]–[21]). In two-parameter spatial motion, the trajectories of
oriented lines embedded in a moving rigid body are line congruences. In kinematics,
we are interested in studying the intrinsic properties of line trajectory based on the
concepts of differential geometry. The applications of line geometry and dual number
representation of line trajectories have been developed by Blaschke [5], Bottema &
Roth [6], and Muller [17]. A more recent descriptions of this representation can be
found in the works [3, 4], [19]–[20]. The dual number is used to recast the point
displacement relationship into relationships of lines.

At present, the differential geometry of line congruence have been widely applied
in design and manufacturing, (e.g. Computer Aided Geometric Design/Computer
Aided Manufacturing) of products and many other areas such as motion analysis
and simulation of rigid bodies and model-based object recognition systems [15]–[20].

The present work includes the following: In Section 2, we present, in brief, the
basic definitions of the representation of oriented lines in terms of dual vectors and
E. Study’s map and the Darboux frame on a regular surface whose parametric
curves are lines of curvature as well as line congruence. In Section 3, we show
how to describe instantaneous line congruence by using the dual vector calculus.
The pitch of general line congruence is developed and used for deriving necessary
and sufficient condition for line congruence to be normal. In terms of this, in
Kummer’s sense, the derived instantaneous line congruences are investigated and
the correspondences between their differential geometric invariants are examined.

2. Oriented lines with dual representation

The first application of dual numbers into line congruences is due to Blaschke
[5], Bottema & Roth [6], and Muller [17]; since the fundamental idea is to replace
points by lines as fundamental concepts of geometry. Points are then defined by
the straight lines through them.

We start our discussion by reviewing some of the basic concepts of dual numbers.
Dual numbers are the set of all pairs of real numbers written as
(2.1) A = a+ εa∗, a, a∗ ∈ R,
where the dual unit ε satisfies the relationships
(2.2) ε 6= 0 , ε1 = 1ε , ε2 = 0 .
Given dual numbers A = a+ εa∗, and B = b+ εb∗ the rules for combination can
be defined as:

(2.3)


Equality: A = B ⇐⇒ a = b, a∗ = b∗ ,

Addition: A+B = (a+ b) + ε(a∗ + b∗) ,

Multiplication: AB = ab+ ε(a∗b+ ab∗) .
The set of dual numbers, denoted as D, forms a commutative group under addition.
The associative laws hold for multiplication and dual numbers are distributive. As
a result, the division of dual numbers is defined as:

(2.4) A

B
= a

b
+ ε(a

∗b− ab∗

b2
) , b 6= 0 .
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A dual number is called a pure dual when
(2.5) A = εa∗ .

Division by a pure dual number is not defined. An example of dual number is the
dual angle between two skew lines in three-dimensional Euclidean space E3 defined
as:
(2.6) Θ = θ + εθ∗ ,

where θ is projected angle between the lines and θ∗ is the minimal distance between
the lines along their common perpendicular line.

2.1. E. Study’s Map.
An oriented line L in the three-dimensional Euclidean space E3 can be determined
by a point p ∈ L and a normalized direction vector a of L, i.e. ‖a‖ = 1. To obtain
components for L, one forms the moment vector
(2.7) a∗ = p× a ,
with respect to the origin point in E3. If p is substituted by any point

q = p+λa , λ ∈ <,
on L, equation (2.7) implies that a∗ is independent of p on L. The two vectors a,
and a∗ are not independent of one another; they satisfy the following relationships:
(2.8) 〈a,a〉 = 1 , 〈a∗,a〉 = 0 .
The six components ai, a∗i (i = 1, 2, 3) of a and a∗ are called the normalized Plücker
coordinates of the line L. Hence the two vectors a and a∗ determine the oriented
line L.

Conversely, any six-tuple ai, a∗i (i = 1, 2, 3) with
(2.9) a2

1 + a2
2 + a2

3 = 1 , a1a
∗
1 + a2a

∗
2 + a3a

∗
3 = 0 .

represents a line in the three-dimensional Euclidean space E3. Thus, the set of
all oriented lines in the three-dimensional Euclidean space E3 is in one-to-one
correspondence with pairs of vectors in E3 subject to the relationships in equation
(2.8).

