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SOME RIGIDITY THEOREMS FOR FINSLER MANIFOLDS
OF SECTIONAL FLAG CURVATURE

Bing Ye Wu

Abstract. In this paper we study some rigidity properties for Finsler mani-
folds of sectional flag curvature. We prove that any Landsberg manifold of
non-zero sectional flag curvature and any closed Finsler manifold of negative
sectional flag curvature must be Riemannian.

1. Introduction

The flag curvature, a natural extension of the sectional curvature in Riemannian
geometry, plays the central role in Finsler geometry. Generally, the flag curvature
depends not only on the section but also on the flagpole. A Finsler metric is of
scalar flag curvature if its flag curvature depends only on the flagpole. Contrast to
it, Professor Zhongmin Shen suggests a parallel notion: a metric is of sectional flag
curvature if its flag curvature depends only on the section (see also [2]).

In this paper we shall study the rigidity properties for Finsler metrics of sectional
flag curvature. First we recall that in 1975 Numata proved that any Landsberg
manifold (dim ≥ 3) of nonzero scalar flag curvature must be Riemannian [7], the
following theorem can be viewed as the analogous result for sectional flag curvature.

Theorem 1.1. Any Landsberg manifold of nonzero sectional flag curvature must
be Riemannian.

For general Finsler metrics, the most important rigidity result is the Akbar-Zadeh’s
theorem: any closed Finsler manifold of negative constant flag curvature must be Rie-
mannian [1]. Our second result can be viewed as the generalization of Akbar-Zadeh’s
theorem.

Theorem 1.2. Any closed Finsler manifold of negative sectional flag curvature
must be Riemannian.
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2. Preliminaries

In this section, we give a brief description of basic quantities and fundamental
formulas in Finsler geometry, for more details one is referred to see [5]. Throughout
this paper, we shall use the Einstein convention, that is, repeated indices with one
upper index and one lower index denotes summation over their range.

Let (M,F ) be a Finsler n-manifold with Finsler metric F : TM → [0,∞). Let
(x, y) = (xi, yi) be the local coordinates on TM , and π : T̃M = TM\0→ M the
natural projection. Unlike in the Riemannian case, most Finsler quantities are
functions of TM rather than M . Some fundamental quantities and relations:

gij(x, y) := 1
2
∂2F 2(x, y)
∂yi∂yj

, (positive definite fundamental tensor)

Cijk(x, y) := 1
4
∂3F 2(x, y)
∂yi∂yj∂yk

, (Cartan tensor)

(gij) := (gij)−1 , Cijk = gilCljk ,

γkij := 1
2g
km

(
∂gmj
∂xi

+ ∂gim
∂xj

− ∂gij
∂xm

)
,

N ij := γijky
k − Cijkγkrsyrys .

According to [4], the pulled-back bundle π∗TM admits a unique linear connection,
called the Chern connection. Its connection forms are characterized by the structure
equations:
• Torsion freeness:

(2.1) dωi = ωj ∧ ωij ,

• Almost g-compatibility:

dgij = gikω
k
j + gkjω

k
i + 2Cijkωn+k ,

where

(2.2) ωi := dxi, ωn+k := dyk + yjωkj .

It is easy to know that torsion freeness is equivalent to the absence of dyk terms in
ωij ; namely,

ωij = Γijkdxk ,
together with the symmetry

Γijk = Γikj .

The first Chern curvature tensor R i
j kl and the second Chern curvature tensor P ,ij kl

are defined by the following structure equation:

(2.3) dωij = ωkj ∧ ωik + 1
2R

i
j klω

k ∧ ωl + P ij klω
k ∧ ωn+l ,
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where R i
j kl = −R i

j lk. The local expressions of R i
j kl and P ij kl are

R i
j kl =

δΓijl
δxk

−
δΓijk
δxl

+ ΓiksΓsjl − ΓsjkΓils ,

and

P ij kl = −
∂Γijk
∂yl

,

respectively, where
δ

δxi
:= ∂

∂xi
−N ji

∂

∂yj
.

From (2.2) and (2.3) we have

(2.4) dωn+i = ωn+j ∧ ωij + 1
2R
i
klω
k ∧ ωl − Liklωk ∧ ωn+l ,

where
Rikl := yjR i

j kl , Likl := −yjP ij kl .