For vectors (a∗,a) ∈ E3 × E3 we define the set
(2.10) D3 = D ×D ×D = {A = a+εa∗; ε 6= 0, ε1 = 1ε, ε2 = 0} .
Then for any vectors A and B in D3, the scalar product is defined by:

〈A,B〉 = 〈a,b〉+ ε
(
〈a∗,b〉+ 〈a,b∗〉

)
,

and the norm of A is defined by:

(2.11) ‖A‖ = ‖a‖+ ε
〈a∗,a〉
‖a‖ , ‖a‖ 6= 0 .

Hence, we may write the dual vector A as a dual multiplier of a dual vector in the
form
(2.12) A = ‖A‖U ,
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where U is referred to as the axis. The ratio

(2.13) P = 〈a
∗,a〉
‖a‖2

,

is called the pitch along the axis U. If P = 0 and ‖a‖ = 1, A is an oriented line,
and when P is finite, A is a proper screw, and when P is infinite, A is called a
couple. A dual vector with norm equal to unit is called a dual unit vector. From
equation (2.13) it is easy to show that a dual unit vector satisfy the relationships
in equation (2.11). Hence, each oriented line L = (a,a∗) ∈ E3 is represented by
dual unit vector
(2.14) A = a + εa∗ .
The dual unit sphere in D3 is defined as the following:
(2.15) K =

{
A ∈D3 | ‖A‖2 = 〈a,a〉+ ε〈a∗,a〉 = 1

}
.

It follows that relations (2.8) and (2.15) are corresponding. Via this we have the
following map (Gugenheimer [9] E. Study’s Map): The set of all oriented lines in
Euclidean 3-space E3 is in one-to-one correspondence with set of points of dual
unit sphere in dual 3-space D3.

This dualized form of line representation along with the E. Study’s map leads
to a new interpretation of the scalar and vectorial products of two lines. For two
directed lines X and Y the dual angle Θ = θ + εθ∗combines the angle θ and the
minimal distance θ∗. This gives rise to geometric interpretations of the following
products of the dual unit vectors:
(2.16) 〈X,Y〉 = cos Θ = cos θ − εθ∗ sin θ .
The following special cases can be given:

(1) If 〈X,Y〉 = 0, then θ = π
2 and θ∗ = 0; this means that the two lines X and

Y meet at right angle.
(2) If 〈X,Y〉 = pure dual, then θ = π

2 and θ∗ 6= 0; the lines X and Y are
orthogonal skew lines,

(3) If 〈X,Y〉 = pure real, then θ 6= π
2 and θ∗ = 0; the lines X and Y are

intersect.
(4) If 〈X,Y〉 = 1, then θ = 0 and θ∗ = 0; the lines X and Y are coincident

(their directions are the same or opposite).
The vectorial product of X and Y is defined by
(2.17) X×Y = N sin Θ ,

where N represents a direct common perpendicular of the lines X and Y, and the
signs of θ and θ∗ are related to the orientation of N. If oriented lines X and Y
meet at right angle, then
(2.18) Z = cos ΦX + sin ΦY ,

define a line which is the image of X under a helicial motion about the axis X×Y
with dual angle Φ.
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2.2. Line congruence in Euclidean 3-space E3.
As stated earlier, a line congruence is a two-parameter set of lines in E3 described
as lines through a surface r = r(u1, u2) and in the direction of e = e(u1, u2) is
parametrized by [11, 15, 23]:
(2.19) K : Y(u1, u2, µ) = r(u1, u2) + µe(u1, u2) , µ ∈ R ,

where r = r(u1, u2) is its director surface and e = e(u1, u2) is the unit vector
along the direction of the generating lines of the congruence, i.e. ‖e‖ = 1. µ is
the parameter of its points indicating the singed distance of the corresponding
point on r = r(u1, u2). On each generator of K, there are two special real (complex
identical) points, called focal points. The locus of these focal points are called the
focal surfaces of the line congruence; in general there are two parts of the focal
surfaces.

Let the vector function r = r(u1, u2) represent a regular non-spherical and-non
developable surface M , and suppose that the u1-and u2 curves of this parame-
trization are lines of curvature, i.e., the elements g12 and h12 of the first and
second fundamental forms vanish identically (g12=h12 = 0). Consider now the unit
vectors e1 = e1(u1, u2), e2 = e2(u1, u2), are the tangents of the parametric curves
u2 = const., u1 = const., and the unit vector e3 = e3(u1, u2) of the normal to the
surface M at any regular point, then we have [1, 2]:

(2.20) e1 = 1
√
g11

∂r
∂u1

, e2 = 1
√
g22

∂r
∂u2

, e3 = e1 × e2 ,

which are invariants vector functions on the surface. Using that u1-and u2 curves are
curvature lines on the surface, we can calculate ds = √g11 du1 and ds̄ = √g22 du2,
the arc length parameters of the curves u2 = const., u1 = const., respectively. The
moving frame {e1, e2, e3} on the surface M at every regular point is then called
the Darboux frame. Hence, by means of the derivatives with respect to the arc
length parameter of the curves u2 = const. with tangent e1 on M , the derivative
formula with respect to the Darboux frame, may be stated as:

(2.21) ∂

∂s

e1
e2
e3

 =

 0 q k
−q 0 0
−k 0 0

e1
e2
e3

 ,

where k = h11
g11

=
〈
∂e1
∂s , e3

〉
, and q = −(g11)u2

2g11
√
g22

=
〈
∂e1
∂s , e2

〉
are the normal and

geodesic curvatures of the curves u2 = const., respectively. Similarly, the derivative
formula of the Darboux frame of the curves u1 = const., with tangent e2 on M is

(2.22) ∂

∂s̄

e1
e2
e3

 =

 0 q̄ 0
−q̄ 0 k̄

0 −k̄ 0

e1
e2
e3

 ,

also k̄ = h22
g22

=
〈
∂e2
∂s̄ , e3

〉
, and q̄ = (g22)u1

2g22
√
g11

= −
〈
∂e2
∂s̄ , e1

〉
have the same meaning

as in (2.21), for the curves u1 = const. on the surface M . Here, gij and hij are the
coefficients of the first and second fundamental forms of the surface M . We shall
denote ∂/∂s and ∂/∂s̄ by the suffixes 1 and 2.
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Since k, k̄, and q, q̄ are the invariant quantities of curvature on M , these
invariants and their derivatives must fulfill the Gauss-Codazi equations [23]:

(2.23) − q2 + q2 − kk̄ = q̄1 + q̄2 , q(k̄ − k) + k2 = 0 , q̄(k̄ − k) + k̄1 = 0 .

3. Instantaneous line congruences

The relation between line geometry and kinematics in the Euclidean 3-space E3

can be used for understanding the line congruences from a practical point of view.
Then, according to E. Study’s map equation (2.19) can be rewritten as:

(3.1) E(u1, u2) = e(u1, u2) + εr(u1, u2)× e(u1, u2) .

Since the spherical image e(u1, u2) is a unit vector, then the dual vector E(u1, u2)
also has unit magnitude as is seen from the computations:

〈E,E〉 = 〈e + εr× e, e + εr× e〉
= 〈e, e〉+ 2ε〈r× e, e〉+ ε2〈r× e, r× e〉
= 〈e, e〉 = 1 .(3.2)

Thus the line congruence fills a domain on dual unit sphere in D3. Hence, the line
congruence can be viewed as a two-dimensional surface in D3-space. It follows that
there are resemblances between theory of surfaces and theory of line congruences.
This provides the ability to have the dual versions of the derivative formulae of
(2.21), and (2.22), respectively, in the following forms:

(3.3) ∂

∂s

E1
E2
E3

 =

 0 q k
−q 0 ε
−k −ε 0

E1
E2
E3

 ,

and

(3.4) ∂

∂s̄

E1
E2
E3

 =

 0 q̄ −ε
−q̄ 0 k̄

ε −k̄ 0

E1
E2
E3

 .