Lijk is called the Landsberg curvature, and (M,F ) is called a Landsberg manifold
if Lijk = 0. Let Lijk = gilL

l
jk, then both Cijk and Lijk are symmetric on all their

indices, and by Euler’s Lemma we have

(2.5) yiCijk = yiLijk = 0 .

Let Rijkl := gjsR
s
i kl, R

i
j := ykRijk and Rij := gikR

k
j , then

(2.6) Rij = Rji .

Let gy := gij(x, y)dxi⊗dxj ,Cy := Cijk(x, y)dxi⊗dxj⊗dxk, and Ry := Rij(x, y)dxi
⊗ dxj , they are all symmetric. For a tangent plane P ⊂ TxM containing y, let

(2.7) K(P, y) = K(y;u) := Ry (u, u)
gy(y, y)gy(u, u)− [gy(y, u)]2 ,

where u ∈ P such that P = span{y, u}. K is called the flag curvature. In general
K(P, y) depends both on the section P and the flagpole y. We say that (M,F ) is
of sectional flag curvature if K(P, y) depends only on the section P . For tensors on
slit tangent bundle T̃M , one can define the horizontal covariant derivative and the
vertical covariant derivative. For example, if T = T ijdx

j ⊗ ∂
∂xi , then the horizontal

covariant derivative T ij|k and the vertical covariant derivative T ij·k are related by

T ij|kω
k + T ij·kω

n+k := dT ij + T kj ω
i
k − T ikωkj ,

and thus

T ij|k =
δT ij
δxk
− T isΓsjk + T sj Γisk ,

T ij·k =
∂T ij
∂yk

.



102 B.Y. WU

In term of horizontal covariant, the geodesic differentiation Ṫ of T is defined by
Ṫ ij = T ij|ky

k. The horizontal and vertical covariant derivative satisfies the product
rule, and

(2.8) gij|k = 0, yi|k = 0 .

In term of geodesic differentiation the Landsberg curvature and the Cartan tensor
are related by Lijk = Cijk|ly

l = Ċijk.

3. The Proof of Theorems

In this section we shall complete the proof of Theorems 1.1 and 1.2. For this
purpose, Let us first prove some lemmas.

Lemma 3.1. Let R·y := Rij·kdxi ⊗ dxj ⊗ dxk. If (M,F ) is of sectional flag
curvature, then for any y, u ∈ TxM with y 6= 0, the following holds:

(3.1) R·y(u, u, u) = 2K(y;u)F 2(y)Cy(u, u, u) .

Proof. . Express y and u as y = yi ∂∂xi and u = ui ∂∂xi , respectively, then (2.7) can
be rewritten as

(3.2) Rij(x, y)uiuj = K(y;u)
(
gij(x, y)yiyjgkl(x, y)ukul −

(
gij(x, y)yiuj

)2)
.

Let y(t) = y + tu, then y(0) = y, y′(0) = u. Since (M,F ) is of sectional flag
curvature, and span{y, u} = span{y(t), u} for any t, we conclude that K

(
y(t);u

)
is constant for any t. Hence, replace y by y(t) in (3.2) and calculate the derivative
with respect to t on the two sides at t = 0, and use (2.5), one can reach at (3.1)
easily. �

For y ∈ TxM\{0}, let {y⊥} = {u ∈ TxM : gy(y, u) = 0}, Sx = {(y, u) : y, u ∈
TxM,u ∈ {y⊥}, F (y) = gy(u, u) = 1}, and S =

⋃
x∈M

Sx. Note that Sx is always

closed for any x ∈M , and S is also closed if M is closed. We have

Lemma 3.2. Let y0, u0 ∈ TxM be two vectors such that

(3.3) Cy0(u0, u0, u0) = max
(y,u)∈Sx

Cy(u, u, u) ,

then Cy0(u0, u0, v0) = 0 for any v0 ∈ {y⊥0 } with gy0(u0, v0) = 0. Consequently,
Cy0(u0, u0, v) = gy0(v, u0) ·Cy0(u0, u0, u0) for any v ∈ TxM .