From equations (3.3), and (3.4), we see that:

Ω(u1, u2) = ω + εω∗ = εE1 − kE2 + qE3 ,

Ω̄(u1, u2) = ω + εω̄∗ = k̄E1 + εE2 + q̄E3 ,(3.5)

are the instantaneous dual Darboux vectors along the curves u2 = const., u1 =
const., respectively. These vectors allows to collect the derivations formulae (3.3),
and (3.4) by:

(3.6) ∂Ei

∂s
= Ω×Ei ,

∂Ei

∂s̄
= Ω̄×Ei i = 1, 2, 3 .
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Then

(3.7)
H(u1, u2) = h + εh∗ = εE1 − kE2 + qE3√

k2 + q2
,

H̄(u1, u2) = h̄ + εh̄∗ = k̄E1 + εE2 + q̄E3√
k̄2 + q̄2

,

are the dual unit vectors along the instantaneous axes of the Darboux frame on
the surface M for the curves u2 = const., u1 = const., respectively. Now, in view
of equations (2.13), from (3.5) we have that:

(3.8) P = 〈ω
∗, ω〉
‖ω‖2

= 0 , P̄ = 〈ω̄
∗, ω̄〉
‖ω̄‖2

= 0 .

Equations (2.16), and (3.7) show that:

(3.9)
{
〈H,E1〉 = pure dual, 〈H,E2〉 = pure real = 〈H,E3〉 ,
〈H̄,E2〉 = pure dual, 〈H̄,E1〉 = pure real = 〈H̄,E3〉 .

If we calculate the real and dual parts of equations (3.7), respectively, we have:

(3.10)


h = −ke2 + qe3√

k2 + q2
,

h̄ = k̄e1 + q̄e3√
k̄2 + q̄2

,

and

(3.11)


h∗ = e1 − ke∗2 + qe∗3√

k2 + q2
,

h̄∗ = k̄e∗1 + e2 + q̄e∗3√
k̄2 + q̄2

.

Therefore, in view of (2.7), the position vectors of the intersection points of H with
E3, and E2 are found as results of real and dual parts as follows:

(3.12)


F : x(u1, u2) = r(u1, u2) + 1

k
e3(u1, u2) , k 6= 0 ,

C : z(u1, u2) = r(u1, u2) + 1
q
e2(u1, u2) , q 6= 0 .

Similarly, the position vectors of the intersection points of H̄ with the oriented
lines E3, and E1 are:

(3.13)


F̄ : x̄(u1, u2) = r(u1, u2) + 1

k̄
e3(u1, u2) , k̄ 6= 0 ,

C̄ : z̄(u1, u2) = r(u1, u2)− 1
q̄
e1(u1, u2) , q̄ 6= 0 .
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In consequence, we need the following derivatives:

(3.14)



∂h
∂s

= h1 = (q1k − qk1)
k2 + q2

(qe2 + ke3√
k2 + q2

)
,

∂h
∂s̄

= h2 = kq̄√
k2 + q2

e1 + k
( q̄2 + q̄1

k2 + q2

)(qe2 + ke3√
k2 + q2

)
,

∂h̄
∂s

= h̄1 = q̄k̄(q2 − q2)
(k̄2 + q̄2) 3

2
e1 + k̄q√

k2 + q2
e2 −

k̄2(q2 − q2)
(k̄2 + q̄2) 3

2
e3 ,

∂h̄
∂s̄

= h̄2 = q̄(q̄k̄2 − q̄2k̄)
(k̄2 + q̄2) 3

2
e1 −

k̄(q̄k̄2 − q̄2k̄)
(k̄2 + q̄2) 3

2
e3 .

and

(3.15)



∂z̄
∂s

= z̄1 = (q̄2 + q̄1)
q̄2 e1 −

1
q̄

(qe2 + ke3) , ∂z̄
∂s̄

= z̄2 = q̄2

q̄2 e1 ,

∂z
∂s

= z1 = − q1

q2 e2 ,
∂z
∂s̄

= z2 = − q̄
q
e1 + (q2 − q2)

q2 e2 + k̄

q
e3 ,

∂x̄
∂s

= x̄1 = (1− k

k̄
)e1 −

k̄1

k̄2
e3 ,

∂x̄
∂s̄

= x̄2 = − k̄2

k̄2
e3 ,

∂x
∂s

= x1 = −k1

k2 e3 ,
∂x
∂s̄

= x2 =
(

1− k̄

k

)
e2 −

k2

k2 e3 .

In view of equations (2.21), and (2.22). Hence, the unit normal vectors to the
surfaces C, and C̄ are:

z̄1 × z̄2

‖z̄1 × z̄2‖
= h and z2 × z1

‖z2 × z1‖
= h̄ .

It is known that the consecutive normals along a line of curvature on M : r =
r(u1, u2) intersect, the points of intersection being the corresponding center of
curvature. The locus of the centers of curvature for all points of the surface M
is called the surface of centers or centro-surface of M . In general it consists of
two sheets, conjugated to the two families of lines of curvature and called focal
surfaces of M . The normals to M are tangents to family of geodesics on each sheet
of centro-surface. Thus according to Beltrami’s theorem [23], the surface M is
an involute of its centro-surface with respect to this family of geodesics, and the
centro-surface is one sheet of the evolute with respect to M . The family of geodesic
curves on one of the focal surface is edge of regression of the developable ruled
surfaces generated by the normals along one family of lines of curvature on M . The
orthogonal trajectories of the geodesics on the focal surface correspond to the lines
of curvature on M along which one of the radii of normal curvature is constant.
The locus of the centers of geodesic curvature of the line of curvature on M is the
second sheet of evolute; this second sheet could be called complementary surface
for M . Therefore, there are two complementary surfaces conjugates to the two
families of lines of curvature on M , the position vectors of which are z̄ = z̄(u1, u2),
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and z = z(u1, u2), corresponding to 1
k̄
, and 1

k constants, respectively. From the
above discussions, we record the following theorem:

Theorem 3.1. Under the above notations, the motion of the Darboux frame
along a line of curvature on a regular non-spherical and non-developable surface
in Euclidean 3-space E3 is revolution. The instantaneous revolution axis of the
Darboux frame and the instantaneous tangent of this line of curvature are orthogonal
skew lines. Additionally, the instantaneous revolution axis of the Darboux frame
satisfies the following:

(i) it normals to the complementary surface which is conjugate to the orthogonal
path of this line of curvature,

(ii) it tangent to the focal surface which is conjugate to this line of curvature.

4. Properties of instantaneous line congruences

Let us start again with the regular surface M defined at the beginning of our
work. For this purpose, we are going to investigate in this paper the following: By
the motion of the Darboux frame on the surface M , and according to equations
(3.12), and (3.13), we can introduce the following line congruences:

(4.1)
{
T : Y(u1, u2, µ) = x(u1, u2) + µh(u1, u2) ,

T̄ : Ȳ(u1, u2, µ) = x̄(u1, u2) + µh̄(u1, u2) ,

and

(4.2)
{
Q : Y(u1, u2, µ) = z(u1, u2) + µh(u1, u2) ,

Q̄ : Ȳ(u1, u2, µ) = z̄(u1, u2) + µh̄(u1, u2) .

In order to investigate the properties of the line congruence T at first, if the
coefficients of the first and second fundamental forms of T , in the Kummer sense are
e, f , g; a, b, b′, c, then we have, from equations (3.14), (3.15), and with attention
to Gauss-Coodazi equations, that:

(4.3)



e := g11〈h1,h1〉 = g11

(q1k − qk1

k2 + q2

)2
,

f := √g11g22〈h1,h2〉 = −√g11g22
k(q1k − qk1)(q̄2 + q̄1)

(k2 + q2)2 ,

g := g22〈h2,h2〉 = g22
k2[q̄2(k2 + q2) + (q̄2 + q̄1)2]

(k2 + q2)2 ,
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and

(4.4)



a := g11〈h1,x1〉 = g11
k1(q1k − qk1)
k(k2 + q2) 3

2
,

b := √g11g22〈h1,x2〉 = 0 ,

b′ := √g11g22〈h2,x1〉 = −√g11g22
k1(q̄2 + q̄1)
(k2 + q2) 3

2
,

c := g22〈h2,x2〉 = 0 .

The same arguments can be valid for the line congruence T̄ . Therefore, if ē, f̄ , ḡ; ā,
b̄, b̄′, c̄ are the coefficients of the first and second fundamental forms of T̄ , we have:

(4.5)



ē = g11
k̄2[q2(k̄2 + q̄2) + (q2 − q2)2]

(k̄2 + q̄2)2
,

f̄ = √g11g22
k̄(q̄2k̄ − q̄k̄2)(q2 − q2)2

(k̄2 + q̄2)2
,

ḡ = g22( q̄2k̄ − q̄k̄2

k̄2 + q̄2
)2 ,

and

(4.6)



ā = 0 ,

b̄ = √g11g22
k̄2(q2 − q2)
(k̄2 + q̄2) 3

2
,

b̄′ = 0 ,

c̄ = −g22
k̄2(q̄2k̄ − q̄k̄2)
k̄(k̄2 + q̄2) 3

2
.