Proof. Let y0, u0 be two vectors such that (3.3) holds, and v0 ∈ {y⊥0 } with
gy0(u0, v0) = 0. Without loss of generality, we may assume that gy0(v0, v0) = 1.
Let u(t) = u0 cos t+ v0 sin t, then u(0) = u0, u

′(0) = v0, and
(
y0, u(t)

)
∈ Sx for any

t. It is clear that the function f(t) = Cy0

(
u(t), u(t), u(t)

)
attains its maximum at

t = 0, and thus

0 = df

dt

∣∣∣
t=0

= 3Cy0(u0, u0, v0) .

Notice that Cy0(y0, ·, ·) = 0, one has Cy0(u0, u0, v) = gy0(v, u0) · Cy0(u0, u0, u0)
for any v ∈ TxM . �
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In order to prove Theorems 1.1 and 1.2, we need the following fundamental
identity for Cartan tensor [3, 6]:

Cijk|p|qy
pyq + CijmR

m
k = −1

3gimR
m
k·j −

1
3gjmR

m
k·i

− 1
6gimR

m
j·k −

1
6gjmR

m
i·k .(3.4)

(3.4) can be rewritten as

C̈ijk = 1
3(CijmRmk + CjkmR

m
i + CkimR

m
j )

− 1
3(Rij·k +Rjk·i +Rki·j) ,(3.5)

and consequently,

(3.6) C̈ijku
iujuk = Cy

(
u, u, ukRmk

∂

∂xm

)
−R·y(u, u, u) , ∀u = ui

∂

∂xi
.

Now we are ready to prove Theorems 1.1 and 1.2.
Proof of Theorem 1.1. Suppose that (M,F ) be a Landsberg manifold of nonzero
sectional flag curvature. For fixed x ∈ M , let y0, u0 ∈ TxM be two vectors such
that (3.3) holds. Then by Lemma 3.2, we have

Cy0

(
u0, , u0, u

k
0R
m
k

∂

∂xm

)
= gy0

(
uk0R

m
k

∂

∂xm
, u0

)
·Cy0(u0, , u0, u0)

= Ry0(u0, u0) ·Cy0(u0, , u0, u0) .(3.7)

Since (M,F ) is Landsberg, C̈ijk = L̇ijk = 0, which together with (2.7), (3.1), (3.6)
and (3.7) yields

0 = Ry0(u0, u0) ·Cy0(u0, , u0, u0)−R·y0(u0, u0, u0)
= −K(y0;u0) ·Cy0(u0, , u0, u0) .

Notice that K(y0;u0) 6= 0, we get Cy0(u0, , u0, u0) = 0, namely, max
(y,u)∈Sx

Cy(u, u, u) =

0. As x ∈M is arbitrary, we finally obtain Cy(u, u, u) = 0 for any (y, u) ∈ S, Hence
(M,F ) is Riemannian. �

Proof of Theorem 1.2. Let (M,F ) be a closed Finsler manifold of negative
sectional curvature. Since M is closed, so is S, and there exist two vectors y0, u0 ∈
Tx0M such that Cy0(u0, u0, u0) = max

(y,u)∈S
Cy(u, u, u). Let c : (−ε, ε) → M be the

normal geodesic with the initial condition c(0) = x0, ċ(0) = y0, and U = U(t) be the
parallel vector field along c such that U(0) = u0. Then

(
ċ(t), U(t)

)
∈ Sc(t) for any

t ∈ (−ε, ε), and the function f(t) = Cċ(t)
(
U(t), U(t), U(t)

)
attains its maximum at

t = 0. By maximum principle and (3.6) we have

0 ≥ d2f

dt2

∣∣∣
t=0

= Cy0

(
u0, u0, u

k
0R
m
k(x0, y0) ∂

∂xm

)
−R·y0(u0, u0, u0) ,

which together with Lemma 3.1 and (3.7) yields
0 ≥ −K(y0;u0) ·Cy0(u0, , u0, u0) .
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Since K(y0;u0) < 0, we conclude that Cy0(u0, , u0, u0) = 0, i.e., max
(y,u)∈S

Cy(u, u, u) =

0. Consequently, (M,F ) is Riemannian, and the theorem is proved. �
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