4.1. Pitch of ruled surface belonging to line congruence.
A relation such as f(u1, u2) = 0 between the parameters u1, u2 restricts the
line congruence to a one-parameter set of lines, that is, to a ruled surface in the
congruence. In (2.19), the equations

(4.7) u1 = u1(t) , u2 = u2(t) , u
′2
1 + u

′2
2 6= 0,

define a ruled surface belonging to these line congruences. Firstly, we can describe
the ruled surface belonging to K by the equation

(4.8) Y
(
u1(t), u2(t), µ

)
= r
(
u1(t), u2(t)

)
+ µe

(
u1(t), u2(t)

)
, t, µ ∈ R .

For this ruled surface

(4.9) Y
(
u1(t+ 2π), u2(t+ 2π), µ

)
= Y

(
u1(t), u2(t), µ

)
,
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can be taken as a condition for being closed. The pitch of this ruled surface is
defined by

(4.10) LK =
∮
dµ = −

∮
〈dr, e〉 .

An orthogonal trajectory starting from the point p0 on a e-generator intersects
the same generator at another point p1 which is generally different from p0; this
distance LK = p0p1 is called the pitch of parameter ruled surface in the congruence
K. We may write

(4.11) LK = −
∮ 〈∂r

∂s
ds+ ∂r

∂s̄
ds̄, e

〉
,

or

(4.12) LK = −
∮ [〈∂r

∂s
, e
〉
ds+

〈∂r
∂s̄
, e
〉
ds̄
]
.

We found by application of Green’s theorem, that:

(4.13) LK =
∫∫ [ ∂

∂s

(〈∂r
∂s̄
, e
〉)
− ∂

∂s̄

(〈∂r
∂s
, e
〉)]

ds ds̄ ,

where the double integral is taken along the portion of the director surface bounded
by the curve r = r(u1(t), u2(t)). Since ∂

∂s̄

(
∂r
∂s

)
= ∂

∂s

(
∂r
∂s̄

)
, we have:

(4.14) LK =
∫∫ [〈∂r

∂s
,
∂e
∂s̄

〉
−
〈∂r
∂s̄
,
∂e
∂s

〉]
ds ds̄ .

Hence, the following theorem can be given:

Theorem 4.1. In Euclidean 3-space E3, the pitch vanish for every parameter ruled
surface belonging to the line congruence generated by an oriented line connected
with the motion of the Darboux frame along a family of curves on the director
surface if and only if the line congruence is normal line congruence.

It is clear now from equations (3.14), and (3.15), for the line congruences T and
T̄ , we have:

(4.15)


LT = −

∫∫
F

k1(q̄2 + q̄1)
(k2 + q2) 3

2
ds ds̄ ,

LT̄ = −
∫∫
F̄

k̄2(q2 − q2)
(k̄2 + q̄2) 3

2
ds ds̄ .

From these equations, we remark that:

(4.16)
{
LT = 0⇔ k1(q̄2 + q̄1) = 0 ,

LT̄ = 0⇔ k̄2(q2 − q2) = 0 .

Now for the surface M , we have if k1 = 0, k̄2 6= 0, or k1 6= 0, k̄2 = 0, then the
surface is canal surface. One of the family lines of curvature of a canal surface are
plane curves, since they are circular. Therefore, the corresponding central surface
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of the canal surface becomes a curve and the congruences T , or T̄ degenerates into
a ruled surface. Therefore, we have to impose:

(4.17)
{
LT = 0⇔ (q̄2 + q̄1) = 0 ,

LT̄ = 0⇔ (q2 − q2) = 0 .
If we repeat the above discussions for the line congruences in (4.2), we have the

same conditions. In addition, by comparing the equations (4.4), (4.6), and (4.16),
we find consecutively that:

(4.18)
{
LT = 0⇔ k1(q̄2 + q̄1) = 0⇔ b′ = 0 = b ,

LT̄ = 0⇔ k̄2(q2 − q2) = 0⇔ b̄ = 0 = b̄′ .

Thus, we conclude that holds:
Theorem 4.2. In Euclidean 3-space E3, for the line congruences generated by the
instantaneous revolution axes h, and h̄ along the lines of curvature u2 = const.,
u1 = const., respectively, on a regular surface M , which is not a canal surface. The
following are equivalent:

(i) the pitches of every parameter ruled surfaces belonging to these line congruences
vanishes,

(ii) the line congruences are normal line congruences,
(iii) at each point on the surface M , the following

(4.19) q̄2 + q̄1 = 0 , q2 − q2 = 0 ,
are satisfied.

4.1.1. Pitch of instantaneous isotropic line congruence. If the line congruences in
(4.1), (or (4.2)) are isotropic line congruences, then we have:

(4.20)


g11

k1(q1k − qk1)
k(k2 + q2) 3

2
= 0 , √

g11g22
k1(q̄2 + q̄1)
(k2 + q2) 3

2
= 0 ,

√
g11g22

k̄2(q2 − q2)
(k̄2 + q̄2) 3

2
= 0 , g22

k̄2(q̄2k̄ − q̄k̄2)
k̄(k̄2 + q̄2) 3

2
= 0 .

in view of equations (4.4) and (4.6). The surface M , chosen to have the families
of curvature lines as parametric curves, should obey to the condition g11g22 6= 0.
Now from the equations (4.20), for the isotropic conditions, we have k1 = 0, and
k̄2 = 0 as common solution. On the contrary k1 6= 0, and k̄2 6= 0 according to the
Theorem 4.2. Thus, we conclude that holds:
Theorem 4.3. In Euclidean 3-space E3, for the line congruences generated by the
instantaneous revolution axes h, and h̄ along the lines of curvature u2 = const.,
u1 = const., respectively, on a regular surface M , which is a canal surface. The
following are equivalent:

(i) The pitches of every parameter ruled surfaces belonging to these line
congruences vanishes.

(ii) The line congruences are isotropic line congruences.
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4.1.2. Instantaneous normal line congruence. We now proceed to study the follo-
wing line congruences:

(4.21)
{
I : Y(u1, u2, µ) = z̄(u1, u2) + µh(u1, u2) ,

Ī : Ȳ(u1, u2, µ) = z(u1, u2) + µh̄(u1, u2) ,
which can be introduce in view of the Theorem 3.1. For these line congruences, let us
now derive the conditions under which their parameter ruled surfaces are principal
ruled surfaces. Equivalently, for this purpose, we show when the parametric curves
u1, u2 are lines of curvature on the surfaces z̄ = z̄(u1, u2), and z = z(u1, u2),
respectively. Therefore for our aim, respectively, we immediately derive from (3.14),
and (3.15), that:

(4.22)
{
k(q1k − qk1)(q̄2 + q̄1) = 0 , kq̄2(q̄2 + q̄1) = 0 ,

k̄(q̄k̄2 − q̄2k̄)(q2 − q2) = 0 , k̄q1(q2 − q2) = 0 .
Here, for the surface M , the conditions indicate that [1, 2]:

(i) If k = 0 or k̄ = 0, then the surface is a developable ruled surface;
(ii) if q = 0 or q̄ = 0, then the surface is a moulding surface;
(iii) if q1k − q1 = 0 or q̄k̄2 − q̄2k̄ = 0, then the parametric curves are plane

curves.
Then as in [1, 2], we can give the following theorem:

Theorem 4.4. In Euclidean 3-space E3, during the motion of the Darboux frame
along the families of the lines of curvature u1 = const., and u2 = const., on
the surface M which can neither be a developable ruled surface, nor a moulding
surface or a canal surface. Let the two complementary surfaces z̄ = z̄(u1, u2), and
z = z(u1, u2), respectively, are director surfaces of the line congruences generated
by the instantaneous revolution axes h, and h̄. Then, the necessary and sufficient
conditions that their parameter ruled surfaces are taken as principal ruled surfaces
are:
(4.23) q̄2 + q̄1 = 0, q2 − q2 = 0 .
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